已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DOI10.1007/s00170-003-1741-8ORIGINALARTICLEIntJAdvManufTechnol(2004)24:789793FengXianyingWangAiqunLindaLeeStudyonthedesignprincipleoftheLogiXgeartoothprofileandtheselectionofitsinherentbasicparametersReceived:2January2003/Accepted:3March2003/Publishedonline:3November2004Springer-VerlagLondonLimited2004AbstractThedevelopmentofscientifictechnologyandpro-ductivityhascalledforincreasinglyhigherrequirementsofgeartransmissionperformance.Thekeyfactorinfluencingdynamicgearperformanceistheformofthemeshedgeartoothprofile.Toimproveagearstransmissionperformance,anewtypeofgearcalledtheLogiXgearwasdevelopedintheearly1990s.How-ever,forthisspecialkindofgearthereremainmanyunknowntheoreticalandpracticalproblemstobesolved.Inthispaper,thedesignprincipleofthisnewtypeofgearisfurtherstudiedandthemathematicalmoduleofitstoothprofilededuced.Thein-fluenceontheformofthistypeoftoothprofileanditsmeshperformancebyitsinherentbasicparametersisdiscussed,andreasonableselectionsforLogiXgearparametersareprovided.ThusthetheoreticalsysteminformationabouttheLogiXgeararedevelopedandenriched.Thisstudyimpactsmostsignificantlytheimprovementofloadcapacity,miniaturisationanddurabilityofmodernkinetictransmissionproducts.KeywordsBasicparameterDesignprincipleLogiXgearMinuteinvoluteToothprofile1IntroductionInordertoimprovegeartransmissionperformanceandsatisfysomespecialrequirements,anewtypeofgear1wasputfor-ward;itwasnamed“LogiX”inordertoimprovesomedemeritsofW-N(Wildhaver-Novikov)andinvolutegears.Besideshavingtheadvantagesofbothkindsofgearsmen-tionedabove,thenewtypeofgearhassomeotherexcellentF.Xianying(a117)W.AiqunSchoolofMechanicalEngineering,ShandongUniversity,P.R.ChinaE-mail:FXYTel.:+86-531-8395852(0)L.LeeSchoolofMechanical&ManufacturingEngineering,SingaporePolytechnic,Singaporecharacteristics.Onthisnewtoothprofile,thecontinuouscon-cave/convexcontactiscarriedoutfromitsdedendumtoitsad-dendum,wheretheengagementswitharelativecurvatureofzeroareassuredatmanypoints.Here,thiskindofpointiscalledthenull-point(N-P).ThepresenceofmanyN-PsduringthemeshprocessofLogiXgearscanresultinasmallerslidingcoeffi-cient,andthemeshtransmissionperformancebecomesalmostrollingfrictionaccordingly.Thusthisnewtypeofgearhasmanyadvantagessuchashighercontactintensity,longerlifeandalargertransmission-ratiopowertransferthanthestandardin-volutegear.Experimentalresultsshowedthat,givenacertainnumberofN-PsbetweentwomeshedLogiXgears,thecontactfatiguestrengthis3timesandthebendfatiguestrength2.5timeslargerthanthoseofthestandardinvolutegear.Moreover,theminimumtoothnumbercanalsobedecreasedto3,muchsmallerthanthatofthestandardinvolutegear.TheLogiXgear,regardedasanewtypeofgear,stillpresentssomeunsolvedproblems.Thedevelopmentofcomputernumer-icalcontrolling(CNC)technologymustalsobetakenintocon-siderationnewhigh-efficiencymethodstocutthisnewtypeofgear.Therefore,furtherstudyofthisnewtypeofgearmostsignificantlyimpactstheaccelerationofitsbroadandpracticalapplication.Thispaperhasthepotentialtousherinanewerainthehistoryofgearmeshtheoryandapplication.2DesignprincipleofLogiXtoothprofileAccordingtogearmeshandmanufacturingtheories,inordertosimplifyproblemanalysis,generallyagearsbasicrackisbegunwithsomestudies2.SohereletusdiscussthebasicrackoftheLogiXgearfirst.Figure1showsthedesignprincipleofdi-videdinvolutecurvesoftheLogiXrack.InFig.1,P.LrepresentsapitchlineoftheLogiXrack.OnepointO1isselectedtoformtheanglen0O1N1=0,P.LO1N1.ThepointsofintersectionbytworadialsO1n0andO1N1andthepitchlineP.LareN1andn0.LetO1n0=G1,extendO1n0toOprime1,andmaketwotan-gentbasiccircleswhosecentresareO1,Oprime1andradiiareequaltoG1.ThepointofintersectionbetweencircleO1andpitchline790Fig.1.DesignprincipleofLogiXracktoothprofileP.Lisn0.ThepointofintersectionbetweencircleO2andpitchlineP.Lisn1.Makethecommontangentg1s1ofbasiccircleO1andOprime1,thengeneratetwominuteinvolutecurvesm0s1ands1m1whosebasiccirclecentresareO1andOprime1.Theradiiofcurvatureatpointsm0andm1onthetoothprofileshouldbe:m0=m0n0,m1=m1n1,andthecentresaremetonthepitchline.MultipledifferentminuteinvolutesconsistingofaLogiXprofileshouldbearrangedforapropersequence.Thepressureangleofthenextminuteinvolutecurvem1m2shouldhaveanincrementcomparabletoitslastsegmentm0m1.Thecentresofcurvatureatextremepointsm1,m2,etc.shouldbeonthepitchline,andtheradiusofthebasiccircleisafunctionofpressure1itvariesfromG1toG2.Theconditionforjoiningfrontandrearcurvesisthattheradiusofcurvatureatpointm1mustbeequaltotheradiusofcurvaturejustafterpointm1,andtheradiusofcurvatureatpointm2mustbeequaltotheradiusofcurvaturejustafterpointm2.Figure2showstheconnectionandprocessofgeneratingminuteinvolutecurves.Accordingtotheabovedis-cussion,thewholetoothprofilecanbeformed.Fig.2.Connectionofminuteinvolutecurves3MathematicmoduleofLogiXtoothprofile3.1MathematicmoduleofthebasicLogiXrackAccordingtotheabove-mentioneddesignprinciple,thecurva-turecentreofeveryfinelydividedprofilecurveshouldbelocatedattherackpitchline,andthevalueoftherelativecurvatureateverypointconnectingdifferentminuteinvolutecurvesshouldbezero.Thedesignofthetoothprofileissymmetricalwithre-specttothepitchline,andtheaddendumisconvexwhilethededendumisconcave.ThusforthewholeLogiXtoothprofile,itcanbedealtwithbydividingitintofourparts,asshowninFig.3.SetupthecoordinatesasshowninFig.4,wheretheoriginofthecoordinatesOcoincideswiththepointofintersectionm0be-tweenrackpitchlineP.Landtheinitialdividedminuteinvolutecurve.AccordingtothecoordinatessetupinFig.4,theformationofinitialminuteinvolutecurvem0m1isshowninFig.5.Fig.3.LogiXracktoothprofileFig.4.Set-upofcoordinatesFig.5.Formationprocessofinitialminuteinvolutecurvem0m1791Here:n0nprime0O1Oprime1,n1nprime1O1Oprime1,n1n1n0nprime0,andthepa-rameters0,G1andm0aregivenasinitialconditions.Thecurvatureradiusoftheinvolutecurveatpoints1iss1=G1,ors1=m1+G11.Thusthecurvatureradiusandpressureangleoftheminuteinvolutecurveatpointm1areasfollows:m1=s1G11=G1(1)(1)1=0+1.(2)Accordingtothegeometricalrelationship,wecandeduce:tg(0+)=2G1G1cosG1cos1G1sinG1sin1=2(cos+cos1)sinsin1.(3)BasedonEqs.1,2and3andtheformingprocessoftheLogiXrackprofile,thecurvatureradiusformulaofanarbitrarypointontheprofileisdeduced:mi=mi1+Gi(i).Wheni=kandm0=0,itisexpressedasfollows:mk=G1(1)+G2(2)+Gk(k)=ksummationdisplayi=1Gi(i).(4)Similarly,thepressureangleonanarbitrarykpointofthetoothprofilecanbededucedasfollows:k=0+(+1)+(+2)+(+k)=0+ksummationdisplayi=1(+i)=0+k+ksummationdisplayi=1i.(5)Byni1ni=Gi(sinsini)/cos(i1+),Eq.5canbeobtained:n0nk=ksummationdisplayi=1ni1ni=ksummationdisplayi=1Gi(sinsini)cos(i1+).(6)ThusthemathematicalmodeloftheNo.2portionfortheLogiXrackprofileisasfollows:braceleftbiggx1=n0nkmkcosky1=mksink(No.2).(7)Similarly,themathematicalmodelsoftheotherthreesegmentscanalsobeobtainedasfollows:braceleftbiggx1=(n0nkmkcosk)y1=mksink(No.1)(8)braceleftbiggx1=s(n0nkmkcosk)y1=mksink(No.3)(9)braceleftbiggx1=s+n0nkmkcosky1=mksink(No.4).(10)Fig.6.MeshcoordinatesofLogiXgearanditsba-sicrack3.2MathematicalmoduleoftheLogiXgearThecoordinatesO1X1Y1,O2X2Y2andPXYaresetupasshowninFig.6toexpressthemeshrelationshipbetweentheLogiXrackandtheLogiXgear.Here,O1X1Y1isfixedontherack,andO1isthepointofintersectionbetweentheracktoothprofileanditspitchline.O2X2Y2isfixedonthemeshedgear,andO2isthegearscentre.PXYisanabsolutecoordinate,andPisthepointofintersectionoftherackspitchlineandthegearspitchcircle.Inaccordancewithgearmeshingtheories3,iftheabovemodeloftheLogiXracktoothprofileischangedfromcoordinateO1X1Y1toOXY,andthenagaintoO2X2Y2,anewtypeofgearprofilemodelcanbededucedasfollows:braceleftbiggx2=mkcoskcos2(mksinkr2)sin2y2=mkcosksin2+(mksinkr2)cos2.(11)Herethepositivedirectionof2isclockwise,andonlythemodeloftheLogiXgeartoothprofileinthefirstquadrantofthecoordi-natesisgiven.4EffectontheperformanceoftheLogiXgearbyitsinherentparametersandtheirreasonableselectionBesidesthebasicparametersofthestandardinvoluterack,theLogiXtoothprofilehasinherentbasicparameterssuchasinitialpressureangle0,relativepressureangle,initialbasiccircleradiusG0,etc.Theselectionoftheseparametershasagreatin-fluenceontheformoftheLogiXtoothprofile,andtheformdirectlyinfluencesgeartransmissionperformance.Thustherea-sonableselectionofthesebasicparametersisveryimportant.4.1Influenceandselectionofinitialpressureangle0Consideringthehighertransmissionefficiencyinpracticalde-sign,theinitialpressureangle0shouldbeselectedas0.ButthefinalcalculationresultshowedthattheLogiXgeartoothpro-filecutbytheracktoolwhoseinitialpressureanglewasequaltozerowouldbeovercutonthepitchcirclegenerally.Thustheinitialpressureangle0cannotbezero.Comparingtherelativedoublecircle-arcgear3,wecanalsodeducethatthesmaller792theinitialpressureangle0,thelargerthegearnumberforpro-ducingtheovercut.Thustheinitialpressureangle0shouldnotonlynotbezero,butshouldnotbetoosmall,either.FromEqs.3,4and5,theinfluenceof0ontheLogiXtoothprofilecanbedirectlydescribedbyFig.7.Obviously,increasingtheini-tialpressureanglewillcausethecurvatureoftheLogiXracktoothprofiletobecomelarger.Iftherackselectsalargermod-uleandtoosmallaninitialpressureangle0,itsaddendumwillbecometoonarroworevenovercut.ThustheLogiXtoothpro-filethatselectsalargermoduleshouldselectasmaller0,andtheprofilethatselectsasmallermoduleshouldselectalarger0.Generally,bypracticalcalculationexperience,theselected0shouldbelocatedwithinarangeof212,andthelargertheLogiXgearmodule,thesmallershouldbeitsinitialpressureangle0.4.2InfluenceandselectionofinitialbasiccircleradiusG0AccordingtotheempiricalformulaGi=G01sin(0.6i)1,therearetwoparametersaffectingthebasiccircleradiusGioftheLogiXgearatdifferentpositionsoftoothprofile:oneistheG0andtheotheristheinitialpressureanglei.Figure8showstheinfluenceofG0ontheLogiXtoothprofilewhencertainvaluesofparameter0andareselected.Obviously,asG0in-creases,thecurvatureofthenewtypeofgeartoothprofilewillbecomesmallerandsmaller.Conversely,itwillbecomeincreas-inglylargerasG0decreases.ThusthenewtypeofrackwithalargemoduleparametershouldselectalargeG0value,andonehavingasmallmoduleparametershouldselectasmallG0value.4.3InfluenceandselectionofrelativepressureangleFigure9showsthevariableofthetoothprofileaffectedbytheparameter.AccordingtotheformingprocessoftheLogiXtoothFig.7.Influenceof0onLogiXtoothprofileFig.8.InfluenceofG0onLogiXtoothprofileFig.9.InfluenceofonLogiXtoothprofileprofile,thesmallertheselectedparameter,thelargerthenum-berofN-PsmeshingonthetoothprofileoftwoLogiXgears.FromSect.2.1theformuladescribingtherelativepressureanglekofanarbitraryN-Pmkcanbededucedasfollows:sin(k1+)cos(k1+)=2(cos+cosk)sinsink.(12)ByEqs.5and12,thelargertheparameterbeingselected,thelargerwillbethekparameter,andatcertainselectedvaluesoftheinitialpre
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 架子工变更管理知识考核试卷含答案
- 贵金属首饰机制工安全综合评优考核试卷含答案
- 印前处理和制作员安全生产规范测试考核试卷含答案
- 光学计量员岗前安全知识考核试卷含答案
- 2024年湖南农业大学马克思主义基本原理概论期末考试题附答案
- 2024年郑州美术学院辅导员考试笔试真题汇编附答案
- 2024年邯郸职业技术学院马克思主义基本原理概论期末考试题附答案
- 2025年九江市特岗教师招聘真题题库附答案
- 2025北京市公务员考试公共基础知识题库及答案1套
- 2025年云南特殊教育职业学院辅导员招聘考试真题汇编附答案
- 食品安全管理制度打印版
- 多联机安装施工方案
- 煤矿副斜井维修安全技术措施
- 公共视频监控系统运营维护要求
- 河南省职工养老保险参保人员关键信息变更核准表
- 四川大学宣传介绍PPT
- 小学数学人教版六年级上册全册电子教案
- 液氨储罐区风险评估与安全设计
- 阿司匹林在一级预防中应用回顾
- 2023年福海县政务中心综合窗口人员招聘笔试模拟试题及答案解析
- GB/T 4103.10-2000铅及铅合金化学分析方法银量的测定
评论
0/150
提交评论