




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.论文撰写中要注意的统计学问题(转)(一、均值的计算 在处理数据时,经常会遇到对相同采样或相同实验条件下同一随机变量的多个不同取值进行统计处理的问题。此时,往往我们会不假思索地直接给出算术平均值和标准差。显然,这种做法是不严谨的。这是因为作为描述随机变量总体大小特征的统计量有算术平均值、几何平均值和中位数等多个。至于该采用哪种均值,不能根据主观意愿随意确定,而要根据随机变量的分布特征确定。反映随机变量总体大小特征的统计量是数学期望,而在随机变量的分布服从正态分布时,其数学期望就是其算术平均值。此时,可用算术平均值描述随机变量的大小特征;如果所研究的随机变量不服从正态分布,则算术平均值不能准确反映该变量的大小特征。在这种情况下,可通过假设检验来判断随机变量是否服从对数正态分布。如果服从对数正态分布,则几何平均值就是数学期望的值。此时,就可以计算变量的几何平均值;如果随机变量既不服从正态分布也不服从对数正态分布,则按现有的数理统计学知识,尚无合适的统计量描述该变量的大小特征。此时,可用中位数来描述变量的大小特征。因此,我们不能在处理数据的时候一律采用算术平均值,而是要视数据的分布情况而定。二、直线相关与回归分析 这两种分析,说明的问题是不同的,既相互又联系。在做实际分析的时候,应先做变量的散点图,确认由线性趋势后再进行统计分析。一般先做相关分析,只有在相关分析有统计学意义的前提下,求回归方程才有实际意义。一般来讲,有这么两个问题值得注意: 一定要把回归和相关的概念搞清楚,要做回归分析时,不需要报告相关系数;做相关分析的时候,不需要计算回归方程。 相关分析中,只有对相关系数进行统计检验(如t检验),P0.05这种无统计学意义的结论;而当样本量很大,如500,即使r=0.1,也会有P0时,表示两变量正相关,r0时,两变量为负相关。* 当|r|=1时,表示两变量为完全线性相关,即为函数关系。* 当r=0时,表示两变量间无线性相关关系。* 当0|r|1时,表示两变量存在一定程度的线性相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱。* 一般可按三级划分:|r|0.4为低度线性相关;0.4|r|0.7为显著性相关;0.7|r|1为高度线性相关。在统计学中,变量按变量值是否连续可分为连续变量与离散变量两种.在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值.例如,生产零件的规格尺寸,人体测量的身高,体重,胸围等为连续变量,其数值只能用测量或计量的方法取得.反之,其数值只能用自然数或整数单位计算的则为离散变量.例如,企业个数,职工人数,设备台数等,只能按计量单位数计数,这种变量的数值一般用计数方法取得.2性质编辑符号x如果能够表示对象集合S中的任意元素,就是变量。如果变量的域(即对象的集合S)是离散的,该变量就是离散变量;如果它的域是连续的,它就是连续变量。连续变量由于不能一一列举其变量值,只能采用组距式的分组方式,且相邻的组限必须重叠。如以总产值、商品销售额、劳动生产率、工资等为标志进行分组,就只能是相邻组限重叠的组距式分组。13区分连续变量(continuous variable)与离散变量(discrete variable)2的简单区分方法连续变量与离散变量的简单区别方法:连续变量时一直叠加上去的,增长量可以划分为固定的单位,即:1,2,3 例如:一个人的身高,他首先长到1.51,然后才能长到1.52,1.53;在百度贴吧中,用户首先要有1个粉丝,其后他才能有2,3位粉丝。而离散变量则是通过计数方式取得的,即是对所要统计的对象进行计数,增长量非固定的,如:一个地区的企业数目可以是今年只有一家,而第二年开了十家;一个企业的职工人数今年只有10人,第二年一次招聘了20人等。 分类变量可分为无序变量和有序变量两类。释义无序分类变量(unordered categorical variable)是指所分类别或属性之间无程度和顺序的差别。,它又可分为二项分类,如性别(男、女),药物反应(阴性和阳性)等;多项分类,如血型(O、A、B、AB),职业(工、农、商、学、兵)等。对于无序分类变量的分析,应先按类别分组,清点各组的观察单位数,编制分类变量的频数表,所得资料为无序分类资料,亦称计数资料。有序分类变量有序分类变量(ordinal categorical variable)各类别之间有程度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化创意产业项目投资与收益分配协议书
- 经济法概论重要文献试题及答案参考
- 家庭物资管理系统开发协议
- 农村社区土地流转合作协议
- 乡村特色种植区开发协议
- 公共关系学知识要点及试题答案
- 突破传统思维的2025年市政工程考试试题及答案
- 2025年公共关系学创新思维试题及答案
- 开设品德课程提升学生道德水平计划
- 提升信息技术应用能力的方法计划
- 2025年江苏高处安装、维护、拆除作业-特种作业证考试复习题库(含答案)
- 2025年湖北省黄冈市中考数学调研试卷(4月份)
- Unit7OutdoorfunIntegration(课件)-译林版(2024)英语七年级下册
- 2023年船员培训计划
- 2025中国铁路郑州局集团招聘614人(河南)笔试参考题库附带答案详解
- 陪玩店合同协议
- 货运司机雇佣合同协议
- 超合同30签补充协议
- 中国船用集装箱角件行业市场发展前景及发展趋势与投资战略研究报告2025-2028版
- 2025年国家义务教育质量监测中学语文理论考核试题
- 2025年山东省淄博市中考二模地理试题及答案
评论
0/150
提交评论