解三角形应用举例(1)精品课件.ppt_第1页
解三角形应用举例(1)精品课件.ppt_第2页
解三角形应用举例(1)精品课件.ppt_第3页
解三角形应用举例(1)精品课件.ppt_第4页
解三角形应用举例(1)精品课件.ppt_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.正弦定理:,复习回顾,高度,角度,距离,有关三角形计算,水平距离的测量,经纬仪,测量水平角和竖直角的仪器。是根据测角原理设计的。目前最常用的是光学经纬仪。,光学经纬仪,钢卷尺,引例:如图,A,B两点在河两岸,现有经纬仪和钢卷尺两种工具,如何测量A,B两点距离?,练习1.如图在铁路建设中需要确定隧道两端A,B的距离,请你设计一种测量A,B距离的方法?,练习2.如图河流的一岸有条公路,一辆汽车在公路上匀速行驶,某人在另一岸的C点看到汽车从A点到B点用了t秒,请你设计方案求汽车的速度?,分析:用引例的方法,可以计算出AC,BC的距离,再测出BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。,公路,河流,解:在岸边选定一点D,测得CD=a,并且在C、D两点分别测得BCA=,ACD=,CDB=,BDA=.在ADC和BDC中,应用正弦定理得,计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离,测量问题之一:,水平距离的测量,两点间不能到达,又不能相互看到。(如图1所示),需要测量CB、CA的长和角C的大小,由余弦定理,可求得AB的长。,两点能相互看到,但不能到达。(如图2所示),需要测量BC的长、角B和角C的大小,由三角形的内角和,求出角A然后由正弦定理,可求边AB的长。,图1,图2,两点都不能到达,1、分析:理解题意,画出示意图,2、建模:把已知量与求解量集中在一个三角形中,3、求解:运用正弦定理和余弦定理,有顺序地解这些三子角形,求得数学模型的解。,4、检验:检验所求的解是否符合实际意义,从而得出实际问题的解。,实际问题数学问题(三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论