1.3二项式定理(通用) (2)_第1页
1.3二项式定理(通用) (2)_第2页
1.3二项式定理(通用) (2)_第3页
1.3二项式定理(通用) (2)_第4页
1.3二项式定理(通用) (2)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章计数原理,1.3二项式定理,问题:今天是星期五,7天后的这一天是星期几呢?,15天后的这一天呢?,算法:用各个数除以7,看余数是多少,再用五加余数来推算,问题思考,若今天是星期五,再过8100天后的那一天是星期几?,推陈出新,=?,=?,?,归纳猜想,(a+b)2是2个(a+b)相乘,即(a+b)2=(a+b)*(a+b)=(a+b)*(a+b)=aa+ab+ba+bb每个(a+b)在相乘时有两种选择,选a或选b,而且每个(a+b)中的a或b都选定后,才能得到展开式的一项。由分步乘法计数原理,在合并同类项之前,(a+b)2的展开式共有2*2=22项,而且每一项a,b次数和都是2且每一项都是的形式。,a2-kbk(k=0,1,2),问题探究,(a+b)2(a+b)(a+b),展开后其项的形式为:a2,ab,b2,这三项的系数为各项在展开式中出现的次数。考虑b,恰有1个取b的情况有C21种,则ab前的系数为C21,恰有2个取b的情况有C22种,则b2前的系数为C22,每个都不取b的情况有1种,即C20,则a2前的系数为C20,对(a+b)2展开式的分析,(a+b)4(a+b)(a+b)(a+b)(a+b)?,问题:1)(a+b)4展开后各项形式分别是什么?,2)各项前的系数代表着什么?,3)你能分析说明各项前的系数吗?,a4a3ba2b2ab3b4,各项前的系数代表着这些项在展开式中出现的次数,问题探究,a4a3ba2b2ab3b4,项:,系数:,(a+b)4=(a+b)(a+b)(a+b)(a+b),(a+b)4=C40a4+C41a3b+C42a2b2+C43ab3+C44b4,结果:,3)你能分析说明各项前的系数吗?,知识,只有以我们自主探索的方式获得才显得更为珍贵。,尝试猜想,=?,=?,猜想与证明,猜想:(a+b)n展开式又是怎样的呢?,归纳总结,(a+b)n是n个(a+b)相乘,每个(a+b)在相乘时有两种选择选a或选b,而且每个(a+b)中的a或b都选定才能得到展开的一项。在合并同类项之前,由分步乘法计数原理,(a+b)n的展开式共有2n项,而且每一项都是,的形式.,证明:,an-kbk(k=0,1,2,n),归纳总结,二项式,二项展开式,记作:,二项式定理(binomialtheorem),1.系数规律:,2.指数规律:,(1)各项的次数均为n;(2)a的次数按降幂排列,由n降到0,b的次数按升幂排列,由0升到n.,3.项数规律:,展开式共有n+1个项,二项式,二项展开式,第项的二项式系数,通项,定理赏析,在二项式定理中,令a=1,b=x,则有:,在上式中,令x=1,则有:,定理赏析,例1:求的展开式,求展开式第三项以及其二项式系数,求x3项的系数,学以致用,解:,被7除的余数是1,因此天后的这一天是星期六.,学以致用,的展开式的第四项的二项式系数是_,第四项的系数是.,1.写出的展开式.,2.求的展开式的第三项.,3.求的展开式的第三项.,当堂检测,1.知识收获:二项式定理;二项式定理的表达式及展开式的通项、二项式系数与系数的概念。,2.方法收获:正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论