10 几何证明综合及小测教师_第1页
10 几何证明综合及小测教师_第2页
10 几何证明综合及小测教师_第3页
10 几何证明综合及小测教师_第4页
10 几何证明综合及小测教师_第5页
免费预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 第十讲 几何证明及小测 一、填空题一、填空题 1.1. ABCABC中,中, ACB=ACB=9090 ,CDCDABAB于于D D,BCBC= = 1 2 AB,BCBC=2cm=2cm,则,则ABAB= = 4 4 cmcm,ACAC= = 2 3 cmcm. . 2.2. ABCABC中,中, C C=90=90 ,ACAC=4=4,ABAB=8=8,CDCD是是ABAB边上中线,则边上中线,则 ACDACD是是 等边等边 三角形三角形. . 3.3. 如果一个三角形的两边的垂直平分线的交点在第三边上,则这个三角形最大角的度数是如果一个三角形的两边的垂直平分线的交点在第三边上,则这个三角形最大角的度数是 9090. . 4.4. 在在 RtRtABCABC 中,中,ACBACB9090,斜边,斜边 ABAB 上的中线上的中线 CD=1CD=1,ABCABC 的周长为的周长为62,则,则ABCABC 的面积的面积 为为_0.5 0.5 5.5. 等腰三角形中有一个角是等腰三角形中有一个角是 5050 ,它的一条腰上的高与底边的夹角是,它的一条腰上的高与底边的夹角是 2525 或或 4040 . . 6.6. 一个三角形的一边为一个三角形的一边为 2 2,这边的中线为,这边的中线为 1 1,另两边之和为,另两边之和为31,那么这个三角形的面积为,那么这个三角形的面积为 3 2 . . 7.7. 在在ABCABC 中,中,A=50A=50, BD, BD、CDCD 分别平分分别平分ABCABC 和和ACB,ACB,则则BDCBDC 的度数为的度数为_115_115 度度_._. 8.8. 等腰三角形的一边长为等腰三角形的一边长为3,另一边长为,另一边长为6,那么它的周长为,那么它的周长为 15 15 9.9. 如图,将一副直角三角板叠在一起,使直角顶点重合于点如图,将一副直角三角板叠在一起,使直角顶点重合于点O,则,则 DOCAOB = = 180 180 度度 . . A OB C D 2 二、综合题二、综合题 1.1. 已知:已知:ABCABC 中,中,ADAD 是高,是高,CECE 是中线,是中线,DC=BEDC=BE,DGDGCECE,G G 是垂足,是垂足, 求证: (求证: (1 1)G G 是是 CECE 的中点; (的中点; (2 2)B=2B=2BCE. BCE. 证明:证明: (1 1)连结)连结 DEDE, ADB=90ADB=90,E E 是是 A AB B 的中点,的中点, DE=AE=BEDE=AE=BE(直角三角形斜边上的中线等于斜边的一半) ,(直角三角形斜边上的中线等于斜边的一半) , 又又DC=BEDC=BE,DC=DEDC=DE, 又又DGDGCECE, G G 是是 CECE 中点(等腰三角形底边上的高平分底边)中点(等腰三角形底边上的高平分底边). . (2 2)DE=DCDE=DC,DCE=DCE=DECDEC(等边对等角) ,(等边对等角) , EDB=EDB=DEC+DEC+DCE=2DCE=2BCEBCE(三角形的外角等于两不相邻内角的和) ,(三角形的外角等于两不相邻内角的和) , 又又DE=BEDE=BE,B=B=EDBEDB,B=2B=2BCEBCE 2. 如图,在正方形如图,在正方形 ABCD 中,中,E、F 是是 BC、CD 边上的两点,边上的两点, 45EAF,求证:,求证:EF=BE+DF。 3. 已已知,如图,四边形知,如图,四边形 ABCD 中,中,AB=AD, 12060BCDBAD,求证:,求证:BC+CD=AC。 E G A CDB 3 4.4. 若直角三角形两直角边上的中线长度之比为若直角三角形两直角边上的中线长度之比为m,求,求m的取值范围的取值范围 解:解:以直角顶点为原点以直角顶点为原点,两直角边为坐标正半轴建系两直角边为坐标正半轴建系, 令令)0,(xA,),0(yB其中其中0,0 yx,OA边上的中线的平方为边上的中线的平方为: 2 2 4 y x ,OB边上的中边上的中 线的平方为线的平方为: 4 2 2 y x ,故有故有: 4 4 2 2 2 2 2 y x y x m ,分子分母同除以分子分母同除以 2 x,然后令然后令 2 )( x y t ,不难得到不难得到 4 4 1 2 m,故得故得2 2 1 m 5.5. 已知一个直角三角形的边长都是整数,且周已知一个直角三角形的边长都是整数,且周长的数值等于面积的数值, 求这个三角形的三边的长。长的数值等于面积的数值, 求这个三角形的三边的长。 解:设该三角形的两条直角边为解:设该三角形的两条直角边为ba、,则斜边长为,则斜边长为 22 ba ,由题意知:,由题意知: 22 2 baba ab , 22 2 22 ba baab , 4 84444 222222 22 ababbababa ba ,0)844( baabab 0 ab,0)844( baab ,即,即8)4)(4( ba 12484 84214 、 、 b a , 56812 12865 、 、 b a ,所以三边长为,所以三边长为865 、或或1086 、 6.6. 如图所示,等腰如图所示,等腰 RtRtABCABC 的直角边的直角边 AB=2AB=2,点,点 P P、Q Q 分别从分别从 A A、C C 两点同时出发,以相同速度做直线两点同时出发,以相同速度做直线 运动运动. .已知点已知点 P P 沿射线沿射线 ABAB 运动,点运动,点 Q Q 沿边沿边 BCBC 的延长线运动,的延长线运动,PQPQ 与直线与直线 ACAC 相交于点相交于点 D D. . (1 1)设)设 APAP 的长为的长为 x x,PCQPCQ 的面积为的面积为 S S,请利用请利用 x x 来表示出来表示出 S S, 并写出并写出 x x 的取值范围;的取值范围; (2 2)当)当 APAP 的长的长为何值时,为何值时,? (3 3)作)作 PEPEACAC 于于 E E,当点,当点 P P、Q Q 运动时,线段运动时,线段 DEDE 的长度是否改变?证明你的结的长度是否改变?证明你的结 论论. . 解:解:(1 1)当点)当点 P P 在线段在线段 ABAB 上时,如图(上时,如图(1 1)所示)所示 AP=CQ=xAP=CQ=x,PB=2PB=2x x 4 即即 当点当点 P P 在在 ABAB 延长线上时,如图(延长线上时,如图(2 2)所示)所示 AP=CQ=xAP=CQ=x,PB=xPB=x2 2 即即 (2 2) 令令,即,即,此方程无实根;,此方程无实根; 令令,即,即. . 解得解得,舍去负值,舍去负值. . . . 故当故当 APAP 的长为的长为时,时, (3 3)作)作 PF/BCPF/BC 交交 ACAC 的延长线于的延长线于 F F,则,则 AP=PF=CQAP=PF=CQ,AE=EFAE=EF DF=CDDF=CD 当点当点 P P 在线段在线段 ABAB 上时,上时, 当点当点 P P 在在 ABAB 的延长线上时,的延长线上时, DE=EFDE=EFFDFD 故当故当 P P、Q Q 运动时,线段运动时,线段 DEDE 的长度保持不变,始终等于的长度保持不变,始终等于 5 1.1. 已知:如图,正已知:如图,正ABCABC 的边长为的边长为 a, Da, D 为为 ACAC 边上的一个动点,延长边上的一个动点,延长 ABAB 至至 E E 使使 BE=CDBE=CD,连结,连结 DEDE, 交交 BCBC 于点于点 P. P. (1 1)求证:)求证:DP=PEDP=PE; (2 2)若)若 D D 为为 ACAC 的中点,求的中点,求 BPBP 的长的长. . (1 1)证明:过点)证明:过点 D D 作作 DFDFABAB,交,交 BCBC 于于 F F ABCABC 为正三角形为正三角形 CDF=CDF=A=60A=60 CDFCDF 为正三角形,为正三角形,DF=CDDF=CD 又又 BE=CDBE=CD,BE=DF BE=DF 又又 DFDFABAB, PEPEB=B=PDFPDF 在在DFPDFP 和和EBPEBP 中,有:中,有:PEB=PEB=PDFPDF,BPE=BPE=FPDFPD,BE=FDBE=FD DFPDFPEBPEBP, DP=PE. DP=PE. (2 2)BPBP 4 1 a.a. 教师补充:教师补充: 若将条件正若将条件正ABCABC 改为等腰改为等腰ABCABC,AB=ACAB=AC,结论,结论 DP=PEDP=PE 是否仍成立?是否仍成立? 2.2. 如图:如图:ADAD 为为ABCABC 的中线,且的中线,且1 12 2,3 34 4,求证:,求证:BEBECFCFEFEF 证明:延长证明:延长 EDED 至至 M M,使,使 DM=DEDM=DE,连接,连接 CMCM,MF.MF. 在在BDEBDE 和和CDMCDM 中,中, )( )(1 )( 辅助线的作法 对顶角相等 中点的定义 MDED CDM CDBD BDEBDECDMCDM (SASSAS) 又又1 12 2,3 34 4 1 12 23 34 4180180 3 32=902=90,即:,即:EDFEDF9090 FDMFDMEDF EDF 9090 在在EDFEDF 和和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论