




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
JournalofZhejiangUnivem时SCIENCEAISSN1673-565X(Print);ISSN1862-1775(Online)wwwzjueducnIzus;wwwspringerlinkcornE-mail:jzuszjueducnLengeta1JZhejiangUnivSciA2008913):358-365ResearchoncubicpolynomialaccelerationanddecelerationcontrolmodelforhighspeedNCmachiningHongbinLENGt,Yi-jieWU竹,XiaohongPAN(InstituteofModernManufactureEngineering,ZhefiangUnivers魄Hangzhou31002LChina)E-mail:lenghb2002zjueducn;w埘1116zjueducnReceivedJuly2,2007;revisionacceptedNov3,2007;publishedonlmeDec30,2007Abstract:TosatisfytheneedofhighspeedNC(numericalcontr01)machining,anaccelerationanddeceleration(acedec)controlmodelisproposed。andthespeedcurveisalsoconstructedbythecubicpolynomialTheproposedcon仃olmodelprovidescontinuityofaccelerationwhichavoidstheintensevibrationinhighspeedNCmachiningBasedonthediscretecharacteristicofthedatasamplinginterpolationtheacedeccontroldiscretemathematicalmodelisalsosetupandthediscreteexpressionofthetheoreticaldecelerationlengthisobtainedfurthermoreAimingatthequestionofhardlypredeterminingthedecelerationpointinaccdeccontrolbeforeinterpolationtheadaptiveacedeccontrolalgorithmisdeducedfromtheexpressionsofthetheoreticaldecelerationlengthTheexperimentalresultprovesthattheacedeccontr01modelhasthecharacteristicofeasyimplementation,stablemovementandlowimpactThemodelhasbeenappliedinmultiaxeshighspeedmicrofabricationmachiningSUCCESSfUllyKeywords:Hi曲speedNCmachining,Accelerationanddeceleration(acedec)controlmodel,Cubicspeedcurve,Discretemathematicalmodel,Adaptiveaccelerationanddecelerationcontrolalgorithmdni:101631jzusA071351Documentcode:ACLCnumber:U441+4INTRODUCTIONNC(numericalcontr01)machiningisnowdevelopingtowardshighspeedandhighefficiencyInhighspeedmachining。eachmotionaxismustaccelerateintomovingstateandrealizeprecisestopinfewsecondsSo,researchingonanefficientaccelerationanddeceleration(acedec)controlmethodtomeetthedemandofhighspeedmachiningisoneofthecriticalproblemsinmodemhighperformanceNCsystemThecommonlyusedmethodsinmostdomesticeconomicalCNC(computernumericalcontr01)sys-ternarelinearaccdecmodeandexponentialacedecmodeButvibrationiseasilycausedbydiscontinuityofacceleration,whichaffectsmachiningqualityandequipmentlife(HuetaL,1999;Zhang,2002)TolCorrespondingauthorProjectsupportedbytheHi1echResearchandDevelopmentPro-gram(863)ofChina(No2006AA042233),theNationalNaturalScienceFoundationofChina(No50575205)andtheNaturaIScienceFoundationofZhejiangProvmceosY104243andY105686),Chinadecreasethevibration,thes-curveacedecmotionplanningmethodisadoptedinadvancedCNCsystemTheacceleration(ordeceleration)stageinthes-curveaccdecmotionplanningmethodiscomposedofincreasingaccelerationphase,constantaccelerationphaseanddecreasingaccelerationphase(orincreasingdecelerationphase,constantdecelerationphaseanddecreasingdecelerationphase)ThroughgradedcontrolofaccelerationineachstagemachiningfeedratecanbechangedsmoothlyHoweveLthea1gorithmistoocomplex(KaanandYusuf,200l:NamandYang2004)Thetrigonometricfunctionacedecmethodismoreflexible,butthealgorithmisalsocomputationextensiveandmorecomplex,whichisrelativelydi币culttosatisfyrealtimerequirement(GunandLi,2003)Themethodselectingpolynomialfunctionscangeneratesomanykindsofacedeccharacteristicsand,furthermore,canmakethechar-acteristicsofdecelerationbeindependentfromthoseofaccelerationInordertoachievehighperformancemotioncontrol,themotionprofilesmustbematched堡万方数据Lengeta1JZhejiangUnivSciA200893):358-365tothesystemlimitssuchasthemaximumaccelera-tionandthemaximumvelocityIfpositiontrajecto-riesofwhichthevelocityprofilesaresmootharegeneratedbythemethodselectingpolynomialfunc-tionsitrequiresalotofcomputations(InabaandSakakibara1985;Park1996)ThedigitalconvolutionmethodismuchmoreemcienlthanthemethodselectingpolynomialfunctionsandiseasilyimplementedbyhardwareBut,inthevelocityprofilesgeneratedbythemethodtheaccelerationintervalisalwaysthesameasthedecelerationintervalandthecharacteristicsofthedecelerationaredependentonthoseoftheacceleration(KhalsaandMahoney,1990;ChenandLee1998)AsimpletoefficientsstoredmethodforgeneratingvelocityprofilesisproposedAccordingtothedesiredcharacteristicsofaccdec,eachsetofcoefficientsiscalculatedandstoredGivenamovingdistanceandacedecintervals,avelocityprofilehavingthedesiredcharacteristicsofaccdeccanbee币cientlygeneratedbyusingthesetoemcientsButforlongandshortdistancesthesameacedecintervalsareselected;thee币cientvelocityprofilecannotbecalculatedforthevarieddistancemovements(JeonandHa,2000)ThispaperisorganizedasfollowsSection2proposesacubicpolynomialacedeccontrolmodelforhighspeedNCmachiningBasedonthediscretecharacteristicofthedatasamplinginterpolation,thecubicpolynomialaccdeccontroldiscretemathe-maticalmodelissetupinSection3TheadaptiveacedeccontrolalgorithmforpredeterminingthedecelerationpointofarbitraryroutesegmentisdeducedinSection4ExperimentalresultsarepresentedinSection5andconclusionsaresummarizedinSection6struttedbythecubicpolynomial,359y(甜)=(q+2a2u+3a3u2+4a4u3)fm(1)Itisassumedthattmistheacceleratingordeceleratingdurationtimewhichistakenassynchronizedmotionaxestoaccelerateordeceleratefromthebeginningspeedtotheendspeed,妒ttm,fO,tmTheotherkineticcharacteristiccurvesofaccel-erationandierkcanbeobtainedbydifferentiatingthefeedratecurve,A(u)撕=(2a2+6asU+12a46as24a4u)t:铲。(2)【,(“)=(+Again,integratingEq(1)withrespecttotimeyieldsthedisplacementcurvefunctionas,S(zf)=a0+aI+a2u2+a3u3+a4u4(3)Theboundaryconditionsare,s(0)=0,v(o)=K,矿(1)=圪,A(O)=A(1)=0,whereKand圪standforthebeginningspeedinacestage(ordecstage)andtheendspeedThenthecurvilinearfunctionsarederivedas,(“)=6(圪一K)(12-)4,彳(u)=:6K(V+,3-(KV,)一(uK-)甜u:2)+t2m(,V(uK一圪)材,(4)=K+3(KK咖2+2(K一圪弦,s(“)=tmKU+(圪一V。)tmU3+05(K-Vo)tmU4CUBICPOLYNOMIALACCDECCONTROLequalFtoromtheE孟q&imumuac=0ce5lerathteioanc彳ceml瓤eraTtihoennfm:ains(4),let,彳(“)MODELbededucedas,Tomeettheneedofhighspeedmachining,thefeedratemustbechangedsmoothlyandtheaccelerationmustbecontinuousTheboundaryconditionsare:(1)thedisplacementatthebeginningtimeis0;(2)boththebeginningspeedandtheendspeedarethesameasrequired;(3)theaccelerationsbothatthebeginningtimeandtheendtimeare0Theaccdecfeedratecurve如nctioniscontm=3KKI“24。)=nT(5)玎isarealnumber,denotingthetheoreticaltimesofthetheoreticalrunningtimetmtointerpolationperiodTwhendecelerating(oraccelerating)fromKtoWhent=tm,thetheoreticalacceleration(orde-celeration)lengthSlisobtainedfromEq(4)as,万方数据Lengeta1JZhejiangUnivSciA200893):358-365墨=(圪+V。)tm2=3lK2一曙II(4A。)Therelationofspeed(叻,acceleration0)andjerkisexpressedasshowninFig1FromFig1,inthecubicpolynomialacedeccontrolmodeltheaccelerationiSconsecutive。whichavoidstheOccur-renceofintensevibrationinhighspeedmachiningThecalculationsofjerk,acceleration,speedanddisplacementinvaryingspeedprocessaresimpleandeasytorealizebecauseoffeWfourfundamentaloperations矿匕二上二金一p#毒三7l一一Fig1Speed(,acceleration似)andjerk(J)ofthecubicpolynomialaccdeccontrolmodelCUBICPOLYNOMIALACCDECCONTROLDISCRETEMODELCharacteristicsofdatasamplinginterpolationThecontrollingwithdatasamplinginterpolationisatypeofdiscretecontrollingmodeThedatasampiinginterpolationisbasedonapproximatingacurvewithstraightlinesegments,whoselengthsarepro-portionaltothelocalaxialplannedvelocitiesTheacedeccon仃OlalgorithmiSperformedonthedesiredfeedratecommand矿firstlyThenthefeedratecornmandV(afteracedeccontrolalgorithm)issenttotheinterpolatortocomputethetravelingdistaneecomponentforeachaxisintheCartesiancoordinates(KYand刁ThetravelingdistancecomponentsZ厶Yand觇alongtheXYandZaxesaretransmittedtothemotioncontrolroutine邪positioncommandstothepositioncontrolloopforthedesiredmachiningfinallyWhendatasamplinginterpolationisusedinpo-sitioncontr01itiStheconditiontOmakesurethateverysynchronizedmotionaxisreachesthedestina-tionsimultaneouslyandtheirmovementiScontinuousSOthateachaxisrunningtimetisjustintegraltimesthatoftheinterpolationperiod互ietimepartitioningruleThisconditioncanberealizedbyadjustingthecommandfeedrateofeachsynchronizedmotionaxis(ieacceleratingordecelerating)(Guoeta1,2003)ThroughtheaboveanalysesnshouldbeanintegerSetNastheminimumintegernotsmallerthan玎N=ceil(n)NnReplacingtherealnumber,1withtheintegerNinEq(5)yields,=3IKKI(24。)=NT(6)ConstructionofdiscretemodelGivenanycurvegivenbythefunctiony=flt),theinterval【to,纠isdividedintoNdivisionsPickingtheleftendpointstodeterminetheheightsisshowninFig2a;theapproximateareaunder少钡Dontheintervalto,明is,r儿灿嘻小娟棚孚)孚Ototlt2r卜l,l肛ltMtOtotlt2缸lnt#-ltutFig2ImplementcurveofJft)(a)Leftendpointsusedfortheheightsofrectangles;(b)Rightendpointsusedfortheheightsofrectangles万方数据Lengeta1JZhejiangUnivSciA20089f3J:358-365ThiswayofapproximatingtheareaunderthecurveiscalledtheleftsummethodChoosingthefightendpointstodeterminetheheightsisshowninFig2b;theapproximateareaunder尸砜f)ontheintervalto,明is,Ij删,喜小+z可tN-to警ThiswayofapproximatingtheareaunderthecurveiscalledtherightsummethodSupposethattheslopeofierkiSKsandinitialvaluesofjerk,acceleration,speedanddisplacementareJo,Ao,goandSo,respectivelyThediscretemodelofjerkcurve,implementedbyIeftsummethod,iS。J(iT)=厶+0(f一1)T,1iN(7)Thediscretemodelsofacceleration,speedanddisplacementcurve,realizedbyrightsummethod,are,iA(iT)=40+,(7)r,IiN+I,=1I矿(f丁)=Vo+A(jT)T,j=l,s(fr)=so+V(jT)T,j=l1iN1f361州耻器一嘉N(N斋:、(+1)(+2)r2+1)(+2)r2lfNThediscretemodelsofaccelera
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年福建省宁德市周宁县委政法委招聘3人模拟试卷及参考答案详解
- 2025北京市海淀区育鹰小学招聘5人考前自测高频考点模拟试题附答案详解(完整版)
- 2025年河南省职工医院招聘护理人员60人考前自测高频考点模拟试题附答案详解(突破训练)
- 2025年河北唐山滦州市森林草原消防专业队员招聘7人考前自测高频考点模拟试题带答案详解
- 2025年青岛市崂山区“崂选计划”第二批选聘(37名)模拟试卷带答案详解
- 安全培训教学提纲课件
- 河北省【中职专业高考】2025年中职高考对口升学(理论考试)真题卷【生物与化工大类】模拟练习
- 安全培训救火毯课件
- 2025广东“百万英才汇南粤”佛山市高明区选聘公办初中校长9人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年连云港市赣榆区事业单位公开招聘工作人员31人考前自测高频考点模拟试题及答案详解(全优)
- 《水利水电建设工程验收规程》-SL223-2008
- AIOT智能物联产业学院建设方案
- 行政管理专业教学实施细则
- 闭合性颅脑损伤重型个案护理
- 紫金矿业员工工作手册
- FZ-T 01158-2022 纺织品 织物刺痒感的测定 振动音频分析法
- 工程部造价管控手册
- 2024公安联考行测题库
- 民政信访业务培训课件
- 行政检查业务培训课件
- 汽车销售三方协议
评论
0/150
提交评论