材料分析测试技术-材料X射线衍射和电子显微分析PPT课件_第1页
材料分析测试技术-材料X射线衍射和电子显微分析PPT课件_第2页
材料分析测试技术-材料X射线衍射和电子显微分析PPT课件_第3页
材料分析测试技术-材料X射线衍射和电子显微分析PPT课件_第4页
材料分析测试技术-材料X射线衍射和电子显微分析PPT课件_第5页
已阅读5页,还剩675页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,1,材料分析测试技术,哈尔滨工业大学(威海)材料科学与工程学院,X射线衍射分析技术,.,2,材料:你们最关心的是什么?性能:你认为与哪些因素有关?结构:有哪些检测分析技术?,绪论,.,3,物质的性质、材料的性能决定于它们的组成和微观结构。如果你有一双X射线的眼睛,就能把物质的微观结构看个清清楚楚明明白白!X射线衍射将会有助于你探究为何成份相同的材料,其性能有时会差异极大.X射线衍射将会有助于你找到获得预想性能的途径。,.,4,1、衍射分析技术的发展,与X射线及晶体衍射有关的部分诺贝尔奖获得者名单,.,5,第一章X射线性质,返回目录,.,6,1-1X射线的本质;1-2X射线的产生;1-3X射线谱;1-4X射线与物质相互作用;1-5X射线的探测与防护;,返回,.,7,1-1X射线的本质,X射线的本质是电磁辐射,与可见光完全相同,仅是波长短而已,因此具有波粒二像性。,(1)波动性;(2)粒子性。,.,8,.,9,波动性,X射线的波长范围:0.01100表现形式:在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性。,.,10,硬X射线:波长较短的硬X射线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。软X射线:波长较长的软X射线能量较低,穿透性弱,可用于分析非金属的分析。X射线波长的度量单位常用埃()或晶体学单位(kX)表示;通用的国际计量单位中用纳米(nm)表示,它们之间的换算关系为:1nm=10=m1kX=1.00207720.000053A(1973年值)。,.,11,粒子性,特征表现为以光子形式辐射和吸收时具有的一定的质量、能量和动量。表现形式为在与物质相互作用时交换能量。如光电效应;二次电子等。X射线的频率、波长以及其光子的能量、动量p之间存在如下关系:式中h普朗克常数,等于6.625J.s;cX射线的速度,等于2.998cm/s.,.,12,相关习题:,1.试计算波长0.71A(Mo-K)和1.54A(Cu-K)的X射线束,其频率和每个量子的能量?解答,.,13,1-2X射线的产生,(1)产生原理;(2)产生条件;(3)过程演示;(4)X射线管;(5)其它X射线装置。,.,14,产生原理,高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1左右)能量转变为X射线,而绝大部分(99左右)能量转变成热能使物体温度升高。,.,15,产生条件,1.产生自由电子;2.使电子作定向的高速运动;3.在其运动的路径上设置一个障碍物使电子突然减速或停止。,.,16,接变压器,玻璃,钨灯丝,金属聚灯罩,铍窗口,金属靶,冷却水,电子,X射线,X射线,X射线管剖面示意图,(回车键演示),过程演示,.,17,X射线管,1.X射线管的结构;图1-2;2.特殊构造的X射线管;3.市场上供应的种类。,.,18,X射线管的结构,封闭式X射线管实质上就是一个大的真空()二极管。基本组成包括:(1)阴极:阴极是发射电子的地方。(2)阳极:亦称靶,是使电子突然减速和发射X射线的地方。,.,19,(3)窗口:窗口是X射线从阳极靶向外射出的地方。(4)焦点:焦点是指阳极靶面被电子束轰击的地方,正是从这块面积上发射出X射线。,.,20,特殊构造的X射线管;,(1)细聚焦X射线管;(2)旋转阳极X射线管。,.,21,市场上供应的种类,(1)密封式灯丝X射线管;(2)可拆式灯丝X射线管.,.,22,1-3X射线谱,由X射线管发射出来的X射线可以分为两种类型:(1)连续X射线;(2)标识X射线。,.,23,连续X射线,具有连续波长的X射线,构成连续X射线谱,它和可见光相似,亦称多色X射线。,产生机理;演示过程;短波限;X射线的强度。,.,24,产生机理,能量为eV的电子与阳极靶的原子碰撞时,电子失去自己的能量,其中部分以光子的形式辐射,碰撞一次产生一个能量为h的光子,这样的光子流即为X射线。单位时间内到达阳极靶面的电子数目是极大量的,绝大多数电子要经历多次碰撞,产生能量各不相同的辐射,因此出现连续X射线谱。,.,25,短波限,连续X射线谱在短波方向有一个波长极限,称为短波限0.它是由光子一次碰撞就耗尽能量所产生的X射线。它只与管电压有关,不受其它因素的影响。相互关系为:式中e电子电荷,等于静电单位;V电子通过两极时的电压降(静电单位);h普朗克常数,等于,.,26,X射线的强度,X射线的强度是指垂直X射线传播方向的单位面积上在单位时间内所通过的光子数目的能量总和。常用的单位是J/cm2.s.X射线的强度I是由光子能量hv和它的数目n两个因素决定的,即I=nhv.连续X射线强度最大值在1.50,而不在0处。,.,27,连续X射线谱中每条曲线下的面积表示连续X射线的总强度。也是阳极靶发射出的X射线的总能量。图1-5实验证明,I与管电流、管电压、阳极靶的原子序数存在如下关系:且X射线管的效率为:,.,28,标识X射线,是在连续谱的基础上叠加若干条具有一定波长的谱线,它和可见光中的单色相似,亦称单色X射线。,1.标识X射线的特征;2.产生机理;3.过程演示;4.K系激发机理;5.莫塞莱定律;6.标识X射线的强度特征。,.,29,标识X射线的特征,当电压达到临界电压时,标识谱线的波长不再变,强度随电压增加。如钼靶K系标识X射线有两个强度高峰为K和K,波长分别为0.71A和0.63A.,.,30,.,31,产生机理,标识X射线谱的产生相理与阳极物质的原子内部结构紧密相关的。原子系统内的电子按泡利不相容原理和能量最低原理分布于各个能级。在电子轰击阳极的过程中,当某个具有足够能量的电子将阳极靶原子的内层电子击出时,于是在低能级上出现空位,系统能量升高,处于不稳定激发态。较高能级上的电子向低能级上的空位跃迁,并以光子的形式辐射出标识X射线谱。,.,32,K态(击走K电子),L态(击走L电子),M态(击走M电子),N态(击走N电子),击走价电子,中性原子,Wk,Wl,Wm,Wn,0,原子的能量,标识X射线产生过程,K激发,L激发,Ka辐射,K辐射,L辐射,过程演示,(任意键演示),.,33,K系激发机理,K层电子被击出时,原子系统能量由基态升到K激发态,高能级电子向K层空位填充时产生K系辐射。L层电子填充空位时,产生K辐射;M层电子填充空位时产生K辐射。,.,34,由能级可知K辐射的光子能量大于K的能量,但K层与L层为相邻能级,故L层电子填充几率大,所以K的强度约为K的5倍。产生K系激发要阴极电子的能量eVk至少等于击出一个K层电子所作的功Wk。Vk就是激发电压。,.,35,莫塞莱定律,标识X射线谱的频率和波长只取决于阳极靶物质的原子能级结构,是物质的固有特性。且存在如下关系:莫塞莱定律:标识X射线谱的波长与原子序数Z关系为:,.,36,标识X射线的强度特征,K系标识X射线的强度与管电压、管电流的关系为:当I标/I连最大,工作电压为K系激发电压的35倍时,连续谱造成的衍射背影最小。,.,37,1-4X射线与物质相互作用,X射线与物质相互作用时,产生各种不同的和复杂的过程。就其能量转换而言,一束X射线通过物质时,可分为三部分:一部分被散射,一部分被吸收,一部分透过物质继续沿原来的方向传播。,X射线的散射;X射线的吸收;X射线的衰减规律;吸收限的应用;X射线的折射;总结。,.,38,X射线的散射,X射线被物质散射时,产生两种现象:相干散射;非相干散射。,.,39,相干散射,物质中的电子在X射线电场的作用下,产生强迫振动。这样每个电子在各方向产生与入射X射线同频率的电磁波。新的散射波之间发生的干涉现象称为相干散射。,.,40,非相干散射,X射线光子与束缚力不大的外层电子或自由电子碰撞时电子获得一部分动能成为反冲电子,X射线光子离开原来方向,能量减小,波长增加。非相干散射突出地表现出X射线的微粒特性,只能用量子理论来描述,亦称量子散射。它会增加连续背影,给衍射图象带来不利的影响,特别对轻元素。,.,41,X射线的吸收,物质对X射线的吸收指的是X射线能量在通过物质时转变为其它形式的能量,X射线发生了能量损耗。物质对X射线的吸收主要是由原子内部的电子跃迁而引起的。这个过程中发生X射线的光电效应和俄歇效应。,光电效应;俄歇效应。,.,42,X射线的衰减规律,当一束X射线通过物质时,由于散射和吸收的作用使其透射方向上的强度衰减。衰减的程度与所经过物质中的距离成正比。式,.,43,质量衰减系数m,表示单位重量物质对X射线强度的衰减程度。质量衰减系数与波长和原子序数Z存在如下近似关系:K为常数m随的变化是不连续的其间被尖锐的突变分开。突变对应的波长为K吸收限。,.,44,光电效应,以X光子激发原子所发生的激发和辐射过程。被击出的电子称为光电子,辐射出的次级标识X射线称为荧光X射线。产生光电效应,X射线光子波长必须小于吸收限k。,.,45,俄歇效应,原子在入射X射线光子或电子的作用下失掉K层电子,处于K激发态;当L层电子填充空位时,放出K-L能量,产生两种效应:(1)荧光X射线;(2)产生二次电离,使另一个核外电子成为二次电子俄歇电子。,.,46,.,47,吸收限的应用,吸收限主要是由光电效应引起的:当X射线的波长等于或小于时光子的能量E到击出一个K层电子的功W,X射线被吸收,激发光电效应。使m突变性增大。吸收限与原子能级的精细结构对应。如L系有三个副层,有三个吸收限。,.,48,滤波片的选择:(1)它的吸收限位于辐射源的K和K之间,且尽量靠近K。强烈吸收K,K吸收很小;(2)滤波片的以将K强度降低一半最佳。Z靶40时Z滤片=Z靶-2;阳极靶的选择:(1)阳极靶K波长稍大于试样的K吸收限;(2)试样对X射线的吸收最小。Z靶Z试样+1。,.,49,X射线的折射,X射线从一种介质进入另一种介质产生折射,折射率M非常接近1,M约为0.999990.999999。,.,50,X射线与物质相互作用的总结,热能,透射X射线衰减后的强度I0,散射X射线,电子,荧光X射线,相干的,非相干的,反冲电子,俄歇电子,光电子,康普顿效应,俄歇效应,光电效应,.,51,1-5X射线的探测与防护,(1)X射线的探测;(2)X射线的安全防护。,.,52,X射线的探测,荧光屏法;照相法;辐射探测器法:X射线光子对气体和某些固态物质的电离作用可以用来检查X射线的存在与否和测量它和强度。按照这种原理制成的探测X射线的仪器电离室和各种计数器。工作原理在第7章介绍。,.,53,X射线的安全防护,X射线设备的操作人员可能遭受电震和辐射损伤两种危险。电震的危险在高压仪器的周围是经常地存在的,X射线的阴极端为危险的源泉。在安装时可以把阴极端装在仪器台面之下或箱子里、屏后等方法加以保证。辐射损伤是过量的X射线对人体产生有害影响。可使局部组织灼伤,可使人的精神衰颓、头晕、毛发脱落、血液的组成和性能改变以及影响生育等。安全措施有:严格遵守安全条例、配带笔状剂量仪、避免身体直接暴露在X射线下、定期进行身体检查和验血。,.,54,第二章X射线衍射方向,.,55,均匀性:晶体内部各个部分的宏观性质是相同的。各向异性:晶体种不同的方向上具有不同的物理性质。固定熔点:晶体具有周期性结构,熔化时,各部分需要同样的温度。规则外形:理想环境中生长的晶体应为凸多边形。对称性:晶体的理想外形和晶体内部结构都具有特定的对称性。,1.晶体具有如下性质:,.,56,.,57,一、晶体的空间点阵(Spacelattice)1.空间点阵的概念将晶体中原子或原子团抽象为纯几何点(阵点latticepoint),即可得到一个由无数几何点在三维空间排列成规则的阵列空间点阵(spacelattice)特征:每个阵点在空间分布必须具有完全相同的周围环境(surrounding)晶胞(Unitecells)代表性的基本单元(最小平行六面体)smallrepeatentities,选取晶胞的原则:,)选取的平行六面体应与宏观晶体具有同样的对称性;)平行六面体内的棱和角相等的数目应最多;)当平行六面体的棱角存在直角时,直角的数目应最多;)在满足上条件,晶胞应具有最小的体积。,.,58,简单晶胞(初级晶胞):只有在平行六面体每个顶角上有一阵点复杂晶胞:除在顶角外,在体心、面心或底心上有阵点,.,59,二.晶系与布拉菲点阵(CrystalSystemandBravaisLattice)七个晶系,14个布拉菲点阵,.,60,三、常见的晶体结构,阵点的坐标表示以任意顶点为坐标原点,以与原点相交的三个棱边为坐标轴,分别用点阵周期(a、b、c)为度量单位,简单体心面心底心,简单点阵的阵点坐标为000,.,61,底心点阵除八个顶点上有阵点外,两个相对的面心上有阵点,面心上的阵点为两个相邻的平行六面体所共有。因此,每个阵胞占有两个阵点。阵点坐标为000,1/21/20,.,62,体心点阵除8个顶点外,体心上还有一个阵点,因此,每个阵胞含有两个阵点,000,1/21/21/2,典型物质:铬、钾、钠、钨、钼、钽,.,63,面心点阵。除8个顶点外,每个面心上有一个阵点,每个阵胞上有4个阵点,其坐标分别为000,1/21/20,1/201/2,01/21/2,面心点阵。典型材料:金、银、铝,.,64,底心单斜,简单三斜,简单单斜,.,65,底心正交,简单正交,面心正交,体心正交,.,66,简单菱方,简单六方,简单四方,体心四方,.,67,简单立方,体心立方,面心立方,.,68,3.晶体结构与空间点阵,.,69,晶体结构与空间点阵,等同点与结点结构基元:原子、分子或其集团晶体结构空间点阵结构基元,.,70,四、晶向指数和晶面指数(MillerIndicesofCrystallographicDirectionandPlanes)1阵点坐标,晶向族:具有等同性能的晶向归并而成;,(x1,y1,z1),(x2,y2,z2)二点连线的晶向指数:x2-x1,y2-y1,z2-z1,*指数看特征,正负看走向,求法:1)确定坐标系2)过坐标原点,作直线与待求晶向平行;3)在该直线上任取一点,并确定该点的坐标(x,y,z)4)将此值化成最小整数u,v,w并加以方括号uvw即是。(代表一组互相平行,方向一致的晶向),2.晶向指数(Orientationindex),.,71,晶面族hkl中的晶面数:a)hkl三个数不等,且都0,则此晶面族中有b)hkl有两个数字相等且都0,则有,如112c)hkl三个数相等,则有,d)hkl有一个为0,应除以2,则有有二个为0,应除以22,则有,求法:1)在所求晶面外取晶胞的某一顶点为原点o,三棱边为三坐标轴x,y,z2)以棱边长a为单位,量出待定晶面在三个坐标轴上的截距;3)取截距之倒数,并化为最小整数h,k,l并加以圆括号(hkl)即是。,3.晶面指数(IndicesofCrystallographicPlane),.,72,晶向和晶面指数,.,73,4.六方晶系指数(Indicesofhexagonalcrystalsystemorhexagonalindices),三坐标系四轴坐标系a1,a2,ca1,a2,a3,c,120,120,120,(hkil)i=-(h+k)uvtwt=-(u+v),.,74,.,75,5.晶带(Crystalzone)所有相交于某一晶向直线或平行于此直线的晶面构成一个“晶带”(crystalzone)此直线称为晶带轴(crystalzoneaxis),所有的这些晶面都称为共带面。晶带轴uvw与该晶带的晶面(hkl)之间存在以下关系hukvlw0晶带定律凡满足此关系的晶面都属于以uvw为晶带轴的晶带,则三个晶面同属一个晶带,.,76,晶带定律的应用,在实际晶体中,立方晶系最为普遍,因此晶带定理有非常广泛的应用。可以判断空间两个晶向或两个晶面是否相互垂直;可以判断某一晶向是否在某一晶面上(或平行于该晶面);若已知晶带轴,可以判断哪些晶面属于该晶带;若已知两个晶带面为(h1k1l1)和(h2k2l2),则可用晶带定律求出晶带轴;,.,77,已知两个不平行的晶向,可以求出过这两个晶向的晶面;已知一个晶面及其面上的任一晶向,可求出在该面上与该晶向垂直的另一晶向;已知一晶面及其在面上的任一晶向,可求出过该晶向且垂直于该晶面的另一晶面。,.,78,6晶面间距(Interplanarcrystalspacing)两相邻近平行晶面间的垂直距离晶面间距,用dhkl表示从原点作(hkl)晶面的法线,则法线被最近的(hkl)面所交截的距离即是,.,79,.,80,上述公式仅适用于简单晶胞,对于复杂晶胞则要考虑附加面的影响,fcc当(hkl)不为全奇、偶数时,有附加面:,通常低指数的晶面间距较大,而高指数的晶面间距则较小,bcc当hkl奇数时,有附加面:,六方晶系,立方晶系:,如0001面,.,81,三、晶体的对称性crystallinesymmetrysymmetrizationofcrystals对称性晶体的基本性质对称元素(symmetryelements)宏观对称性元素,点群(pointgroup)晶体中所有点对称元素的集合根据晶体外形对称性,共有32种点群空间群(spacegroup)晶体中原子组合所有可能方式根据宏观、微观对称元素在三维空间的组合,可能存在230种空间群(分属于32种点群),微观对称性,.,82,2.3衍射的概念与布拉格方程,晶体点阵对X射线的衍射布拉格定律,返回目录,.,83,X射线在晶体中的衍射现象,实质上是大量的原子散射波互相干涉的结果。晶体所产生的衍射花样都反映出晶体内部的原子分布规律。概括地讲,一个衍射花样的特征,可以认为由两个方面的内容组成:一方面是衍射线在空间的分布规律,(称之为衍射几何),衍射线的分布规律是晶胞的大小、形状和位向决定另一方面是衍射线束的强度,衍射线的强度则取决于原子的品种和它们在晶胞中的位置。X射线衍射理论所要解决的中心问题:在衍射现象与晶体结构之间建立起定性和定量的关系。,.,84,波的合成,X射线衍射的预备知识,位相差决定合成振幅,.,85,晶体对x射线的衍射过程,.,86,布拉格方程的导出:,根据图示,干涉加强的条件是:式中:n为整数,称为反射级数;为入射线或反射线与反射面的夹角,称为布拉格角,由于它等于入射线与衍射线夹角的一半,故又称为半衍射角,把2称为衍射角。,A,B,d,反射面法线,图示,.,87,衍射与反射区别,(1)被晶体衍射的x射线是由入射线在晶体中所经过路程上的所有原子散射波干涉的结果,而可见光的反射是在极表层上产生的、可见光反射仅发生在两种介质的界面上;(2)单色x射线的衍射只在在满足布拉格定律的若干个特殊角度上产生(选择衍射),而可见光的反射可以在任意角度产生;(3)可见光在良好的镜面上反射,其效率可以接近100、而X射线衍射线的强度比起入射线强度却微乎其微。,.,88,产生衍射的极限条件,根据布拉格方程,Sin不能大于1,因此:对衍射而言,n的最小值为1,所以在任何可观测的衍射角下,产生衍射的条件为2d,这也就是说,能够被晶体衍射的电磁波的波长必须小于参加反射的晶面中最大面间距的二倍,否则不能产生衍射现象。,.,89,干涉面和干涉指数,我们将布拉格方程中的n隐含在d中得到简化的布拉格方程:把(hkl)晶面的n级反射看成为与(hkl)晶面平行、晶面指数为(nh,nk,nl)的晶面的一级反射。面间距为dHKL的晶面并不一定是晶体中的原子面,而是为了简化布拉格方程所引入的反射面,我们把这样的反射面称为干涉面。干涉面的面指数称为干涉指数。,.,90,.,91,衍射花样和晶体结构的关系,从布拉格方程可以看出,在波长一定的情况下,衍射线的方向是晶面间距d的函数。如果将各晶系的d值代入布拉格方程,可得:由此可见,布拉格方程可以反映出晶体结构中晶胞大小及形状的变化,但是并未反映出晶胞中原子的品种和位置。,立方晶系:,正方晶系:,斜方晶系:,.,92,布拉格方程的应用.已知波长求晶面间距d.已知晶面间距d求波长,.,93,2.5衍射方法,1、劳厄法,.,94,2.5衍射方法,2、周转晶体法,.,95,2.5衍射方法,3、粉末法,产生原因:当x射线照射到粉末试样上之后,总会有足够多的(hkl)晶面满足布拉格方程,在2方向上产生衍射,衍射线形成像单晶体旋转似的衍射圆锥。花样特征衍射几何,.,96,3.倒易点阵,3.1倒易点阵是在晶体点阵的基础上按一定对应关系建立起来的空间几何图形,是晶体点阵的另一种表达形式。,定义式倒易点阵与正点阵的倒易关系倒易点阵参数:a*、b*、c*;*、*、*用倒易矢量推导晶面间距和晶面夹角的计算公式,.,97,a*b=a*c=b*a=b*c=c*a=c*b=0a*a=b*b=c*c=1或用统一的矢量方程表示:,.,98,倒易点阵与正点阵的倒易关系及倒易矢量及性质,倒易点阵的倒易是正点阵。倒易矢量及性质:从倒易点阵原点向任一倒易阵点所连接的矢量叫倒易矢量,表示为:r*=Ha*+Kb*+Lc*两个基本性质,.,99,两个基本性质:,r*垂直于正点阵中的HKL晶面r*长度等于HKL晶面的晶面间距dHKL的倒数从性质可看出,如果正点阵与倒易点阵具有同一坐标原点,则正点阵中的一个晶面在倒易点阵中只须一个阵点就可以表示,倒易阵点用它所代表的晶面指数标定,正点阵中晶面取向和面间距只须倒易矢量一个参量就能表示。,.,100,用倒易矢量推导晶面间距和晶面夹角的计算公式,晶面间距计算公式晶面夹角计算公式,.,101,倒易点阵与正点阵的指数变换,设有一个晶向,倒易点阵中用HKL*表示,正点阵中用HKL*表示,则有公式:ua*a*a*b*a*c*Hva*a*a*b*a*c*Kwa*a*a*b*a*c*L即晶向指数HKL已知,可用上式求该晶面的法向指数uvw,.,102,同样有:ua*a*a*b*a*c*Hva*a*a*b*a*c*Kwa*a*a*b*a*c*L即当晶向指数已知时,可用上式求与该晶向垂直的晶面指数(HKL),.,103,第三章X射线衍射线束的强度,一个电子对X射线的散射一个原子对X射线的散射一个单胞对X射线的散射一个小晶体对X射线的散射粉末多晶体的HKL面的衍射强度,返回目录,.,104,原子种类及其在晶体中的位置不同同反映到衍射结果上,表现为反射线的有无或强度的大小,x射线衍射强度,在衍射仪上反映的是衍射峰的高低,.,105,3.2结构因子,原子位置变化引起衍射强度变化举例(a)相邻晶面波程差为AB+BC=(b)相邻晶面波程差为DE+EF=/2,两个基本概念系统消光结构因子,.,106,一个电子对X射线的散射,讨论对象及结论:一束X射线沿OX方向传播,O点碰到电子发生散射,那么距O点距离OPR、OX与OP夹2角的P点的散射强度为:,返回,.,107,公式讨论:,返回,散射线强度很弱,为入射强度的几十分之一强度与观测点的距离成反比散射强度偏振化,.,108,讨论对象及结论:一个电子对X射线散射后空间某点强度可用Ie表示,那么一个原子对X射线散射后该点的强度:这里引入了f原子散射因子推导过程,一个原子对X射线的散射,返回,.,109,推导过程:,一个原子包含Z个电子,那么可看成Z个电子散射的叠加。(1)若不存在电子电子散射位相差:,下一步,其中Ae为一个电子散射的振幅,.,110,(1)实际上,存在位相差,引入原子散射因子:即AafAe。其中f与有关、与有关。散射强度:(f总是小于Z),返回,.,111,.,112,一个单胞对X射线的散射,讨论对象及主要结论:这里引入了FHKL结构因子推导过程结构因子FHKL的讨论,返回,.,113,推导过程:,假设该晶胞由n种原子组成,各原子的散射因子为:f1、f2、f3.fn;那么散射振幅为:f1Ae、f2Ae、f3Ae.fnAe;各原子与O原子之间的散射波位相差为:1、2、3.n;,下一步,.,114,则该晶胞的散射振幅为这n种原子叠加:引入结构参数:可知晶胞中(HKL)晶面的衍射强度,返回,.,115,结构因子FHKL的讨论,关于结构因子产生衍射的充分条件及系统消光结构消光结构因子与倒易点阵的权重,返回,.,116,关于结构因子:,因为.其中:Xj、Yj、Zj是j原子的阵点坐标;HKL是发生衍射的晶面。所以有:,返回,.,117,产生衍射的充分条件:满足布拉格方程且FHKL0。由于FHKL0而使衍射线消失的现象称为系统消光它分为:点阵消光结构消光。四种基本点阵的消光规律(图表),返回,.,118,3.2单胞对X射线的散射,简单点阵的系统消光在简单点阵中,每个阵胞中只包含一个原子,其坐标为000,原子散射因子为fa根据(4-12)式得:,结论:在简单点阵的情况下,FHKL不受HKL的影响,即HKL为任意整数时,都能产生衍射,.,119,3.2单胞对X射线的散射,底心点阵每个晶胞中有2个同类原子,其坐标分别为000和1/21/20,原子散射因子相同,都为fa,.,120,3.2单胞对X射线的散射,底心点阵分析:当H+K为偶数时,即H,K全为奇数或全为偶数:当H+K为奇数时,即H、K中有一个奇数和一个偶数:,结论在底心点阵中,FHKL不受L的影响,只有当H、K全为奇数或全为偶数时才能产生衍射,.,121,3.2单胞对X射线的散射,体心点阵每个晶胞中有2个同类原子,其坐标为000和1/21/21/2,其原子散射因子相同,.,122,3.2单胞对X射线的散射,体心点阵分析当H+K+L为偶数时,当H+K+L为奇数时,,结论:在体心点阵中,只有当H+K+L为偶数时才能产生衍射,.,123,3.2单胞对X射线的散射,面心点阵每个晶胞中有4个同类原子,.,124,3.2单胞对X射线的散射,面心点阵分析当H、K、L全为奇数或偶数时,则(H+K)、(H+K)、(K+L)均为偶数,这时:当H、K、L中有2个奇数一个偶数或2个偶数1个奇数时,则(H+K)、(H+L)、(K+L)中总有两项为奇数一项为偶数,此时:,.,125,3.2单胞对X射线的散射,面心点阵结论在面心立方中,只有当H、K、L全为奇数或全为偶数时才能产生衍射。如Al的衍射数据:,.,126,3.2单胞对X射线的散射,消光规律与晶体点阵结构因子中不包含点阵常数。因此,结构因子只与原子品种和晶胞的位置有关,而不受晶胞形状和大小的影响例如:只要是体心晶胞,则体心立方、正方体心、斜方体心,系统消光规律是相同的,.,127,四种基本点阵的消光规律,返回,.,128,3.2单胞对X射线的散射,结构消光,由两种以上等同点构成的点阵结构来说,一方面要遵循点阵消光规律,另一方面,因为有附加原子的存在,还有附加的消光,称为结构消光,这些消光规律,存在于金刚石结构、密堆六方等结构中,.,129,3.2单胞对X射线的散射,结构消光金刚石结构每个晶胞中有8个同类原子,坐标为000、1/21/20,1/201/2,01/21/2,1/41/41/4,3/43/4,3/43/4,1/43/43/4,.,130,3.2单胞对X射线的散射,结构消光金刚石结构前4项为面心点阵的结构因子,用FF表示,后4项可提出公因子。得到:,.,131,3.2单胞对X射线的散射,结构消光金刚石结构用欧拉公式,写成三角形式:分析:当H、K、L为异性数(奇偶混杂)时,,.,132,3.2单胞对X射线的散射,结构消光金刚石结构当H、K、L全为偶数时,并且H+K+L=4n时当H、K、L全为偶数且H+K+L4n时,.,133,3.2单胞对X射线的散射,结构消光金刚石结构,结论金刚石结构属于面心立方点阵,凡是H、K、L不为同性数的反射面都不能产生衍射由于金刚石型结构有附加原子存在,有另外的3种消光条件,.,134,3.2单胞对X射线的散射,结构消光密堆六方结构每个平行六面体晶胞中有2个同类原子,其坐标为000,1/32/31/2,.,135,3.2单胞对X射线的散射,结构消光密堆六方结构,.,136,3.2单胞对X射线的散射,结构消光密堆六方结构,.,137,3.2单胞对X射线的散射,结构消光密堆六方结构,.,138,3.2单胞对X射线的散射,结构消光密堆六方结构,结论:密堆六方结构的单位平行六面体晶胞中的两个原子,分别属于两类等同点。所以,它属于简单六方结构,没有点阵消光。只有结构消光,.,139,3.2单胞对X射线的散射,结构消光密堆六方结构不能出现((h+2k)/3为整数且l为奇数的晶面衍射,.,140,一个小晶体对X射线的衍射,材料晶体结构材料晶体结构不可能是尺寸无限大的理想完整晶体。实际上是一种嵌镶结构镶嵌结构模型认为,晶体是由许多小的嵌镶块组成的,每个块大约10-4cm,它们之间的取向角差一般为130分。每个块内晶体是完整的,块间界造成晶体点阵的不连续性,TEM照片,.,141,一个小晶体对X射线的衍射,材料晶体结构在入射线照射的体积中可能包含多个嵌镶块。因此,不可能有贯穿整个晶体的完整晶面,TEM照片,X射线的相干作用只能在嵌镶块内进行,嵌镶块之间没有严格的相位关系,不可能发生干涉作用,整个晶体的反射强度是一个晶块的衍射强度的机械叠加,.,142,一个小晶体对X射线的散射,认为:小晶体(晶粒)由亚晶块组成由N个晶胞组成,NEXT,.,143,3-3多晶体的衍射强度,德拜谢乐法的衍射线相对强度,.,144,一、多重性因子,在晶体学中。把晶面间距相同、晶面原子排列规律相同(表征结构因素相同)的晶面称为等同晶面我们将等同晶面个数对衍射强度的影响因子叫多重性因子(或多重性因数),用P来表示111晶面族有8个晶面,100晶面族有6个晶面,111的反射强度为100的4/3倍,.,145,二、罗仑兹因子,晶粒大小的影响晶体很薄时的衍射强度,.,146,二、罗仑兹因子,晶粒大小的影响在稍微偏离布拉格角的情况下,在IImax/2处的强度峰宽度定义为半高宽B。,.,147,二、罗仑兹因子,晶粒大小的影响,在晶体二维方向也很小的衍射强度,可以导出使衍射线消失的条件为,.,148,二、罗仑兹因子,晶粒大小的影响,小晶体在三维方向的积分强度为,上式为第一几何因子,反映晶粒大小对衍射强度的影响,.,149,二、罗仑兹因子,参加衍射晶体数目的影响,参加衍射的晶粒百分数,上式为第二几何因子,.,150,二、罗仑兹因子,衍射线位置对强度测量的影响,衍射线单位弧长上的积分强度,上式为第三几何因子,.,151,二、罗仑兹因子,上述三种影响均与布拉格角有关,将其归并在一起统称为罗仑兹因子,把罗仑兹因子和极化因子组合起来得到罗仑兹极化因子,.,152,三、吸收因子,圆柱试样的吸收因数,.,153,三、吸收因子,设试样直径为r,线吸收系数为l、吸收因子为A(),.,154,四、温度因子,热震动给X射线的衍射带来的影响温度升高引起晶胞膨胀,利用这一原理可测定晶体的热膨胀系数。衍射线强度减小因为热振动使原子面产生了一定的“厚度”,于是在符合布拉格条件下的相长干涉变得不完全;产生向各个方向散射的非相干散射,把这种散射称之为热漫散射。其强度随2角而增大。热漫放射性背底增强,因而导致衍射图形的衬度变坏。,.,155,四、温度因子,衍射角越大,e-2M越小,衍射强度I随之减小,所以背反射时的衍射强度较小。温度效果和吸收效果对角的依赖关系正好相反,因此在德拜法中互相比较两条角相近的谱线强度时可以近似地忽略这两种效果的影响。,.,156,五、粉末法的衍射线强度,综合上述影响因素,可以得出多晶体试样的衍射线积分强度公式,.,157,五、粉末法的衍射线强度,德拜谢乐法的衍射线相对强度,衍射仪法的衍射线相对强度,.,158,3.4积分强度计算举例,用CuK线照射铜的粉末试样,.,159,.,160,各晶面族的多重因子列表,.,161,第四章多晶体分析方法,各种扫描模式与应用,.,162,4.2粉末照相法,一、德拜法及德拜相机,.,163,X射线衍射线的空间分布及德拜法成像原理,.,164,纯铝多晶体德拜像,确定角后由,推算产生衍射线的反射面的晶面间距和衍射面,.,165,德拜相机外形,相机是由一个带有盖子的不透光的金属筒形外壳、试样架、光阑和承光管等部分组成。照相底片紧紧地附在相机盒内壁。德拜相机直径为57.3mm或114.6mm。,.,166,光阑的主要作用是限制入射线的不平行度和固定入射线的尺寸和位置,承光管的作用是监视入射线和试样的相对位置,.,167,二、实验方法,试样制备底片安装,正装法反装法偏装法,.,168,衍射花样的测量和计算,由衍射几何,角用角度表示,对背射区,角用角度表示,.,169,衍射花样的指标化,以立方晶系为例,把全部干涉指数按h2+k2+l2由小到大排序,并考虑系统消光,要知道被测物质的晶体结构,需标定每条衍射线的晶面指数,.,170,只要算出各衍射线条的(sin)2,就确定了晶体结构类型,.,171,通过德拜法我们可以得到哪些信息?,.,172,三、相机分辨本领,.,173,4.3X射线衍射仪,1.X射线发生器;2.衍射测角仪;3.辐射探测器;4.测量电路;5.控制操作和运行软件的电子计算机系统。,.,174,制造衍射仪需要解决问题X射线接受装置相同晶面(hkl)聚焦,.,175,.,176,.,177,.,178,.,179,高分辨衍射仪(D8-Discovre型,Bruker公司1999年产品),.,180,1.测角仪构造,测角仪是X射线的核心组成部分试样台位于测角仪中心,试样台的中心轴ON与测角仪的中心轴(垂直图面)O垂直。试样台既可以绕测角仪中心轴转动,又可以绕自身中心轴转动。,.,181,1.测角仪构造,光路布置:SG位于同一圆周上测角仪台面:G位置可由可读盘读取测量动作:2联动,.,182,.,183,.,184,衍射仪的衍射几何,位于试样不同部位MNO,处平行于试样表面的(hkl)晶面可以把各自的反射线会聚到F点沿测角仪圆移动的计数器只能逐个地对衍射线进行测量。衍射仪应使试样与计数器转动的角速度保持1:2的速度比,.,185,.,186,测角仪的光路布置,测角仪要求与射线管的线焦斑联接使用,线焦斑的长边与测角仪中心轴平行。采用狭缝光阑和梭拉光阑组成的联合光阑。,.,187,二、x射线探测器的工作原理,1、正比计数器,.,188,2、闪烁计数器,.,189,4.4衍射仪的测量方法,连续扫描测量法,这种测量方法是将计数器连接到计数率仪上,计数器由2接近0处开始向2角增大的方向扫描。,.,190,阶梯扫描测量法,计数器间隔一段时间移动一次,.,191,点阵常数是晶体的重要基本参数,随化学组分和外界条件(T,P)而变。材料研究中,它涉及的问题有:键合能、密度、热膨胀、固溶体类型、固溶度、固态相变,宏观应力。点阵常数的变化量很小,约为103nm,必须精确测定。,4.5、点阵常数精确测定,.,192,.,193,2.1原理,.,194,二、德拜谢乐法,.,195,1.相机半径误差,二、德拜谢乐法误差来源,.,196,3.试样偏心误差,.,197,衍射谱,.,198,2.5数据处理,(1)、外推法图解外推,解析外推af(q)-(cos2q,ctg2q,cosqctgq)Sin2qa=a0+Da=a0+bf(q)(2)、Cohen最小二乘法(不会因人而异,误差减到最小)(3)、衍射线对法(双波双线法,单波双线法)(4)、计算机数值法,.,199,.,200,3点阵参数精确测定的应用,固溶体类型与组分测量钢中马氏体和奥氏体的含碳量外延层错配度的测定外延层和表面膜厚度的测定相图的测定宏观应力的测定,.,201,实际应用中点阵参数测量应当注意的问题。我们知道,点阵参数的精确测定包括:仔细的实验(如制样、仪器仔细调整与实验参数选择)、衍射线峰值位置的精确测量和数据的严格处理(如采用最小二乘法处理等)。,.,202,对于点阵参数精确测量方法的研究,人们总是希望熊获得尽可能高的精确度和准确度。然而,从实际应用出发则未必都是如此。高精度测量要求从实验、测蜂位和数据处理的每一步骤都仔细认真,这只有花费大量的劳动代价才能取得;对于无需追求尽可能高的精度时则测量的步骤可作某些简化。甚至,有时实际试样在高角度衍射线强度很弱或者衍射线条很少,此时只能对低角衍射线进行测量与分析。总而言之,在实际应用中应当根据实际情况和分折目的,选择合适的方法,既不能随意简化处理;也不许盲目追求高精度。,.,203,3.1固溶体的类型与组分测量固溶体分间隙式和置换式两类,根据固溶体的点阵参数随溶质原于的浓度变化规律可以判断溶质原子在固溶体点阵中的位置,从而确定因溶体的类型。许多元素如氢、氧、氮、碳、硼等的原子尺寸较小,它们在溶解于作为溶剂的金属中时,将使基体的点阵参数增大。,.,204,例如,碳在g铁中使面心立方点阵参数数增大;又如,碳在a铁中的过饱和固溶体中使点阵增加了四方度。有许多元素,当它们溶解于作为溶剂的金属中时,将置换溶剂原子,并占据基体点阵的位置。对立方晶系的基体,点阵参数将增大或减小,通常取决于溶质原子和溶剂原子大小的比例。若前者大则点阵参数增大,反之则减小。对非立方晶系的基体,点阵参数可能一个增大,一个减小。据此规律,可以初步判断固溶体的类型。若用物理方法测定了固溶体的密度,又精确测定了它的点阵参数,则可以计算出单胞中的原子数,再将此数与溶剂组元单脑的原于数比较即可决定固溶体类型。,.,205,对于大多数固溶体,其点阵参数随溶质原子的浓度呈近似线性关系,即服从费伽(Vegard)定律:式中,aA和aB分别表示固溶体组元A和B的点陈参数。因此,测得含量为x的B原子的因溶体的点阵参数工ax,用上式即求得固溶体的组分。实验表明,固溶体中点阵参数随溶质原子的浓度变化有不少呈非线性关系,在此情况下应先测得点阵参数与溶质原子浓度的关系曲线。实际应用中,将精确测得的点阵参数与已知数据比较即可求得固溶体的组分。,.,206,3.2钢中马氏体和奥氏体的含碳量马氏体的点阵参数a和c与含碳量呈直线性关系:a=aa-0.015xc=aa+0.016x式中,aa=2866nm为纯a铁的点阵参数;x为马氏体中合碳重量百分数。因此可以事先计算出对应不同含碳量的点阵参数c/a以及各晶面的面问距,将实验测得的数值与计算值对比即可确定马氏体的含碳量与马氏体的四方度ca或者由精确测定的点阵参数按上式直接计算出马氏体含碳量。通常,钢中含碳量低时仅仅表现出衍射线的宽化,只有当含碳量高于06形时,原铁素体的衍射线才明显地分裂为两条或三条线。在淬火高碳钢中有时出现奥氏体相,它是碳在g铁中的过饱和固溶体。奥氏体的点阵参数a与含碳量。呈直线性关系:a=ag+0.033x式中ag=0.3573nm。求出a即可求得奥氏体含碳量重量百分数,.,207,3.3外延层和表面膜厚度的测定在衍射仪法中试样的偏心是要尽力避免的但是,我们也可利用它来测量外延层或表面膜的厚度外延层或表面膜的存在位材底位置偏离了测角台中心轴一个距离,其值等于外延层厚度当我们精确地测出了有外延层与无外延层的衬底某高角衍射线峰位差后,就可以算得出层厚或膜厚s,.,208,3.4相图的测定相图是指在平衡状态下物质的组分、物相和外界条件(如温度、压力等)相互关系的几何描述。对于金属固体材料,最适用的是成分对温度的相图。用点阵参数法可以测定相图的相界,其主要原理是:随合金成分的变化,物相的点阵参数在相界处的不连续性。具体说是两点:第一,在单相区点阵参数随成分变化显著,而同一成分该物相的点阵参数随温度的变化甚微;第二,在双相区某相的点阵参数随温度而变化(因为不同温度相的成分不同),而不随合金的成分变化(因为合金的成分仅决定合金中双相的相对数量)。因此,在同一温度下某一相的点阵参数在单相区和双相区随合金成分的变化的两条曲线必然相交,其交点即为测定的相界点(极限溶解度),根据物相的特定衍射花样还可确定该相的微观晶体结构类型。为了测定合金相图,必须先配制成分不同的合金系列,经均匀化处理后,研制成5微米大小的粉末,然后在不同温度下处理、并以淬火办法保持高温下的相结构,最后制成x射线衍射试样,在常温下进行精密(测量点降参数和物相鉴定。如果不能用淬火办法保持高温下的相结构,则可用高温衍射的办法测定。,.,209,.,210,3.5非化学计量化合物,.,211,.,212,.,213,3.6宏观应力的测定x射线衍射阶测的是试样受到弹性变形时产生的应变(它在相当大的距离内均匀分布在试样上),而应力系通过弹性方程和应变的数据间接求得。应变的度量是晶体点阵面间距,试样的宏观应变本质上引起晶体面间距的变化,因而引起x射线衍射线的位移,从而精确测定点阵参数成为x射线测定宏观应力的基础。该方法由于具有非破坏性等特点,在工程技术上得到广泛应用.,.,214,7其它点阵参数测定的应用除上述介绍之外还有很多,例如,合金饱和固溶体中强化相的析出与溶解,合金基体与共格析出相错配度的测量,层错几率的测量,热膨胀系数的测量,等等。,.,215,a对称Bragg反射(b=aq;q(q)/2q)b不对称Bragg反射准聚焦几何(ba),被测晶平面与试样表面的夹角Y=q-a,.,216,.,217,.,218,.,219,各种扫描模式及其特性一览表,CommonBraggDiffraction,Match,TransmissionSampleTiltingDiffraction,AngularDispersionAnalysis,.,220,偶合扫描模式有对称和非对称之分,这里对称与否是指入射线和反射线相对于试样表面而言的,而对晶面来说都是对称的这是布拉格定律所规定的有七种不同的扫描模式,它们之间有共性也有特性从表中看出,对称模式只有一种“CBD”,该模式同时具有对称、偶合及表面反射三者的特征,因而它出现在I及III中,其它六种都是非对称偶合或非对称非偶合扫描模式,.,221,.,222,STD模式覆盖了现有的许多非偶合衍射设备,如薄膜分析用:1、GAD(glancingangleX-raydiffractometry):这是一种掠角入射

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论