




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,用待定系数法求二次函数的解析式,天马行空官方博客:,二次函数解析式有哪几种表达式?,1一般式:y=ax2+bx+c,3顶点式:y=a(x-h)2+k,2交点式:y=a(x-x1)(x-x2),回味知识点,天马行空官方博客:,解:,设所求的二次函数为y=a(x1)2-3,由条件得:,已知抛物线的顶点为(1,3),与轴交点为(0,5)求抛物线的解析式?,点(0,-5)在抛物线上,a-3=-5,得a=-2,故所求的抛物线解析式为;y=2(x1)2-3,即:y=2x2-4x5,例,2,解:,设所求的二次函数为y=ax2+bx+c,由条件得:,a-b+c=10a+b+c=44a+2b+c=7,解方程得:,因此所求二次函数是:,a=2,b=-3,c=5,y=2x2-3x+5,已知一个二次函数的图象过点(1,10)(1,4)(2,7)三点,求这个函数的解析式?,例,1:,已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6),求此二次函数的解析式。,解:二次函数的最大值是2抛物线的顶点纵坐标为2又抛物线的顶点在直线y=x+1上当y=2时,x=1。故顶点坐标为(1,2)所以可设二次函数的解析式为y=a(x-1)2+2又图象经过点(3,-6)-6=a(3-1)2+2得a=-2故所求二次函数的解析式为:y=-2(x-1)2+2即:y=-2x2+4x,例,3,解:,设所求的二次函数为y=a(x1)(x1),由条件得:,点M(0,1)在抛物线上,所以:a(0+1)(0-1)=1,得:a=-1,故所求的抛物线为y=-(x1)(x-1),即:y=x2+1,试一试,试一试,思考:1用一般式怎么解?2用顶点是怎么求解?,有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m现把它的图形放在坐标系里(如图所示),求抛物线的解析式,设抛物线的解析式为y=ax2bxc,,解:,根据题意可知抛物线经过(0,0)(20,16)和(40,0)三点,可得方程组,通过利用给定的条件列出a、b、c的三元一次方程组,求出a、b、c的值,从而确定函数的解析式过程较繁杂,,评价,有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m现把它的图形放在坐标系里(如图所示),求抛物线的解析式,设抛物线为y=a(x-20)216,解:,根据题意可知点(0,0)在抛物线上,,通过利用条件中的顶点和过原点选用顶点式求解,方法比较灵活。,评价,所求抛物线解析式为,有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m,跨度为40m现把它的图形放在坐标系里(如图所示),求抛物线的解析式,设抛物线为y=ax(x-40),解:,根据题意可知点(20,16)在抛物线上,选用两根式求解,方法灵活巧妙,过程也较简捷,评价,一个二次函数,当自变量x=-3时,函数值y=2当自变量x=-1时,函数值y=-1,当自变量x=1时,函数值y=3,求这个二次函数的解析式?已知抛物线与X轴的两个交点的横坐标是、,与Y轴交点的纵坐标是3,求这个抛物线的解析式?,1、,2、,达标测试,你学到那些二次函数解析式的求法,求二次函数解析式的一般方法:,已知图象上三点或三对的对应值,通常选择一般式。,已知图象的顶点坐标对称轴和最值)通常选择顶点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年滁州南谯城市投资控股集团有限公司招聘10人考前自测高频考点模拟试题及答案详解(新)
- 公司实景地理信息采集员5S管理考核试卷及答案
- 城市燃气设施提升改造工程节能评估报告
- 公司灌区管理工知识分享贡献度考核试卷及答案
- 公司印染前处理工法律法规符合性考核试卷及答案
- 新疆农信金融知识培训课件
- 水工建筑物检测与养护方案
- 照明节能改造技术实施方案
- 新生避雷专业知识培训课程课件
- 戒烟知识培训总结
- 建筑工程项目技术总结报告模板
- 2025年吉安县公安局面向社会公开招聘留置看护男勤务辅警29人笔试备考试题及答案解析
- 【7历第一次月考】安徽省六安市霍邱县2024-2025学年部编版七年级上学期10月月考历史试卷
- 2025年西学中培训结业考试卷(有答案)
- 黑素细胞基因编辑-洞察及研究
- 男衬衫领的缝制工艺
- 拆除工程吊装方案范本(3篇)
- 税务稽查跟踪管理办法
- 2025校园师生矛盾纠纷排查化解工作机制方案
- 学校教室卫生检查标准及执行细则
- 校园基孔肯雅热防控措施课件
评论
0/150
提交评论