第八章二元一次方程组.ppt_第1页
第八章二元一次方程组.ppt_第2页
第八章二元一次方程组.ppt_第3页
第八章二元一次方程组.ppt_第4页
第八章二元一次方程组.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章二元一次方程组小结(1),第三中学:刘立华,学习目标:,1、能熟练、准确地解二元一次方程组;2、会用二元一次方程组解决问题;3、通过对本章的内容进行回顾和总结,能把握各知识点间的联系,进一步感受方程(组)模型的重要性。,知识梳理,构建体系,1方程中含有_个未知数,并且含有未知数的项的次数都是_,这样的方程叫作二元一次方程.2方程组中含有_个未知数,含有每个未知数的项的次数都是_,并且一共有_个方程,像这样的方程组叫做二元一次方程组.3使二元一次方程左右两边_的_的值叫作二元一次方程的解,一般情况下,一个二元一次方程有_个解4二元一次方程中,两个方程的_解叫做二元一次方程组的解一般情况下,二元一次方程组有_组解,5解二元一次方程组的基本思想是_思想,常用的方法是_和_.6用代入法解二元一次方程组的一般步骤:_;_;_;_;_.7用加减法解二元一次方程组的一般步骤:_;_;_;_;_8列二元一次方程组解应用题的一般步骤是什么?关键是哪一步?,同桌交流,相互考核,二元一次方程组,4个概念,2个解法,1个应用,3个思想,4个概念,例1下列方程中是二元一次方程的是(),典例变式,巩固提高,A,变一:已知方程是二元一次方程,求m,n的值。,变二:已知方程是二元一次方程,求m,n的值。,变三:已知方程是二元一次方程,求m的值。,例2.方程2x+3y=8的解()A、只有一个B、只有两个C、只有三个D、有无数个,D,正整数解(),A,典例变式,巩固提高,例3.下列是二元一次方程组的是(),B,典例分析,强调方法,例4.方程组的解是()B.C.D.,B,典例分析,强调方法,思考:,1.二元一次方程的解和一元一次方程的解有什么区别?2.二元一次方程的解与二元一次方程组的解有什么区别?,典例分析,强调方法,2个解法,代入消元法,加减消元法,典例分析,强调方法,例5.用代入法解方程组由得_代入直接消去_.,例6.用加减法解方程组把与_,可直接消去_.,x-5y=72x+3y=2,4x+5y=286x-5y=12,x=5y+7,x,相加,y,典例分析,强调方法,思考:在解二元一次方程组时,什么时候采用代入消元法,什么时候采用加减消元法?,典例分析,强调方法,例7解下列方程组:,(1),合作探究,形成技能,(2)2x+y=7x+2y=8,(3),易错题大盘点,积累交流,互助提高,1、这节课你有什么收获?2、在二元一次方程组的学习上还存在什么困难?,收获与困惑:,1.自己编写一道例7第(3)个方程组的解相同的数学问题,看谁编写的新颖,独特,形式多样。(必做)2.完善思维导图,总结这一章的主要题型和解题规律。(选做),布置作业,完善思维,“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论