说明书.doc

0139-自定中心振动筛设计【CAD图+说明书】

收藏

资源目录
跳过导航链接。
0139-自定中心振动筛设计.zip
0139-自定中心振动筛设计
说明书.doc---(点击预览)
设计要求.doc---(点击预览)
翻译.doc---(点击预览)
摘要.docx---(点击预览)
KT.docx---(点击预览)
偏心轴.dwg
偏心轴.png
摘要.png
目录.png
筛箱.dwg
筛箱.png
自定中心振动筛装配图.dwg
自定中心振动筛装配图.png
说明书.png
压缩包内文档预览:(预览前20页/共52页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:947862    类型:共享资源    大小:1007.87KB    格式:ZIP    上传时间:2016-12-11 上传人:hon****an IP属地:江苏
20
积分
关 键 词:
自定中心振动筛 设计
资源描述:

自定中心振动筛设计

摘要:目前我国各种选煤厂使用的设备中,振动筛是问题较多、维修量较大的设备之一。这些问题突出表现在筛箱断梁、裂帮,稀油润滑的箱式振动器漏油、齿轮打齿、轴承温升过高、噪声大等问题,同时伴有传动带跳带断带等故障。这类问题直接影响了振动筛的使用寿命,严重影响了生产。自定中心振动筛可以很好的解决此类问题,因此本次设计的振动筛为自定中心振动筛,该系列振动筛主要用于煤炭行业中物料分级、脱水、脱泥、脱介等作业。其工作可靠,筛分效率高,但设备自身较重。设计分析论述了设计方案,包括振动筛的分类与特点和设计方案的确定;对物料的运动分析,对振动筛的动力学分析及动力学参数的计算,合理设计振动筛的结构尺寸;进行了激振器的偏心块等设计与计算,包括原始的设计参数,电动机的设计与校核;进行了主要零部件的设计与计算,皮带的设计计算与校核,弹簧的设计计算,轴的强度计算,轴承的选择与计算,然后进行了设备维修、安装、润滑及密封的设计,最后进行了振动筛的环保以及经济分析。

关键词:振动筛;激振器;自定中心


内容简介:
一、 选题的依据: 筛分作业是煤炭加工的重要环节,它广泛地应用于筛选厂和选煤厂,对煤炭进行粒度分级、脱水、脱泥、脱介。就煤炭加工而言,筛分技术和分选技术处于同等重要的地位。我国生产的原煤一半以上是动力用煤,不同用户对动力用煤的粒度要求是不一样的,尤其是化工,发电等部门,对煤炭粒度要求很严格,如果超过规定限度,不但影响这些部门的正常生产,还会造成不小的浪费。例如在煤炭气化的过程中,若使用粉煤含量过高的 块煤,不仅影响炉内气 流畅通,降低造气量,严重时还导致气化炉填塞;机车和船舶由于锅炉通风强,烟简短,如燃用含有较多粉煤的块煤时, 粉煤 不仅燃烧不完全而且还随着烟气飞走,造成浪费和环境污染;大型火力发电厂,绝大部分使用粉煤锅炉,若供应原煤和块煤,显然是不经济的。总之,将原煤筛选成多种粒度的产品,对路供应给各类用户,对合理利用煤炭资源是十分重要的。 筛分可以为其他选煤方案创造条件。目前的各种选煤方法和分选设备往往都受到粒度的限制,不同的选煤方法都有一定的入料限制,过粗的大块不能分选,而粒度过细也很难回收。在选煤厂主要是将原煤分成块煤和末煤两种粒级,分别进行跳汰选煤和重介选煤。重介选煤对入料中的煤泥含量很敏感,它直接影响到介质系统的正常工作和重 介分选的效果。通过分选去除细泥,减少煤 泥对介质系统的污染,以及高晖泥对精煤产品的污染;也可使跳汰机洗水粘度降低,有利于细粒煤的分选,从而提高分选效果。 在动力煤选煤厂中,通常将小于 6干粒粉煤给发电厂或者其它用户,而大于 6没选入跳汰机分选,这也是依靠筛分作用来完成的。 总之,在选煤加工过程中,筛分作业不仅关系着动力煤产品对路供应,关系着动力煤,炼焦煤洗选产品质量的提高,也关系到煤炭资源的合理利用,环境保护和生产部门的经济效益。 二、 国内外研究概括及发展趋势(含文献综述): 改革开放以后,我国 各行业都得到长足的进步。振动筛的应用也越来越广泛,但同时对振动筛的各项性能都有了新的要求。在此大背景下,我国振动筛技术通过自主研发和吸收消化国外先进技术,也得到了长足的进步。相继研制出 圆振动筛 、 列直线筛 和 自定心振动筛等。 近几年来,国内外对振动筛的研制越发重视。目前,振动筛的发展已经朝着大型化、智能化、高效集中、使用寿命长 方向发展。 世界上振动机械产品处于领先地位的公司主要有德国的 司、美国的 司、日本的司等 ,他们生产的产品代表了世界范围内振动筛发展的主流趋势。而在国内,只有 太行公司、鞍山矿山机械股份有限公司、上海冶金矿山机械厂等少数几家企业开始大型振动机械的研制、开发与生产 。但基于 振动机械的工业环境复杂、条件恶劣、生产企业小 ,再加上我国振动机械工业起步较晚,我国产品与国外产品还存在较大差距。但是,随着改革开放的不断发展,我国的振动筛技术要会不断进步,逐步缩短与国外先进的差距。目前,河南新乡众多厂家生产的列自定心振动筛,产品标准为 定中心振动筛和 定中心振动筛 ,已具有相当先进水平。 三、 研究内容及实验方案: 本次设计的主要部件是单轴性振动的激振器。激振器的轴参与振动,结构简单、容易制造。设计为自定中心,皮带轮偏心,在工作过程中不参与振动,大大的延长皮带的使用寿命,工作也较稳定。设计内容还包括筛箱的设计,轴以及轴承的选择和强度的校核。振动筛及零部件材料的选用和加工方法等。 研究的方法主要以理论计算为主,部分部件采用筛分设备的实践经验,用比较法进行设计和简单的计算。 四、 目标、主要特色及工作进度 目标: 主要参数 清筛进程 200m/h 中等粒度 石碴占总量 50% 污土占总量 25% 每米道床 石 碴 体积 碴的紧方容量 2.0 t/以上要求完成振动筛设计。 主要特色: 具有结构可靠、激振力强、筛分效率高、振动噪音小、坚固耐用、维修方便、使用安全等特点 。 工作进度: 1. 收集资料、外文资料翻译、开题报告 (第 1 周 第 2 周) 2. 总体方案设计 (第 3 周 第 4 周) 3. 参数确定及设计计算 (第 5 周 第 7 周) 4. 振动筛 装配图设计及零部件图设计 (第 8 周 第 15 周) 5. 毕业设计论文 (第 16周 第 17周) 五、 参考文献: 1 璞良贵,纪名刚主编 第七版 等教育出版社, 2001 2 孙桓,陈作模主编 第六版 等教育出版社, 2002 3 成大先主编 北京:化学工业出版社, 2004 4 闻邦椿,刘树英编著 . 机械振动学 金工业出版社, 2000 5 2001.7 自定中心振动筛设计 摘要: 目前我国各种选煤厂使用的设备中 ,振动筛是问题较多、维修量较大的设备之一。这些问题突出表现在筛箱断梁、裂帮 ,稀油润滑的箱式振动器漏油、齿轮打齿、轴承温升过高、噪声大等问题 ,同时伴有传动带跳带断带等故障。 这类问题直接影响了振动筛的使用寿命 ,严重影响了生产。 自定中心振动筛 可以很好的解决此类问题,因此 本次设计的振动筛为 自定中心振动筛 , 该系列振动筛主要用于煤炭行业中物料分级、脱水、脱泥、脱介等作业。其工作可靠,筛分效率高,但设备自身较重。设计分析论述了设计方案,包括振动筛的分类与特点和设计方案的确定; 对物料的运动分析,对振动筛的动力学分析及动力学参数的计算,合理设计振动筛的结构尺寸; 进行了激振器的偏心块等设计与计算,包括原始的设计参数,电动机的设计与校核;进行了主要零部件的设计与计算,皮带的设计计算与校核,弹簧的设计计算,轴的强度计算,轴承的选择与计算,然后进行了设备维修、安装、润滑及密封的设计,最后进行了振动筛的环保以及经济分析。 关键词: 振动筛;激振器; 自定中心 At s in is of of in me as by as of 2so of in in as on to be on of of to of he of as of of of to of a 南昌航空大学科技学院学士学位论文 1 低能耗机器人悬浮机构的应用 摘要 (文档摘要) 本文给出一种 采用悬浮装置 直接驱动机器人手臂来操纵重型物体的低能量操纵方法。考虑到在水平面内悬吊工具的操作,利用悬吊在水平面内的工具的动态行为 给出了混合位置 /力跟踪计划 的运算法则,为了垂直 操纵悬浮机器人手臂 ,由考虑到弹簧秤的重力补偿,这种 混合位置 /力 的动力学模型已经发展。 为了显示应用 于 工业的可能 性,这种模型在 倒角作业 领域 已经展开 。模拟和实验证明了此 拟议系统 的可行性。 文本全文 (5295 个字 ) 著作权 P 2000 截至 2000 小型断路器有限公司 (简称 博士 , 山形大学系统和信息工程 系 , 日立 4日本92话 : +81 238 26 3237; 传真 : +81 238 26 3205. 形大学机械系统工程部教授 ,日立 4日本 92副教授 , 山形大学机械系统工程部教授 ,日立 4日本 92副研究员 , 山形大学 电子及信息工程系 , 日立 4日本 92鸣谢 : 在此作者真诚的感谢 生 , 生 , 生 , 及 生在机器人的制作和控制软 件的执行中所做出的努力将感谢教育部,科学会,运动商及 (出的奖学金 , 5 000 7 000 1. 简介: 在水平的运动中 , 工具重量在连接摩擦上有相当大的影响 , 它直接地影响推进时的转动力矩。 在垂直的运动中,地心引力效果在操作 体 的动力学上有相当 大 的影响。 机器人的操纵应该在推进转力矩的可允许极限和力量感应器的能力里面。 悬浮工具系统 (一 种 新提议的 横向 操 纵重型工具 的 处理策略 ,悬吊 机器人手臂系统 (一 种 新提议的机器人手臂用在垂直面 实现 低功率驱动 和 小容量感应 器的 操作方法 。由于和传统的系统比起来具有很多优点, 悬浮工具系统 和 悬吊 机器人手臂系统 已经成为工业应用领域越来越感兴趣的话题。 当需要结构的坚硬性和高性能动态的时候,并联操作结构与现有的机器人系列相比,提供了许多明显的优点。 因此 , 这种机制 在 过去二十年受 到了一定的 关注 (自 1983). 一般说来,直接驱动式机械手 , ,容易出现过快的操作幅度 , 然而其输出动力却很小。为了使其能拿起物体,在多个机械手的协调 性控制方面做了很多研究 (1992; et 1988). 当两个或更多机器人手臂用来 完成 一 单一的任务时,其 承载、处理、南昌航空大学科技学院学士学位论文 2 操纵能力 会得到增强。 然而 , 一个单一的机械手不能操纵重物,因为其驱动转矩滞留在一个固定的极限。当前,许多工业机器人被用于研磨作业。 大部分的研磨机器人操作受限于环境 . 许多研究人员开展了工业机器人的力量控制 (et 1990; 1987). 然而 , 在那些系统中 ,研墨工具以传统的方式直接装在机器人手臂上,而且需要一个很大的驱动力,虽然对有关在垂直面内机器人手臂的操作有所研究 (1994), 但没考虑到重力的补偿,一般,由一个或多个机械手完成一个任务的可能性取决于其 运动学和动态的能力 。 自动化机器人的修边已经在 (1991)被描述 。 在惠特尼等地报道,美洲狮 560 机器人的机械手焊珠研磨系统已经具有视觉系统 (1990). 在所有先前的修边或研磨的研究中 ,大功率驱动器被应用于机器人系统。在垂直面内,由于机械手的巨大的 重力的影响,研磨加工过程变得非常困难,尤其是当驱动器的转矩极限小于重力的影响范围。 机器人系统通常应用于一个受约束的环境,所以,要控制最终受力器在自由方向的位置和在被约束方向的触点压力 。由 1981)提出的 混合位置 /力控制方案 在别的现存的控制方案上拥有相当大的声望。 本文中 , 将阐述具有一种悬吊工具系统的机械手 混合位置 /力控制方案 。考虑到悬浮工具在水平面内的动态性能,我们将延伸说明到混合控制方案的基本原理。在垂直的运动中 ,讨论由弹簧秤引起的重力补偿的动态性能。 2. 系统描述 : 1985) 设计了直接驱动五杆并联机器人 ,具有如下许多优点:没有后冲,微小的摩擦,高机械硬度以及精确的运动。这种实验装置系统包含一个两自由度机器人,具有一个五杆连接结构和悬架系统。图 1 和图 2 展示了机器人 结构的 计算机辅助设计 ,在水平面和竖直面内分别附带一个弹簧平衡器。 表一显示了五杆连接机制 的 一些重要 性能 。 运动学和动力学方程 : 本节讨论 的 连接 结构 是一个五杆闭环连杆机构 , 如图 3。有两个输出环节,分别由两个独立的直驱马达驱动,两个马达安装在底架上, 1, 2, 3, 4 杆的长度分别由 , l, l, & l 表示。输入杆的角度由 q 和 q 表示,从 Y 轴测量所得。终点坐标 (见方程式 1)(见方程式 2),从方程 (1)和 (2)得该机器人的反转运动学为: (见方程式 3)( 见方程式 4),工作空间 是 一个 阵 22 矩阵 ,可以表示为 : (见方程式5),机器人手臂的惯量矩阵是一个 2 x 2 矩阵,可以表示为 (见方程式 6) A=I+ml1+I+ml3+ml B m= (mll3+mll4)q-q) C m= (mll3+mll4)q-q) 南昌航空大学科技学院学士学位论文 3 +ml2+I+ml4+ml 科里奥利公式和向心力矩阵是一个 2 x 1 矩阵,可表达为 :(见方程式 7)(见方程式 8),重利矩阵是一个 2 x 1 矩阵,可以表示为: ( (见方程式 9)( (见方程式 10), g 是由重力引起的重力加速度。 控制系统的一个硬件示意图如图 4, 一部奔腾微型计算机 , 133 兆赫 , 被用来控制此系统。输入( A/D)和输出( D/A)转换具有八条通道和 12 字节的处理能力。伺服系统驱动器有三种控制模式:位置控制模式速度控制模式和转矩控制模式。此计算机主板具有三个端口和 24 字节脉冲处理。一个低容量的三轴 力传感器 (逐渐校正到 ) 装在机器人手臂顶端和气动夹子之间。运算放大器与一个低通滤过器设计在一起,以消除预想不到的噪音,表 2 显示了直驱马达的一些重要性能。 工作空间与异常: 对于一个给定的末端受动器位置,反转运动学一般具有两个可行的解决方案。异常的结构会分开这两种解决方案,在异常的结构中,操纵器的最终受动器不能在一个特定的方向移动。异常分为两种:固定异常和不定异常。一个闭环操纵器可能既有固定异常又有不定异常, 在一个静止的异常中 , 阵具有零决定因素 ,然而在一个不定异 常中,1992) 、 1985) 指出了五杆闭环连杆机构的异常问题。 对于五连杆结构, 阵的决定因素 J 被定义为 (见方程式 11);对于五连杆机构,当 ( 见方程式 12)的情况时,固定异常存在。由方程式 (10)知 ,固定异常发生在工作空间的边界,所以,籍由选择链环尺寸来获得一个自由空间的宽阔异常。机器人手臂的笛卡尔工作空间是最终受力器的总电子扫频量,同时机器人手臂执行所有的可行的动作,最终受力器伴有一种特殊的力,即法向力和 切向力。 迪卡尔工作空间受限于机器人手臂的几何学分析和铰链的机械约束以及驱动器的旋转极限。力量工作空间受限于最终受力器的发向力和切向力。 实际上,力量工作空间是机械人手臂的一个笛卡尔工作空间的子集。 当驱动器的旋转力矩在如下范围内时: 0 = q =180 & 0 = q =180 展示了五连杆机构在水平面内的模拟卡迪尔工作空间。 笛卡尔总工作空间应付 的力量工作空间 ,在 的力量工作空间情况下是卡迪尔工作空 间的一个子集。当弹簧秤的提升力设为 和驱动器的旋转力在以下范围时: 0 = q =180 80 = q =360 展示展示了五连杆机构在竖直面内的模拟卡迪尔工作空间。 笛卡尔总工作空间应付 的力量工作空间 ,南昌航空大学科技学院学士学位论文 4 在 的力量工作空间情况下是卡迪尔工作空间的一个子集。 3. 悬浮动态 悬浮工具系统和悬浮机器人手臂系统的模型分别如图 7 图 8 所示。 弹簧秤的性能参数见表 在悬浮系统中 , 旋转角度 , 是方位角。为了将悬浮系统形象化,我们考虑做如下假设:高架铁路的弹性变形,钢索的质量,滚动阻力,风力以及忽略噪音。最终受力器的卡迪尔坐标定义如下: (见方程式 13)( 见方程式 14),有效的提升力 F决于弹簧秤的设置,与悬浮的质量有关而不是钢丝绳的长度变化。在悬浮工具上的有效力被定义为: (见方程式 15)( 见方程式 16)。现在,水平面内的悬浮力为: (见方程式 17)。在竖直面内的有效力 F F定义为: (见方程式 18)( 见方程式 19)。 此时,在竖直面内来自弹簧秤的补偿力可被定义为: (见方程式 20) 4. 系统动力学 混合位置 /力控制方案以一个工作空间的直角分解为基础 。在平面运动中,考虑到悬浮工具的动态影响,我们讨论 位置 /力控制模型 。在这部分中,竖直面中的 混合位置 /力控制模型从弹簧秤的重力补偿方面来描述。 5. 仿真结果 为了探讨机器人手臂在横向和纵向 面内的执行性能, 利用前面章节的 真程序进行 了 动态模型模拟 , 仿真框图如图 10。 轨迹发生器 ,运动器 ,控制器 ,操作器动力 , 以及约束条件都在 数中被描述了。端口用来连接标量 或矢量信号汇集成一个更大的矢量信号。转换器用来选择输出矢量的有用信号。 为显示工具重力的影响,利用混合位置 /力模拟以实现水平面运动 。在模拟过程中,总操作时间为 10 秒,混合的时间为 ,要求速度为 /秒。最终受力器的轨迹在一个被约束的表面,从 (到 (。模型工具的重量是 2.0 假设是特制钢,弹簧秤的提升力看作是 ,所需的力为 。从图 11 可看出 , 与传统的工具系统相比,由于特制钢工具系统具有更小的连接摩擦,故其 位置误差更小。 此外,从图 12 可看出,由于小的悬浮力作用于此悬浮工具系统,故其引起力的误差更小。 竖直面内 在竖直面内,当驱动器力矩极限在重力影响范围之内时,弹簧秤的提升力是必要的,用以补偿重力。一个特征曲线图用来说明提升力的必要性以使机械手在力矩的极限内保持在一个预设的速度。图 13 表示了在速度为 /秒时弹簧秤的提升力和马达的驱动力矩之南昌航空大学科技学院学士学位论文 5 间的关系 Fb。 在此特征曲线图里,提升力达到 ,由于假想摩擦力的影响(方向力河切向力),马达驱动力保持不变。此时,由于受到提升力的影响, 马达的驱动力将增加。从此特征图可以看出,当提升力从 变到 时,在驱动力极限内机器人手臂能够被操作。 我们进行了悬浮机器人手臂操作的 混合位置 /力控制模拟实验 。在模拟实验中,总操作时间为 10 秒,混合的时间为 ,最大速度为 /秒,从特征曲线图可知,提升力设定为 ,要求的力是 。在垂直向上的运动中,机械手的轨迹在一个被约束的表面,从 (到 (。图 14 展示了机械手的有效的提升力和重力 。在竖直面的运动,弹簧秤的提升力是补偿重力的 主要部分,以及有效力非常小。图 15 和图 16分别展示了位置轨迹和力的轨迹。输出的位置轨迹与要求的位置轨迹之间存在一个小的固定误差以及力的输出与要求的力输出有一个小的时间滞后。 6. 实验结果 为了证明以上系统地有效性和正确性,我们在水平面和竖直面都进行了实验,实验结果如下部分所示。 静力 图 17 和图 18 分别展示了在静态时沿 X 轴和 Y 轴的有效力 F F明显, 当机器人手臂抓住悬浮工具时,有效的静态力大小接近最佳,但是当机器人手臂抓住工具而没有悬浮时,由于工具自身重量的影响 ,有效力将非常高。由于工具自身重量,机械手顶端会偏离引起位置误差。有效的静态力造成连接摩擦影响驱动器的驱动力矩。 在本实验中,机械手抓取一个 克的悬浮工具的运动轨迹在一条从 (到 (线上。速度指令为 /秒,所需的力是 。从弹簧秤上悬吊起工具所需的力为 。在实验开始之前,最终受力器与一个被约束的表面接触,图 19 展示了本实验的位置轨迹,图 20 展示了力的轨迹。实际的位置轨迹与所需的位置轨迹存在一个稳定的小误差,以及实际 力与要求的力输出有一个小的时间滞后。 竖直运动 在竖直平面内,当驱动器的驱动力矩极限在重力影响范围之内时,机器人手臂不能进行自动操作。在本实验中,弹簧秤的提升力设定为 ,足够将在低速运行的机器人手臂悬吊起来。机械手的轨迹在一个从 (到 (被约束表面上。指令速度为 /秒,所需的力为 。图 21 和图 22 分别展示了位置轨迹和力的轨迹。实际的位置轨迹与要求的位置轨迹之间存在一个小的固定误差以及实际的力的与所需的力轨迹有一个小的时间滞后 。图 23 说明了所需的驱动力矩,此力矩在驱动器的最大极限南昌航空大学科技学院学士学位论文 6 之内。 为证实上述被应用于工业的机器人系统的低能耗,倒角作业已经实行。图 24 展示了在竖直平面内的实验装备,在传统的系统中,用旋转的铁碳锉刀修毛刺的结果显示,在 304不锈钢上用 的解点压力和 /秒的速度可生成一个可令人接受的倒角。 在上述被提议的机器人手臂系统中,已经应用于 角作业。悬吊此低能耗机器人手臂的提升力为 。用一个重 克(直径为 16 气动砂轮以最大旋转速度为每秒 30000 转的速度 进行铣削 ,倒角表面的照片如图 25 所示,图 26 显示了在匀速为 /秒的法向摩擦力 fn 及切向磨削力 ft。法向磨削力保持在所需的大小 ,因为在毛坯尺寸中没有大的变化。切向力大约是法向力的一半,图 27 展示了通过一次单一的磨削倒角表面的剖切图。倒角结果显示了倒角面的宽度 - 此结果在公差范围内。 8. 结论 上述提议的悬浮系统的主要目标是用能耗操作器完成中午的作业。在水平面和竖直面内都已经讨论过。在水平运动中,悬浮系统具有一些优点,当重型工具超出驱动器的 驱动力矩极限时,它可以利用弹簧秤的提升力进行操作。此系统的连接摩擦力小于传统的系统,在桡腕关节产生的阻力更小,这对小容量的力传感器来说更是一大益处。此外,在竖直运动中,悬浮力补偿了作用在操作器上的重力。 悬浮工具的动态模型和悬浮机器人手臂系统已经发展和执行,利用当前的动力学公式,开展了模拟和实验以证明上述提议的系统的有效性。在竖直平面内,倒角作业已经开展了。在竖直平面内操作机器人手臂需要一个大力矩驱动的驱动器以克服重力。弹簧秤的提升力补偿了工具在竖直平面内的重力。 倒角表面的结果证明了 悬浮机器人手臂的自动磨削 系统可以以 低功率驱动力传感器 和低能量驱动器在大尺寸的金属切削过程中具有 广泛的 可 应用 性。 南昌航空大学科技学院学士学位论文 7 of of a a of a in is is of to of in To by of In to of P 2000 92+81 238 26 3237; +81 238 26 3205. 929292r r bes of of to by 5 000 7 000 1. n a on It In a on of be of of 南昌航空大学科技学院学士学位论文 8 is a to is a in to to of in 1983). in to o, 1985). on of 1992; et 1988). or to a an be a a a in of in a by et 1990; 1987). in is on in a a on in 1994), In of a to be by or on of 1991). 60 et (1990). In or in In is to of is of in a it is to of in in 1981) In of a is We of 昌航空大学科技学院学士学位论文 9 of in In of by is 2. o (1985) a no of of a of a a AD of a in of he in is a as . by to of , 2, 3, by l, l, l, & l, of by q q )()1) 2) of is )()is a 2 x 2 be )of is a 2 x 2 be ) = I+ml1+I+ml3+ml B m= (mll3+mll4)q-q) C m= (mll3+mll4)q-q) D m= I+ml2+I+ml4+ml is a 2 x 1 be )()is a 2 x 1 be )(0)g is 昌航空大学科技学院学士学位论文 10 of is . A 133 is to , 4A to up ) is is a to I of or a in to At in of A At a at an is 1992) o (1985) J, is as 1)2)10), on of by a be of a is by as of a is by as a at is by of as as of of s is by at is a of a of in is 0 = q =180 & 0 = q =180. 昌航空大学科技学院学士学位论文 11 is a of in of is to a is 0 = q =180 80 = q =360. is a 3. he of , of In is is In to of of of as 3)(4)Fb, in on of is to of of on as 5)(6)in 7)vz in as 8)(9)in be as 0) 4. he is on an of is by of In is by of 5. n to of ar毕业设计(论文)任务书 I、毕业设计 (论文 )题目: 自定中心振动筛设计 业设计 (论文 )使用的原始资料 (数据 )及设计技术要求: 某清筛机的清筛进程为 200m/h,设计此清筛机的自定中心振动筛。假设石碴中 45中等粒度)以上的石碴占总量的 50%, 20下的(污土)占总量的 25%,每米道床 的石碴体积为 碴的紧方容重为 业设计 (论文 )工作内容及完成时间: 1. 收集资料、外文资料翻译、开题报告 ( 第 1 周 第 2 周 ) 2. 总体方案设计 ( 第 3 周 第 4 周 ) 3. 参数确定及设计计算 ( 第 5 周 第 7 周 ) 4. 振动筛装配图设计及零部件图设计 ( 第 5 周 第 7 周 ) 5. 毕业设计论文 ( 第 16 周 第 17 周 ) 、主 要参考资料: 1 璞良贵,纪名刚主编 第七版 等教育出版社, 2001 2 孙桓,陈作模主编 第六版 等教育出版社, 2002 3 成大先主编 械振动) 学工业出版社, 2004 4 闻邦椿,刘树英编著 . 机械振动学 金工业出版社, 2000 5 2001.7 目 录 . 1 . 1 . 1 . 3 . 3 . 5 . 8 . 11 . 14 . 14 . 15 . 18 . 20 . 24 . 27 度以及轴承寿命验算 . 29 . 31 . 33 参考文献 . 34 致谢 . 35 1 在铁路线路大修工作中,由于无缝线路的铺设,行车速度和列车密度的增高,传统的“大揭盖”的施工已不适应生产发展需要,为此需对枕底清筛机进行不断研究、设计、制造和实验等工作。铁路道床清筛机用的振动筛,过去都采用固定中心振动筛,如下图( a)所示。运用结果表明,固定中心振动筛的最大缺点是,筛箱侧壁由于受到固定轴所给予的周期性反力作用,轴孔附近易于产生疲劳裂缝。为了避免上述缺点,经过调查研究, 先后改用了自定中心振动筛,如下图( b),从而使该问题得到有效解决。 另外振动筛还广泛应用与工业生产中,其中主要应用于 煤炭、冶金、建材、化工等部门 。 图( a) 图( b) 1 筛箱侧壁; 2 固定轴; 1 筛箱侧壁; 2 浮动轴; 3 激振轮; 4 激振块; 3 激振轮; 4 激振块; 5 支承弹簧; 6 筛面。 5 支承弹簧; 6 筛面。 固定轴振动筛与浮动轴振动筛比较 改革开放以后,我国各行业都得到长足的进步。振动筛的应用也越来越广泛,但同时对振动筛的各项性能都有了新的要求。在此大背景下,我国振动筛技术通过自主研发和吸收消化国外先进技术,也得到了长足的进步。相继研制出 型圆振动筛、 圆振动筛 、 列直线筛 和 自定心振动筛 等。 近几年来,国内外对振动筛的研制越发重视。目前,振动筛的发展已经朝着 大型 2 化、智能化、高效集中、使用寿命长 方向发展。 世界上振动机械产品处于领先地位的公司 主要有德国的 国的 本的 他们生产的产品代表了世界范围内振动筛发展的主流趋势。而在国内,只有太行公司、鞍山矿山机械股份有限公司、上海 冶金矿山机械厂等少数几家企业开始大型振动机械的研制、开发与生产 。但基于 振动机械的工业环境复杂、条件恶劣、生产企业小 ,再加上我国振动机械工业起步较晚,我国产品与国外产品还存在较大差距。但是,随着改革开放的不断发展,我国的振动筛技术要会不断进步,逐步缩短与国外先进的差距。 目前,河南新乡众多厂家生产的 列自 定心振动筛 ,产品标准为定中心振动筛和 定中心振动筛 , 已具有相当先进水平。 3 计 的基本原理 所谓筛箱系统, 乃是 图 2.1(a)所示振动筛箱体和支承弹簧的统称。为了便于分 析,我们将此系统用 图 2.1(b)所示质量 弹簧力学模型来代替。按等效条件,此模型中的质量为: = 2 1) 式中 G 激振块重量 ; P 除激振块外筛箱体全部重量(包括参振部分的石渣) ; G 重力加速度 模型中弹簧的刚度 总刚度)。 ( a) 图 振动筛弹力模型 在 图 2.1(b)、 ( 2 3) 中, 1 1 为弹簧的未受力位置; 2 2 为质量 m 的静平衡位置。若 1 1 到 2 2 位置的 变形量为 ,则 K= ( 2 2) 4 图中 3 3 位置,为质量 m 的一般位置。将坐标轴 x 原点放在静平衡位置 2 2,质量 3位置的坐标即为 x;速度和加速度就分别为里 质量 m 在 3 3 位置的受力如 图 2.1(b)所示,其上 重力; K( +x)为弹簧的反力; R 为运动阻力,设此阻力是与运动速 度大小的一次方成正比(比例常数为 ),则 R=分析系统的自振频率时, 暂不考虑激振力的作用。这样,按牛顿第二定律可得 +x)- 2 2) 式代入,经移项简化得: 22 ( 2 3) 这是一个二阶常系数线性齐次微分方程。在2a 由此得出激振轮每分钟的转速为 : n30 为了充分保证石渣能从筛面跳起,设计时一般取 n=(45 54) ( 3 1) 这也就是筛箱 激振频率的估算式。 在按 ( 3 1) 选取激振频率时,不应选得过低,否则小石块和污土惯性力就太小,不易从筛孔中甩出去,从而影响筛分效率;也不宜过大,否则筛箱受到的动载荷就太大,从而对筛箱结构的强度不利。 在振动筛设计中,采用机械指数 ( 3 2) 可见,机械指数 由 ( 3 1) 式可算出:为了充分保证石渣能从筛面跳起,机械指数应为: =( 筛面倾角 a=15 时,由此可得 k= a=25时, k= 具体计算国产矿用各中自定中心振动筛的机械指数 k,得到 小值为 细粒(粒度小于 40毫米)筛分、生产能力小(每小时 30吨以内)的设备重量 较轻 (不足 1吨)的筛子, 对中粒(粒度最大为 100毫米)筛分、生产能力较大(每小时处理 30吨)和设备较重( 3吨多)的筛子, 对道床清筛机的振动筛来说,进入筛子的最大粒度不超过 100毫米,生产能力最小约为 150吨 /小时。因此建议将机械指数 k 值取在 3 4之间,小型清筛机的振动筛取高限,大型清筛机的振动筛取低限。 综合考虑,振动筛的参数选择如下: 筛面倾角: a=24 筛箱振幅: =5 毫米 13 激振频率:由 ( 3 1) 式得 n=(45 54) 524 =( 678 814)次 /分 暂取 n=800次 /分,对应 = 弧度 /秒。 验算机械指数,由式 ( 3 1) 得机械指数 k= 此数接近 3,稍低。最后选定 840 次 /分,对应 = 8830840 弧度 /秒, k= 14 筛子尺寸主要是根据“要保留石渣的最小尺寸”来确定。 如按规定道床石渣的最小尺寸 为 20 毫米,则筛孔尺寸就选 2025 毫米之间,筛面倾角大的取高限,筛面倾角小的取低限。如每小时进入筛子的石渣量较大,为了提高筛分效率,往往采用双层筛,在确定上层筛面筛孔尺寸时,最好先对石渣粒度做一大致分析,定出中等粒度的石渣尺寸(所谓中等粒度,是指在这个粒度以上和以下的石渣量均约为 50%)上层筛面的筛孔尺寸取与中等粒度石渣的尺寸相适应,目的要使上层筛面筛下的石渣重量,约为总石渣量的一半。 石渣层数和尺寸,主要根据:“单位时间进入筛子的石渣量”来确定 每小时清筛一百米以上的清筛机 ,如系采用自定中心振动筛,一般为 双层为宜。筛面面积 S 按下式计算: 0(米2) ( 4 1) 式中 Q 每小时筛下的石渣量 吨 /小时; 每小时每平方米筛面面积能筛下的石渣污土量 吨 /米 2小时。 与筛孔尺寸有关的量,筛孔尺寸大, 大;反之亦然 。设计时, 筛孔尺寸的关系,建议采用下表: 表( 4 1) 筛孔尺寸( 20 30 40 50 60 70 t/m2h) 24 25 28 31 35 39 考虑到筛分道渣的特点,在用于单层筛时直接用上表中的 用于双层筛时上层筛用上表 中的 层筛则将上表中的 以系数 样,就可以用 ( 4 1) 式计算筛面面积。 筛 面的长度与宽度,一般是在 2:1之间。筛分效率要求高的取高值;单位时间清筛的 石渣量高的取低值。 设计 技术要求为:清筛进程为 200m/小时,石渣中 40上的石渣占总量的 15 50%, 20下的占总量的 25%,每米道床的石渣体积为 因此确定上层筛孔尺寸为 45 7 毫米的优质钢丝编织而成;下层筛面筛孔尺寸为 22 毫米,用 5 毫米的优质钢丝编织而成。 筛面面积:每小时进入筛子的石渣量为 200 米 /小时 米 3=600吨 /小时。 上层筛面, Q=600 50%=300 吨 /小时。按筛孔尺寸为 45 毫米,查 表 ( 4 1) 经估计 0 吨 /米 2小时,再由 ( 4 1) 式得上层筛面面积为 S=300/30= 2。 下层筛面 , Q=600 25%=150 吨 /小时 ,按 筛孔尺寸为 22 毫米查 表 ( 4 1) 得,= /米 2小时,再由 ( 4 1) 式得下层筛面面积为 S=150/( = 2。 综合以上计算, 将上下层筛面面积均取成 2,并取 筛面 尺寸的长 宽 = 。 筛箱结构尺寸:按筛面尺寸即可确定筛箱的长度和宽度。 上下层筛面间的高度,取下层筛面上的石渣最大尺寸的三倍,这里取 45 毫米 3=135 毫米;上层筛面以下上的筛箱高,取上层筛面上的石渣最大尺寸的三倍 ,这里取 80 毫米 3=240 毫米;估计中心轴套直径为 400 毫米,这样筛箱高取 800 毫米 。按规定用某振动筛的定型产品,取筛箱板厚为 12 毫米;八根横梁,每根横梁取直径为 60 毫米、厚 8 毫米的无缝钢管,即可确定筛箱的结构尺寸。绘出筛箱各部分构图,而估计筛箱重量为 2000 千克。 为了完成这项内容,需分以下三个步骤来进行: 筛箱结构尺寸已经确定的条件下,组成筛箱的每个零部件尺寸及重量也就确定,这样即可计算箱体总重。同时要附带计算出箱体重心位置,因为在筛箱侧板上开中心轴轴孔时,要求轴孔中心位置是在通过箱体重心的铅垂线上,并按技术要求,左右偏差在 50 毫米的范围内。这是保证在振动过程中箱体的稳定和筛分效率的提高。 计算出参振石渣重量,必须先计算出 筛面 上平均全部石渣重量,为此必须先计算石渣在筛面上的流速。石渣在筛面上的流速,可近似的按如 16 下公式计算: = 18221 2/32 ( 4 2) 式中 石渣在筛面上的流速 毫米 /秒 a 筛面倾角 度 n 振动频率 次 /分 r 振幅 米 g 重力加速度 g= /秒 2 排出能力的修正系数,它与筛面上每米筛宽每小时通过的石渣量有 关,具体关系见 表 ( 4 2) 表( 4 2) 排出能力修正系数(千克) q(t/mh) 45 50 60 70 80 100 120 150 200 250 300 石渣在筛面上的流速计算出来后,筛面上的石渣重 量 按下式计算 l/ ( 4 3) 式中 Q 单位时间进入筛子的石渣重量; l 筛面长度; 石渣在筛面上的流速。 实验证明:筛子在振动时,停留在在筛面上的石渣重量约为筛面上全部石渣重量的 30%,即约有 70%的石渣跳动在空间不随筛子振动。 设筛面上全部石渣重为 振石渣重为 l/ ( 4 4) 式中 Q 单位时间进入筛子的石渣重量; l 筛面长度; 石渣在筛上的流速。 由此计算出参振石渣重量。 上层筛面:每小时每米宽筛面上通过的石渣量 q=600/00 吨 /米 小时,按此查 表( 4 2) ,得 面长为 。这样,即可由 ( 4 2) 、 ( 4 3) 、 ( 4 4) 三式,分别计算出上层筛面石渣流速 1、全部石渣重量 振石渣重量 为: 17 1= 1824242219810 5840 2/32 42 毫米 /秒 00 542) = 30%=433 层筛面:每小时每米宽筛面上通过的石渣量 q=( 600 50%) /50 吨 /米 小时,按此查 表 ( 4 2) ,得 面长为 。这样,即可由 ( 4 2) 、 ( 4 3) 、( 4 4) 三式,分别得 2= 1824242219810 5840 2/32 00 毫米 /秒 00 600) = 30%=200 部参振石渣重量 为: 33+200+633 计时圆整取 700 箱体重与参振石渣重相加,再乘以机械指数 k,就得振动时作用在两侧筛箱板轴孔的总的离心惯性力,这个力就 是选择轴承所必要的轴承载荷,再结合中 心轴转速按机械零件的原则,即可选择中心轴轴承。轴承选定后,即可按轴承内圈直径确定出中心轴轴径。 考虑到清筛机要在弯道作业,轴承需要有一定的承受轴向载荷的能力;而且两侧轴承孔的同心度又较差,轴承内外圈轴线需要有一定的相对偏斜;另外为了减小轴孔单位面积上的压力,这里采用了中宽系列的双列向心球面滚子轴承。 初估参振重量为 2000+700=2700 业时离心惯性力为 2700 505 侧各用一相同轴承,故每个轴承所受的名义径向载荷为: R=1/2 8505=4253 冶金工业出版社 1972 年版机械零件设计手册表 19 6,取动负荷系数 实际径向负荷为: Fr=4253=10633 实际的轴向负荷 ,所以 r=0l 使前后支承弹簧在工作过程中受力能接近相等;(二)在作业过程中,由于箱体实际上除作前述振动外,还作绕中心轴的“点头”振动。箱体上除了中心轴而外的各点合成轨迹均为长短轴不相同的椭圆。根据理论推导,当 l 1l 2 时,入渣端筛面上各点的轨迹为长轴水平、短轴铅垂的椭圆 见 图 b) 。由于入渣端筛面上的石渣层较厚,需要有教大的铅垂抖动幅度来松 开石渣层,所以,让 l 1 l 2,旨在使清筛效率能进一步提高。 整个筛箱有四个支座,每个支座由两个相同的并联的弹簧支承,也就是整个箱体由八个相同的并联弹簧支承。按( 1 4)式或 ( 4 8) 式,支承弹簧的总刚度应为: K=981881662 =1310 kg/个支承弹簧的刚度为: 310 1/8=164 kg/以,在弹簧的计算中,要求弹簧刚度能近似的等于 164/厘米。以下计算所用符号,引用机械零件设计手册第二十二章。 弹簧最小工作负荷 2000+2900) 1/8=613 簧最大工作负荷 1+13+164=695 簧的材料选用 60 机械零件设计手册 表 22 3,按一类工作考虑,=4500 kg/j=7500 kg/=8 105kg/ 取 C= 机械零件设计手册表 22 6, K= 以弹簧丝直径为: 4500 直径 d=7 毫米;弹簧中径 17=100 毫米。 验算许用极限负荷 23 1 5 07 5 0 由于 150 千克 695=869千克,所以满足强度要求。 弹簧在 2/95/164=簧工作圈数为: n= 总圈数 1=n+算弹簧刚度 P : P = 45324 由于 P =167kg/要求的刚度 64kg/近,所以刚度也满足要求。 弹簧圈间距 = 5 03 节距 t=d+ =1用 Y 型右旋弹簧,其自由高度为 H= n+()d=5+( 7.2 算稳定性指标 b b= b=克 米 ,满足起动要求 ,所以就选 电动机为 激振电机,功率为 11千瓦;转速为 1500转 /分。 皮带计算包括:计算皮带轮尺寸;选定皮带类型和确定皮带的根数与长度。要完成这一部分内容,就需要知道皮带轮的速比;皮带轮的中心距以及单根皮带所传递的功率。 当激振电机选定后,按装在电机上的小皮带轮转速即确定。而大皮带轮转速是与激振频率相等的,这是作为参数被选定的。所以,两皮带轮转速比是已知的。在已知速比的条件下又知道大皮带轮直径,则小皮带轮直径就可算出。 当激振酊剂选定后,皮带所要传递的功率即确定,按此就可以选择皮带类型和确定皮带根数。 激振电机是安装在清筛机的机架上,这样,就基本确定了皮带轮的中心距。按照两个皮带轮的直径和中心距,可以计算皮带长度;根据皮带类型和计算长度,就可以选定皮带。 由激振电机到激振轮是采用三角皮带传动。计算及引用符号来自 机械零件设计手册第十章。 按前,大 皮带轮计算直径 60毫米 ,而大皮带轮转速应为 840 转 /分,电动机转速为 1500转 /分,故小皮带轮计算直径为: 1221 =1500840560=314 毫米 大 皮带轮上的轴孔直径为 60毫米,但轴孔中心应向激振块对面偏离轮缘中心 5毫米;根据 电动机查手册,电动机轴径为 38 毫米,此即小 皮带轮轴孔直径。 皮带速度用 100060 11 =100060 1500314 = /秒 比较适当。 28 三角 皮带的计算长度: A 42221221 = 11004 3145603145602110022 =3579 毫米 按传递 功,查机械零件设计手册表 10 4 取 C 型带轮;再按表 10 2, 采用标准值 L=3594 毫米的皮带。 皮带绕转次数为: 秒次 / L = /秒 20 次 /秒,所以不会造成皮带寿命的显 著下降。 皮带实际中心距为: 毫米11072 3579395411002 安装皮带必需的 053 毫米 补偿皮带伸长的 +215 毫米 小 皮带轮包角为: 180- 6012A 601 10 73 145 601 80=166 三角皮带根数 Z 按下式计算: 210 式中 N=11 千瓦; 表 10 6); 表 10 7); 瓦(查表10 5),以上查表均引自机械零件设计手册。于是得到: 1 =3,即采用三根 三角皮带。 皮带作用在轴上的拉力为: 千克2082166s 29 度以及轴承寿命验算 中心轴 是连同激振轮一起转动的,轴内应力基本上不作周期性交变,所以,中心轴只作静应力强度验算。在筛箱内部装有中心轴的轴套,护套直径稍大于月牙部分的直径,验算中心轴刚度的目 的,是在检验它在动载荷作用下产生挠度后是否碰到他外层护套。 道床清筛机每天净作业时间不会超过三小时,每年按三百天作业计算,一年作业时间最多 1000小时,所以轴承寿命取 4000 8000小时也就足够了。验算轴承寿命所用轴承载荷,应该是中心轴强度计算中所求的最大轴承反力。 将中心轴取出,其上下受力见 图 图 中心轴受力图 激振重 111 =1964千克); 激振重 心力(222 =7449千克); q l = 的分布力( q=14704 千克 /米); 激振重 1+Q=2172千克) 由静力平衡条件分别求得轴承反力: 696千克: 939千克 并按弯矩概念求得: 304420 千克 毫 米 = 克 厘 米 30 336660 千克 毫 米 = 克 厘 米 31520 千克 毫 米 =克 厘 米 55455 千克 毫 米 =克 厘 米 31520+3732x x 0, 得 x =254 毫米 , 44500+2692 542 =1118106 千克 毫 米 =05 千克 米 按功率计算转矩公式,求得电动机通过皮带传动而作用在大 皮带轮上的转矩为: M=9750001140=12448 千克 毫 米 =05千克 厘 米 所以动力的输入端( B 端)的扭矩为: =05 千克 厘 米 作出弯矩图和扭矩图如 图 示,由图可见,最大弯矩值为 118106 千克 厘米。 按 120 毫米等截面轴考虑,截面抗弯模量 W=323d =170 厘米3 考虑到弯矩及扭矩基本上不是周期变化的,即使变动,因其变动量较小,所以只需验算此轴的静力强度。轴的材料采用 45 号刚,强度极限 b=6000 千克 厘 米 2,查燃料工业出版社 1972 年出版的机械设计手册表 6 203,酌取其弯曲应力 =2000千克 /厘 米 2。由于最大应力 =111810/170=658 千克 /厘 米 2 2000 千克 /厘 米 2 亦即 ,所以轴的强度是足够的。实质上此轴并非等截面,中间部分直径为 186毫米,轴在这一部分的应力最大值更大,可见,此轴强度是相当高的。由此可以断定,此轴中间部分的最大挠度肯定远小于轴与轴套间隙 10 毫米,因此可以不再验算此轴的刚度。 由于最大轴承反力 854 千克,取动荷系数 实际径向负荷为 P=5939=14848 千克。查机械零件设计手册表 19 13, 3264 型轴承的额定动负荷C=58600 千克。轴的转速为 840 转 /分,这样,此 轴承的寿命为 31 375512135586008406010 3106 小时 比原定的 5000 小时要少,但此清筛机可使用 4 年左右,寿命不算短。 振问题 共振问题是振动筛设计中的一个十分重要的问题,如处理不当,将会引起皮带松脱、支承弹簧折断、筛条折断及车底架剧烈振动等现象发生 。所以在 振动筛设计中 ,应考虑以下几个主要方面的共振问题。 面 谈到,自定中心振动筛一般都是在超筛箱系统共振条件下工作的,因此在“开车”和“停车”过程中,都要通过筛箱系统的 共振区。如果在筛箱上没有阻尼装置,当通过共振区时,箱体振幅会大幅度增加,在这种情况下必将引起皮带松脱等现象的发生。所以,对自定中心振动筛来说,阻尼装置是必不可少的。 在上节“支承弹簧计算”部分已经谈过,这里就不再重复。 面好象是一块弹性薄板,它与筛箱连接在一起,由于连接情况不同,筛面的自振频率也不同, 目前很难用理论计算。连得牢绷得紧的筛面,刚度大自振频率就高;反之自振频率就低。如筛面的自振频率与石渣在其上跳动的频率相接近,则筛面是在共振状态下工作下工作,结果构成 筛面筛条将易于产生裂断现象。为了避免这种现象发生,在设计和安装筛面时,应尽可能使筛面与筛箱连得牢绷得紧,有可能还要让筛面有向上的“拱度”,以曾大筛面的刚度,使其自振频率 远高于激振频率,从而杜绝筛面产生共振的可能。 问题: 车底架的自振频率可以用近似的理论来计算,但很烦,而且计算结果又和实际出入很大,不足以作为设计依据。因此,为防止车底架产生共振,在设计车底架时,除要满足强度条件外,还要有足够刚度,对车底架的中梁来说,其许用挠度宜小于 l /800 l /1000;从构造来说,还要求中梁有一定拱度,跨度越长,拱度越大,跨长 l =20 米的中梁,其拱度、不应低于 l /800 l /1000;在设计时对车底架刚度的增加还要留有余地,因为在使用后由于结构松弛,车底架刚度还有一定程度减小;另一方面因为振动筛试运转后,对车底架还有可能增加要求。因此建议,在安装振动筛前,可先用仪器来测量车底架的自振频率,如测出的频率 振动筛的激振频 32 率接近,在车底架刚度不能再增加时,可以减小振动筛的激振频率,其方法是减小小皮带轮的直径,并按( 1 4)式相应减小支承弹簧刚度,只要将激振频率减小到小于车底架自振频率的 20% 30%即可。 33 在这次设计过程后,我比较系统的了解 机械设备的总体设计,并进一不熟练了机械设计手册的查询。 自定心振动筛 运转 过程中,只有运转时浮动轴成为振动中心,相对固定,才可能保持皮带传动的皮带不会松脱折断。而自定中心振动筛的轴是浮动的,没有固定支架使其保持在同一位置不动。所以,如何使浮动轴的位 置在运转过程中保持不变是此设计的关键。 本文采用使筛箱的激振振幅 浮动轴在运转过程中相对固定,因此要使激振块重量 G、除激振块外振动筛箱(包括参振石渣)的全部重量 P、偏心距 r、激振块相对轮心的偏心距 R、弹簧总刚度 满足: r, 2,这就是自定心振动筛的设计条件。 在振动筛工作过程中,虽由于筛内石渣量的不同, 通过计算知引起轴的波动量并不大,不会使皮带发生折断。 另外 激振频率对振幅的影响 也相当重要 ,起动时必须快速通过其自振频 率,远离共振区, 才能 避免产 生共振。 在此次设计中,对轴的强度验算也十分重要,这也使又复习了一遍材料力学。 此次设计使我们受益匪浅,为我们以后到单位工作起到了一个良好过度。 34 参考文献 1名刚主编 第七版 等教育出版社, 2001; 2作模主编 第六版 等教育出版社, 2002; 3机械设计手册(机械振动) 学工业出版社, 2004; 5. 蔡春源主编 辽宁 1993。 4. 闻邦椿 ,刘树英编著 . 机械振动学 金工业出版社, 2000; 5. 王昆,何小柏,汪信远主编 北京:高等教育出版社, 1995; 6. 徐鹤龄主编 北京:人民铁道出版社, 1979; 7. 廖念钊,古莹奄,莫雨松,李硕根,杨兴骏编 第四版 国计量出版社, 2000; 8. 刘鸿文主编 第四版 等教育出版社, 2004 9. 35 致谢 在这次设计过程中我遇到了不少困难, 在此要感谢吴晖老师的悉心指导,感谢各位同学各种帮助,还要感谢 同时也感谢学院为我提供 代写论文 良好的做毕业设计的环境。 36 低能耗机器人悬浮机构的应用 摘要 (文档摘要) 本文给出一种 采用悬浮装置 直接驱动机器人手臂来操纵重型物体的低能量操纵方法。考虑到在水平面内悬吊工具的操作,利用悬吊在水平面内的工具的动态 行为 给出了混合位置 /力跟踪计划 的运算法则,为了垂直 操纵悬浮机器人手臂 ,由考虑到弹簧秤的重力补偿,这种 混合位置 /力 的动力学模型已经发展。 为了显示应用 于 工业的可能 性,这种模型在 倒角作业 领域 已经展开 。模拟和实验证明了此 拟议系统 的可行性。 文本全文 (5295 个字 ) 著作权 P 2000 截至 2000 小型断路器有限公司 (简称 博士 , 山形大学系统和信息工程 系 , 日立 4日本92话 : +81 238 26 3237; 传真 : +81 238 26 3205. 形大学机械系统工程部教授 ,日立 4日本 92副教授 , 山形大学机械系统工程部教授 ,日立 4日本 92副研究员 , 山形大学 电子及信息工程系 , 日立 4日本 92鸣谢 : 在此作者真诚的感谢 生 , 生 , 生 , 及 生在机器人的制作和控制软件的执行中所做出的努力将感谢教育部,科学会,运动商及 (出的奖学金 , 5 000 7 000 1. 简介: 在水平的运动中 , 工具重量在连接摩擦上有相当大的影响 , 它直接地影响推进时的转动力矩。 在垂直的运动中,地心引力效果在操作 体 的动力学上有相当 大 的影响。 机器人的操纵应该在推进转力矩的可允许极限和力量感应器的能力里面。 悬浮工具系统 (一 种 新提议的 横向 操纵重型工具 的 处理策略 ,悬吊 机器人手臂系统 (一 种 新提议的机器人手臂用在垂直面 实现 低功率驱动 和 小容量感应 器的 操作方法 。由于和传统的系统比起来具有很多优点, 悬浮工具系统 和 悬吊 机器人 手臂系统 已经成为工业应用领域越来越感兴趣的话题。 当需要结构的坚硬性和高性能动态的时候,并联操作结构与现有的机器人系列相比,提供了许多明显的优点。 因此 , 这种机制 在 过去二十年受 到了一定的 关注 (自 1983). 一般说来,直接驱动式机械手 , ,容易出现过快的操作幅度 , 然而其输出动力却很小。为了使其能拿起物体,在多个机械手的
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:0139-自定中心振动筛设计【CAD图+说明书】
链接地址:https://www.renrendoc.com/p-947862.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!