【初中数学课件】线段的垂直平分线(2)三角形的垂心ppt课件.ppt_第1页
【初中数学课件】线段的垂直平分线(2)三角形的垂心ppt课件.ppt_第2页
【初中数学课件】线段的垂直平分线(2)三角形的垂心ppt课件.ppt_第3页
【初中数学课件】线段的垂直平分线(2)三角形的垂心ppt课件.ppt_第4页
【初中数学课件】线段的垂直平分线(2)三角形的垂心ppt课件.ppt_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学(上册)第一章证明(二),3.线段的垂直平分线(2)三角形的垂心,天马行空官方博客:,驶向胜利的彼岸,线段的垂直平分线的作法,已知:线段AB,如图.求作:线段AB的垂直平分线.作法:,用尺规作线段的垂直平分线.,1.分别以点A和B为圆心,以大于AB/2长为半径作弧,两弧交于点C和D.,2.作直线CD.,则直线CD就是线段AB的垂直平分线.,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.,老师提示:因为直线CD与线段AB的交点就是AB的中点,所以我们也用这种方法作线段的中点.,天马行空官方博客:,驶向胜利的彼岸,线段的垂直平分线的性质,定理线段垂直平分线上的点到这条线段两个端点距离相等.,老师提示:这个结论是经常用来证明两条线段相等的根据之一.,如图,AC=BC,MNAB,P是MN上任意一点(已知),PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).,驶向胜利的彼岸,线段的垂直平分线的性质定理的逆定理,逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.,如图,PA=PB(已知),点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).,老师提示:这个结论是经常用来证明点在直线上(或直线经过某一点)的根据之一.从这个结果出发,你还能联想到什么?,驶向胜利的彼岸,亲历知识的发生和发展,剪一个三角形纸片通过折叠找出每条边的垂直平分线.,结论:三角形三条边的垂直平分线相交于一点.,老师期望:你能写出规范的证明过程.,你想证明这个命题吗?你能证明这个命题吗?,观察这三条垂直平分线,你发现了什么?,驶向胜利的彼岸,亲历知识的发生和发展,利用尺规作出三角形三条边的垂直平分线.,结论:三角形三条边的垂直平分线相交于一点.,老师期望:你能写出规范的证明过程.,你想证明这个命题吗?你能证明这个命题吗?,再观察这三条垂直平分线,你又发现了什么?与同伴交流.,驶向胜利的彼岸,命题:三角形三条边的垂直平分线相交于一点.,如图,在ABC中,设AB,BC的垂直平分线相交于点P,连接AP,BP,CP.,点P在线段AB的垂直平分线上,PA=PB(或AB的中点,).同理,PB=PC.PA=PC.点P在线段AB的垂直平分线上,AB,BC,AC的垂直平分线相交于一点.,想一想:若作出P的角平分线,结论是否也可以得征?,咋证三条直线交于一点,基本想法是这样的:我们知道,两条直线相交只有一个交点.要想证明三条直线相交于一点,只要能证明两条直线的交点在第三条直线上即可.这时可以考虑前面刚刚学到的逆定理.,挑战自我,驶向胜利的彼岸,如图,已知AB是线段CD的垂直平分线,E是AB上的一点,如果EC=7cm,那么ED=cm;如果ECD=600,那么EDC=0.,老师期望:你能说出填空结果的根据.,7,60,梦想成真,1.已知直线和上一点P,利用尺规作的垂线,使它经过点P.,回味无穷,定理线段垂直平分线上的点到这条线段两个端点距离相等.如图,AC=BC,MNAB,P是MN上任意一点(已知),PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等).逆定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.如图,PA=PB(已知),点P在AB的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上).,知识的升华,P9习题1.51,2,3题.祝你成功!,习题1.5,驶向胜利的彼岸,1.利用尺规作出三角形三条边的垂直平分线.,老师期望:先分别作出不同形状的三角形,再按要求去作图.,习题1.5,驶向胜利的彼岸,2.如图,A,B表示两个仓库,要在A,B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建造在什么位置?,老师期望:养成用数学解释生活的习惯.,A,B,习题1.5,驶向胜利的彼岸,3.如图,在ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,BCE的周长等于50,求BC的长.,老师期望:做完题目后,一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论