




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用函数观点看一元二次方程,我们知道:代数式b2-4ac对于方程的根起着关键的作用.,一元二次方程根的情况与b-4ac的关系,问题1:如图,以40m/s的速度将小球沿与地面成30度角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t5t2考虑下列问题:(1)球的飞行高度能否达到15m?若能,需要多少时间?(2)球的飞行高度能否达到20m?若能,需要多少时间?(3)球的飞行高度能否达到20.5m?若能,需要多少时间?(4)球从飞出到落地要用多少时间?,解:(1)解方程15=20t-5tt-4t+3=0t=1,t=3.当球飞行1s和2s时,它的高度为15m。,?,h,t,(2)解方程20=20t-5tt-4t+4=0t=t=2.当球飞行2s时,它的高度为20m。,(4)解方程0=20t-5tt-4t=0t=0,t=4.当球飞行0s和4s时,它的高度为0m,即0s飞出,4s时落回地面。,(3)解方程20.5=20t-5tt-4t+4.1=0(-4)-4*4.10,方程无实数根,(2、20),例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.,就是求方程3=-X2+4x的解,例如,解方程X2-4x+3=0,就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.,结论:一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0),观察:下列二次函数的图象与x轴有公共点吗?如果有,公共点横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你得出相应的一元二次方程的解吗?(1)y=x2+x-2(2)y=x2-6x+9(3)y=x2-x+1,二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?,y=x-6x+9,Y=x+x-2,Y=x-x+1,x,y,?,(1)设y=0得x2+x-2=0 x1=1,x2=-2抛物线y=x2+x-2与x轴有两个公共点,公共点的横坐标分别是1和-2,当x取公共的的横坐标的值时,函数的值为0.,(2)设y=0得x2-6x+9=0 x1=x2=3抛物线y=x2-6x+9与x轴有一个公共点,公共点的横坐标是3当x取公共点的横坐标的值时,函数的值为0.,(3)设y=0得x2-x+1=0b2-4ac=(-1)2-4*1*1=-30方程x2-x+1=0没有实数根抛物线y=x2-x+1与x轴没有公共点,Y=x+x-2,Y=x-x+1,y=x-6x+9,x,y,(-2、0),(1、0),有两个交点,有两个不相等的实数根,b2-4ac0,只有一个交点,有两个相等的实数根,b2-4ac=0,没有交点,没有实数根,b2-4ac0,b24ac=0,b24ac0,c0,c0时,图象与x轴交点情况是()A无交点B只有一个交点C有两个交点D不能确定,C,X1=0,x2=5,知识巩固:,1.抛物线y=2x2-3x-5与y轴交于点,与x轴交于点.,2.一元二次方程3x2+x-10=0的两个根是x1=-2,x2=5/3,那么二次函数y=3x2+x-10与x轴的交点坐标是.,归纳:一元二次方程ax2+bx+c=0的两个根为x1,x2,则抛物线y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0),(0,-5),(5/2,0)(-1,0),(-2,0)(5/3,0),3.如图,抛物线y=ax2+bx+c的对称轴是直线x=-1,由图象知,关于x的方程ax2+bx+c=0的两个根分别是x1=1.3,x2=,-3.3,x,A,1.3,.,思考:已知抛物线y=x2+mx+m2求证:无论m取何值,抛物线总与x轴有两个交点.,冲击中考:,1.若抛物线y=x2+bx+c的顶点在第一象限,则方程x2+bx+c=0的根的情况是.,2.直线y=2x+1与抛物线y=x2+4x+3有个交点.,无解,无,亮出你的风采,?,5、已知二次函数y=x2-mx-m2(1)求证:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《缝沙包》(教案)-2023-2024学年四年级下册劳动人民版
- 23《月光曲》( 教学设计)-2024-2025学年统编版语文六年级上册
- 人教版七年级音乐下册(简谱)第1单元《春游》说课稿
- 2025年中考物理试题分类汇编(全国)科普阅读文、开放性试题(第1期)解析版
- Listening and Talking教学设计-2025-2026学年高中英语人教版2019必修第三册-人教版2019
- 2025年中考生物试题分类汇编:科学与探究(第2期)解析版
- 2025年四级中式烹调师考试试卷【附答案】
- 2025-2026年北京高考英语综合模拟强化练习2【含详细答案】
- 小班上册语文题目及答案
- 常德初一期中考试试卷及答案
- 心电图危急值的识别与处理
- 科技论文写作2-科研论文的基本格式与规范
- 网约车资格证考试题库与答案
- 腹膜后肿瘤诊断及鉴别诊断
- 2022中国幽门螺杆菌感染治疗指南
- 组织学技术特殊染色
- 德勤美团-中国医美市场趋势洞察报告-2021.01正式版
- 磁共振成像原理及功能磁共振
- 小学语文人教二年级上册 我最喜爱的玩具
- 2021年成都中医药大学辅导员招聘笔试试题及答案解析
- 高中英语3500词汇表
评论
0/150
提交评论