




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4课时函数的奇偶性与周期性,第课时函数的奇偶性与周期性,4,考点探究挑战高考,考向瞭望把脉高考,温故夯基面对高考,温故夯基面对高考,1函数的奇偶性,f(x)f(x),y轴,f(x)f(x),原点,思考感悟奇、偶函数的定义域有何特点?提示:若函数f(x)具有奇偶性,则f(x)的定义域关于原点对称反之,若函数的定义域不关于原点对称,则该函数无奇偶性,2周期性(1)周期函数:对于函数yf(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(xT)_,那么就称函数yf(x)为周期函数,称T为这个函数的周期(2)最小正周期:如果在周期函数f(x)的所有周期中_的正数,那么这个_正数就叫做f(x)的最小正周期,f(x),存在一个最小,最小,考点探究挑战高考,判断函数的奇偶性,应该首先分析函数的定义域,在分析时,不要把函数化简,而要根据原来的结构去求解定义域,如果定义域不关于原点对称,则一定是非奇非偶函数,函数奇偶性的判定,考点一,【思路分析】可从定义域入手,在定义域关于原点对称的情况下,考查f(x)与f(x)的关系,(1)奇函数的图象关于原点对称;偶函数的图象关于y轴对称(2)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反,函数奇偶性的应用,考点二,已知奇函数f(x)的定义域为2,2,且在区间2,0内递减,求满足:f(1m)f(1m2)0的实数m的取值范围,【思路分析】,【名师点评】(1)奇函数f(x)在x0处有意义,一定有f(0)0.(2)f(x)是偶函数f(x)f(x)f(|x|),互动探究2若本例为:设定义在2,2上的偶函数f(x)在区间0,2上单调递减,若f(1m)f(m)求实数m的取值范围,与奇函数、偶函数有关的求周期函数解析式问题,求解时将x设在所求解析式的区间上,将x加上或减去周期的倍数,转化为已知解析式的区间,利用奇、偶函数和周期函数的性质求出解析式,函数的周期性,考点三,(2011年梅州调研)设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x2)f(x)当x0,2时,f(x)2xx2.(1)求证:f(x)是周期函数;(2)当x2,4时,求f(x)的解析式;(3)计算f(0)f(1)f(2)f(2011),【解】(1)证明:f(x2)f(x),f(x4)f(x2)f(x)f(x)是周期为4的周期函数(2)当x2,0时,x0,2,由已知得f(x)2(x)(x)22xx2,又f(x)是奇函数,f(x)f(x)2xx2,f(x)x22x.又当x2,4时,x42,0,f(x4)(x4)22(x4)又f(x)是周期为4的周期函数,f(x)f(x4)(x4)22(x4)x26x8.从而求得x2,4时,f(x)x26x8.,(3)f(0)0,f(2)0,f(1)1,f(3)1.又f(x)是周期为4的周期函数,f(0)f(1)f(2)f(3)f(4)f(5)f(6)f(7)f(2008)f(2009)f(2010)f(2011)0.f(0)f(1)f(2)f(2011)0.【误区警示】(1)(2)中易找不到思路而无法进行,原因是不能灵活运用函数的奇偶性、周期性(3)中不会利用周期函数的性质将所求值转化为f(0)、f(1)、f(2)、f(3)和的值,方法技巧,失误防范1判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称定义域关于原点对称是函数具有奇偶性的一个必要条件(如例1(2)2判断函数f(x)是奇函数,必须对定义域内的每一个x,均有f(x)f(x)而不能说存在x0使f(x0)f(x0)对于偶函数的判断以此类推,考向瞭望把脉高考,从近几年的广东高考试题来看,函数的奇偶性、周期性是高考命题的热点主要是奇偶性与单调性的小综合,周期性的考查常以利用周期性求函数值,以选择题、填空题的形式出现,这部分知识对学生要求很高,属中低档题,2010年广东卷第3题就考查了函数的奇偶性和指数函数的运算性质,(2010年高考安徽卷)若f(x)是R上周期为5的奇函数,且满足f(1)1,f(2)2,则f(3)f(4)()A1B1C2D2,【解析】函数f(x)的周期为5,f(x5)f(x),f(3)f(25)f(2)又f(x)为奇函数,f(3)f(2)f(2)2,同理f(4)f(1)f(1)1,f(3)f(4)2(1)1.,【答案】A【名师点评】这类题型是高考的热点,但有些考生不会转化,其原因在于不能把函数的周期性和奇偶性进行较好结合,思考一下,若f(x)为偶函数,则f(3)f(4)的值是多少?,1对任意实数x,下列函数为奇函数的是()Ay2x3By3x2Cyln5xDy|x|cosx答案:C,答案:B,3已知f(x)在R
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浇铸基础知识培训内容课件
- 流水施工原理课件
- 活动板房消防知识培训课件
- (2025年标准)地铁培养协议书
- 津石CRC基础知识培训课件考试
- 2025内蒙古放歌文化传媒有限公司招聘26人考试备考题库及答案解析
- 2025广西南宁市青秀区荔英中学秋季学期招聘2人考试备考试题及答案解析
- 2025北京西城区卫生健康系统第三批事业单位招聘213人考试参考题库附答案解析
- 2025河北沧州市东光县事业单位招聘108人笔试参考题库附答案解析
- 2025浙江丽水青田县中学面向全县教育系统选聘教师笔试参考题库附答案解析
- 锂离子电池正极材料研究进展
- 二手房屋买卖物品交接清单
- 技师论文 变频器的维修与保养
- 非标自动化设备项目进度表
- 诊断学教学胸部查体
- 桥梁安全事故案例警示
- YY/T 1095-2015肌电生物反馈仪
- SB/T 10460-2008商用电开水器
- GB/T 9124.1-2019钢制管法兰第1部分:PN系列
- GA 1800.2-2021电力系统治安反恐防范要求第2部分:火力发电企业
- 欣旺集团种禽养殖管理制度手册
评论
0/150
提交评论