!【包含文件如下】【机械设计类】CAD图纸+word设计说明书.doc[26000字,64页]【需要咨询购买全套设计请企鹅97666224】.bat
设计说明书.doc[26000字,64页]
任务书.doc
开题报告.doc
水下焊接电源(PLC).dwg
水下电源最终程序(改).mwp
组态王工程界面
触屏界面最终版
(填料函及水密件).dwg
(端盖和壳体).dwg
(装配).dwg
摘 要
随着海洋技术的不断发展,水下焊接技术已成为海底石油管道铺设,海洋平台建设,舰船修复等方面不可缺少的技术之一。在进行水下焊接时,传统方法是通过延长焊把线进行焊接,但随着深度的增加,焊把线电阻会随之增大。由于焊接电压一般较低,这样在深水焊接时就会对正常的焊接参数造成影响,会导致焊缝强度和韧性下降等问题,影响正常焊接。本课题研制的潜水式水下焊接电源,是将焊机置于水下密闭容器中,通过延长电源线来完成焊接,解决了上述问题。
水下焊接电源主要由水下密封装置、控制系统、冷却系统三部分组成。水下密封装置采用304不锈钢作外壳,并使用了加强环来加强外壳强度;密封处使用法兰盘密封方式,并采用高压聚四氟乙烯作密封垫;并且对电源外壳进行了严格的强度校核,可满足水下高压,腐蚀性强等使用要求。控制系统主要由PLC S7-200、EM232、工控机、固态继电器、交流接触器、电流变送器、电压变送器组成。PLC通过控制固态继电器来实现对焊机电源上检气、收弧、焊丝直径、药芯四个开关和焊机总电源交流接触器以及冷却系统无刷潜水泵的控制;用PLC模拟量输出来调节焊接电压和电流;焊接电压以及电流通过PLC模拟量采集然后在触摸屏上进行显示;触摸屏与PLC之间通过Modbus协议进行无线通信,并采用无线WiFi模块进行信号传输,成功实现了水下焊接电源与工控机之间的无线通讯。冷却系统采用水冷方式,动力由小型离心泵产生,制冷液主要成分是环烷烃,并在变压器处采用小风扇结合散热片的方式散热。最终进行水下焊接实验,实验结果显示,焊缝成型良好,水下焊接电源工作稳定。
关键词 水下湿法焊接;水下焊接电源;PLC;工控机
Design of Underwater Welding Power Supply
Abstract
With the continuous development of marine technology, underwater welding technology has become an undersea oil pipeline, one of the technologies offshore platform construction, ship repair and other aspects indispensable. When performing underwater welding, often by extending the welding wire for welding, as the depth increases, the resistance welding wire will be increased, because the underwater welding voltage is generally small, so when welding in deep water will be normal welding parameters impact will cause the weld strength and toughness decline and other issues affecting welding. Paper developed submersible underwater welding power source, the underwater welder As a closed container, by extending the power line to complete the welding, to solve the above problems.
Underwater welding power mainly by underwater sealing device, control system, cooling system consists of three parts. Underwater seal selection 304 stainless steel enclosure, and used to enhance the strength of the casing reinforcement ring, flange seals using sealing manner, and Teflon for high pressure seals for power shell through a rigorous strength check can meet the underwater pressure, corrosion and other requirements. Control system consists of S7-200 224XP and EM232, industrial machines, solid state relays, exchanges and contacts, current transducer, voltage transducer components. PLC control via solid state relay to achieve a welding power supply check gas, crater, wire diameter, cored welder four switches and the mains AC contactor and the cooling system control brushless submersible pump; with PLC analog output adjust the welding voltage and current; welding voltage and current through the PLC analog acquisition and then displayed on the touch screen; use between touch screen and PLC Modbus protocol for wireless communications, wireless WiFi module for signal transmission, the successful implementation of underwater welding power source communication between IPC. Cooling system water-cooled, centrifugal force generated by a small, liquid refrigerant is the main component of cycloalkanes, and use of small combined heat sink fan cooling mode at the transformer, and the use of wire feeder underwater welding experimental results show, weld good, underwater welding power source is stable.
Keywords Underwater wet welding, underwater welding power source, PLC, IPC
目 录
摘要 I
Abstract II
第1章 绪论 1
1.1 国内外水下焊接概况 1
1.2 水下焊接设备国内外研究现状 4
1.2.1 水下高压TIG焊接系统 4
1.2.2 水下局部排水CO2半自动焊接系统 4
1.2.3 脉冲平外特性与脉动送丝控制系统 5
1.3 水下焊接电源的研究意义和主要研究目标 6
1.3.1 研究意义 6
1.3.2 主要研究目标 8
1.4 本章小结 8
第2章 水下焊接电源整体方案设计 9
2.1 密封方式设计 9
2.1.1 密封方式简介 9
2.1.2 端盖处水下密封方式选择 10
2.2 控制系统方案设计 12
2.3 散热方式方案设计 13
2.3.1 液冷散热与风冷散热 13
2.3.2 驱动模块的选择 15
2.4 本章小结 16
第3章 水下焊接电源保护壳体结构设计 17
3.1 壳体结构设计 17
3.2 保护壳体耐压性能分析 22
3.2.1 圆筒耐压性能分析 22
3.2.2 环肋加强圆柱壳体耐压性能分析 23
3.2.3 端盖耐压性能分析 25
3.3 本章小结 26
第4章 控制系统设计 27
4.1 控制系统整体结构设计 27
4.2 上位机操作系统设计 30
4.2.1 上位机与PLC通讯协议选择 30
4.2.2 上位机操作界面设计 31
4.2.3 按钮功能地址分配 32
4.3 下位机控制程序设计 34
4.3.1 通讯程序设计 34
4.3.2 控制程序设计 35
4.4 本章小结 39
结论 40
致谢 41
参考文献 42
附录 45







