已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
tionandself-healingwillbepresentedwithgreatfeaturesaswellaschallengesrelatedtozeroofintelligentbenefitsTheMachiningprocessmonitoringandcontrolisacoreconceptonwhichtobuildupthenewgenerationofflexibleself-opti-misingintelligentNCmachines.In-processmeasurementandprocessingoftheinformationprovidedbydedicatedsensorsinstalledinthemachine,enablesautonomousdecisionmakingbasedontheon-linediagnosisofthecorrectmachine,work-piece,toolandmachiningprocesscondition,leadingtoanincreasedmachinereliabilitytowardszerodefects,togetherwithhigherproductivityandefficiency.Indeed,themainsensingandprocessingtechniquesintheliterature35focuson0094-114X/$-seefrontmatterC2112008ElsevierLtd.Allrightsreserved.*Correspondingauthor.Tel.:+441612003804.E-mailaddress:s.mekidmanchester.ac.uk(S.Mekid).MechanismandMachineTheory44(2009)466476ContentslistsavailableatScienceDirectMechanismandMachineTheorydoi:10.1016/j.mechmachtheory.2008.03.006underverytightconditions1,2.Themachine-toolindustryisrespondingtoanumberofrequirements,e.g.e_commerce,just-in-time-productionandmostimportantlyzerodefectcomponent.Thisisfacilitatedbyintegratingnewmaterials,designconcepts,andcontrolmech-anismswhichenablemachinetoolsoperatingathigh-speedwithaccuraciesbelowthan5lm.Howevertheintegrationofhumanexperienceinmanufacturingtowardsflexibleandself-optimisingmachinesiswidelymissing.Thiscanbeachievedbyenhancingexistingcomputingtechnologiesandintegratingthemwithhumanknowledgeofdesign,automation,machin-ingandservicingintoe-manufacturing.Thenextgenerationwillbedescribedasnewintelligentreconfigurablemanufacturingsystemswhichrealisesadynamicfusionofhumanandmachineintelligence,manufacturingknowledgeandstate-of-the-artdesigntechniques.Thismayleadtolow-costself-optimisingintegratedmachines.Itwillencompassfault-tolerantadvancedpredictivemaintenancefacilitiesforproducinghigh-qualityerror-freeworkpiecesusingconventionalandadvancedmanufacturingprocesses.1.IntroductionComplexcomponentmachinedwithlengerequiredforthenewgenerationuctsandprocessesofferssubstantialhigherqualityandbetterreliability.variousaspectsofthenextgenerationofintelligentmachinetoolcentres.C2112008ElsevierLtd.Allrightsreserved.defectsisatopperformanceinmassproductionanditbecomesanewchal-machine-tools.Increasingtheprecisionandaccuracyofmachines,prod-toawiderangeofapplicationsfromultra-precisiontomassproductionwithrecentdevelopmentofultraprecisionmachinesisreachingnanometreprecisionBeyondintelligentmanufacturing:AnewgenerationofflexibleintelligentNCmachinesS.Mekida,*,P.Pruschekb,J.HernandezcaTheUniversityofManchester,SchoolofMechanical,AerospaceandCivilEngineering,ManchesterM601QD,UKbInstituteforControlEngineeringofMachineToolsandManufacturingUnits,UniversityofStuttgart,GermanycIDEKOTechnologicalCentre,ArriagaKalea,220870ElgoibarGipuzkoa,SpainarticleinfoArticlehistory:Received30November2006Receivedinrevisedform3March2008Accepted4March2008Availableonline29April2008abstractNewchallengesforintelligentreconfigurablemanufacturingsystemsareontheagendaforthenextgenerationofmachinetoolcentres.Zerodefectworkpiecesandjust-in-timepro-ductionaresomeoftheobjectivestobereachedforbetterqualityandhighperformanceproduction.Sustainabilityrequiresaholisticapproachtocovernotonlyflexibleintelligentmanufacturebutalsoproductandservicesactivities.Newroutesphilosophyofpossiblemachinearchitecturewithcharacteristicssuchashybridprocesseswithin-processinspec-journalhomepage:/locate/mechmtOntheotherhand,specialattentionhastobepaidtothelatterprocesscontrolstrategies(ACO).CharacteristicexamplesS.Mekidetal./MechanismandMachineTheory44(2009)466476467canbefoundat1519.Themainfunctionalityprovidedbysuchcontrolsystemsisthepost-processself-optimisationofprocessparameterset-up(i.e.feeds,depthsofcut,etc.),withtheobjectiveofset-uptimeminimisation,processknowledgemanagementandprocessoptimisation,towardsflexiblejust-in-timeproduction.Withthein-processmonitoringofprocessperformanceandthepost-processmeasurementoftheresultingpartquality,aknowledgebasedprocessmodelisusedtodeterminethenewoptimisedsetofcuttingparameters,enablingautonomousself-optimisation.Inthesameway,asapre-vioussteptooptimisation,ACOsystemsarealsoappliedtoselectthefirstprocessset-upfornewpartqualityandprocessrequirements.Therefore,ifaflexibleintelligentNCmachinetoolistobedeveloped,processknowledgebasedmodelsareacomponentofprimaryimportancetobeintegratedunderthemachinetoolcontrolarchitecture.Inadditiontotheadaptationofcontrolparametersaccordingtoprocessconditions,controlparametershavealsotobeoptimalduringhandling(includingchangingoperationsofworkpiecesandtools)andpositioningoperationsastheseoper-ationsaccounttypicallyformorethan50%oftheoveralloperatingtime.Earliermethodsforparameteroptimisationcon-centratedonthereductionofpositioningandsettlingtimesofthefeedaxisbytuningonlyafewbasiccontrolparameters(e.g.gainofthepositioncontrolloopandgainandresettimeofthevelocitycontrolloop).Withincreasedcom-putationalpower,optimisationmethodsasdescribedin20cannowbereinvestigatedfortheusewithawiderparametersetincludingtheparametersforaccelerationandjerklimitswhicharedirectlyinfluencingthevibrationsofanaxis.Ifthecharacteristicsofacontrolledaxisareknownbymeansofthevibrationbehaviour,anadequategenerationoftheprogrammedtrajectoriescanyieldafurtheroptimisation.Methodsforinputshaping49canbeusedtodesigntrajectoriesthatdonotexciteresonantfrequenciesofagivensystem.Hence,settlingtimesandthuspositioningtimescanbefurtherreduced.Concerningparameteroptimisationthroughself-learningparticularly,theinterestoftheso-calledmachinelearningap-proaches21willbeintroducedasthemainresearchtrendinprocessmonitoringandcontrolstrategiestowardstheintel-ligentmanufacturingsystem.2.ExpectedcharacteristicsofthenextgenerationTheexpectedcharacteristicsofthenextgenerationofmachinecentresaredescribedasfollows:(a)Integration:developmentofanintegratedmachinetoolbeingcapableofperformingbothconventionalandnon-con-ventionalprocessesinoneplatform.(b)Bi-directionaldataflow:definitionofabi-directionalprocesschainforunifieddatacommunicationexchangebetweenCAD,CAM,CNCandDrivesystems.(c)Processcontrolloop:developmentandCNCinte-grationofrobustandreliablereal-timestrategiesforthein-processtool,part,andprocessconditionmonitoringandcontrol.(d)Predictivemaintenance:specificationofaload-andsituation-dependentconditionmonitoringformachinecomponentsasabasisforself-reliantmachineoperation.Thiswillbefollowedbytheformulationofaself-organisingpredictivemain-tenanceschedulethatisbasedonself-andremotediagnosticsandcoversbothshortandlongtermaspects.(e)Autonomousoptimisation:developmentofaself-configuringself-optimisingcontrolsystemforautonomousmanufacturing,basedonthein-processmonitoring,characterisationandmanagementofprocessknowledge.Tofacilitatesuchcharacteristics,thefollow-ingtopicswillbenecessarytobeimplemented:(a)Todevelopanintegratedintelligentmachinecentrededicatedtoe-manufacturing.(b)Toinvestigateanddevelopfast,stableandstiffreconfigurablemachineswithhybridmachiningprocessestoprepareanewplatformforfuturemachine-tools.(c)Toinvestigateimplementationoftotalerrorcompensationandinsituinspectionfacility.monitoringstrategiesforpartconditionmonitoring(surfaceroughness,surfaceintegrityanddimensionalaccuracy),toolconditionmonitoring(theso-calledTCMforwearandbreakagedetection),processconditionmonitoring(chatteronsetandcollisiondetection)andmachinecomponentconditionmonitoringforpredictivemaintenancepurposes(rotarycompo-nentsandpartssubjecttofrictionsuchasguideways).Sincedirectandin-processmeasurementisnotgenerallypossibleduetotheaggressiveenvironmentinthecuttingzonesurroundings,themainresearcheffortoverthelastdecadesforpartandtoolmonitoringhasbeenfocusedonindirectmeasurementtechniques(processcondition-based),inwhichcuttingprocesscharacteristics(i.e.cuttingforcesandpower,vibrations,cuttingtemperature,acousticemission,etc.)aremeasuredinordertoindirectlyinferthepartandtoolcondition6,7.SensitivityofferedbyCNCinternalservosignalsfromopenarchitecturecontrollersisunderstudyaswell8,9,sincetheyenablethedevelopmentofmonitoringandcontrolstrategieswithouttheneedofinstallingadditionalsensorsinthemachine.Inthesameway,basedonthedataprovidedbyin-processmonitoring,autonomousself-optimisationcanbeperformedwiththeintegrationofprocesscontrolstrategiesintothemachinetoolcontrolarchitecture.Machiningprocesscontrolstrat-egiesareclassifiedintotwomaingroups5,namelyadaptivecontrolconstraint(ACC)andadaptivecontroloptimisation(ACO).IntheformerACCcontrolstrategies,aprocessvariable(i.e.cuttingforce)iskeptconstantandundercontrolthroughthereal-timein-processregulationofacuttingprocessparameter(i.e.cuttingfeed),withtheaimofincreasingprocessproduc-tivityandrepeatability.MainresearcheffortsonACCstrategiesfocusoncuttingforcecontrol1012andchattervibrationsuppression13,14.drawbacktodealwith.468S.Mekidetal./MechanismandMachineTheory44(2009)466476Indeed,flexiblemonitoringsystemsarerequiredundertheactualmarketrequirementsandthus,reliableprocessdiag-nosisisnecessaryunderdifferentcuttingconditions.Nowadays,acommonproblematicsharedbyconventionalprocessmonitoringapproachesforpartandtoolconditionmonitoringisthelackofreliabilityunderchangingcuttingconditionshencelimitingtheflexibilityofsuchautomationsystems3.Asacharacteristicexampleofthisproblematicforprocesscon-ditionbasedtoolconditionmonitoring(TCM),theprocessconditionisnotonlyinfluencedbychangesintoolcondition,butitisalsodirectlyaffectedbycuttingconditions.Furthermore,underdifferentcuttingconditions,differentwearmechanismscanbeactivatedonthetool,eachonehavingitsparticularimpactonprocessandpartcondition.Therefore,whensetting-upprocessmonitoringsystemsfornewcuttingconditions,previoustrialsforprocesssignaldatabaseretrievalarerequired4.Thesearecombinedtogetherwithskilledoperatorswiththenecessaryprocessknowledgeinordertointerpretchangesinprocessbehaviour(i.e.forces,vibrations,etc.)andset-upsuiteddetectionlimits.Additionally,flexibleprocessmonitoringequipmentsoftenrequiresadditionalsensorsthatcanfailandresultinunforeseendowntime.Asaresult,whenhighflex-ibilityisrequired,monitoringsystemsareusuallyswitched-offinindustry,anddirectpost-processmeasurementisper-formed,withthecorrespondingreliabilitylackinthemachinedpartquality.Dealingwithsuchaproblematic,model-basedprocessmonitoringandsensorfusionapproachesarepointedoutasthealternativeinordertogetreliableprocessconditiondiagnosis,withaclearresearcheffortoverlastyearsformachiningpro-cessessuchasturning2224,grinding4,25,26andmilling27.Ontheotherhand,theintegrationofhumanexperienceinmanufacturingiswidelymissingconcerningmachiningpro-cessoptimisation.Set-uptimereductioniscriticalwhenflexiblejust-in-timeproductionisrequired.Nowadays,set-up-timemainlydependsonprocessknowledgeconcentratedinskilledoperators,andthereisalackofsystematicmanagement,re-trieval,sharingandoptimisationofthatkeyknowledge.Furthermore,characterisationofprocessknowledgeanddevelop-mentofmodelsforautonomousprocessoptimisationarerequiredifset-uptimesaretobedrasticallyreduced.(d)Todevelopandproducenewmethodologiesandconceptsofautonomousmanufacturing,self-supervisionandself-diagnostic/tuning/healing.(e)Todevelopandintegratereal-timeprocesscontrollersintoopenCNCanddrivesystemarchitecture,takingthemachinefromanaxis-controlledsystemtoamachiningprocess-controlledself-reliantsystem,basedontheon-lineinformationprovidedbyrobustandreliablesensingtechniquesfortool,part,andmachiningprocessconditionmonitoring.(f)TodevelopandincorporateanextendibleandknowledgebasedCAMsystemcapableofrecognisingcomplexfeatures,performingself-learningbasedonin-processmonitoreddataprovidedbymachinecontrolloops,andautonomouslydeterminingtheoptimumtools/setsforgivenrequirementsofpartquality,machineproductivityandprocesseffi-ciency.Followingthee-manufacturingapproach,inasecondstep,CAMsystemscapableofsharingself-optimisedpro-cessknowledgebetweennetworkedmachinesaretobedeveloped.Aninterdisciplinaryapproachofmachine-toolbuildersinordertoachievetheseobjectivesbecomesnecessaryandin-cludescontrolmanufacturers,researchinstitutionsandpotentialend-users.Suchadevelopmentwillrealiseanumberofbreakthroughsinthefuture,e.g.(a)Delay-freecumzero-downtimeproduction:theproposede-manufacturingapproachwillseetheuseofelectronicservicesbasedonavailabledatafrommachinedprocesses,sensorsignals,andhumanexperiencethatisintegratedinazerodelay-timesystemtoenablemachineswithnearzero-downtimeandproductionthatmeetsuserrequirementswithzerodelaytime.(b)Self-reliantproduction:machineswillbeenabledtooperatewidelyautonomously.(c)Optimalproduction:self-configurationandself-optimisationwilleliminateproductionerrorsdowntothelimitationsofthein-processmeasurementdevices.3.ConceptsofintelligentandflexiblemachinesInFig.2,theauthorsproposeanewintegratedconceptforthenextgenerationofmachinetoolcentres.Basedontheknowledgeacquiredandthefeaturesextracted,theperformanceofcontrolsystemswillbeextendedtowardsself-controlledmanufacturingwiththeobjectivesofcost-effective,highquality,fault-tolerantandmoreflexiblesystemswithbetterpro-cesscapability.NewintelligentcontrolsystemshavetobedevelopedandintegratedwithopenarchitecturecontrollerssuchasOpenCNCC210orOSACA-basedCNCs.Inordertoallowanautomatederror-freeproductionwithnearzerodowntime,openinterfaces,learningcapabilities,self-tuningandself-adjustingmechanismsaswellassophisticatedmodel-basedpredictioninstrumentshavetobeimplementedattheselayers.Qualityinspectioncouldoperateinsituwithenvironmentalconditionstakenintoaccount.Forthefirsttime,theconceptofself-healingwithe-maintenancecouldbe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025海南昌江黎族自治县发展控股集团有限公司招聘企业高级管理人员1人考试笔试备考试题及答案解析
- 2025江西南昌市环境工程评估中心劳务派遣招聘3人考试笔试备考试题及答案解析
- 2025江西萍乡市第三人民医院招聘编外人员(第二批)26人考试笔试备考题库及答案解析
- 2025辽宁铁岭调兵山市消防救援大队招录政府专职消防队员招聘8人考试笔试备考试题及答案解析
- 2025重庆市石柱县教育事业单位面向应届高校毕业生考核招聘22人笔试考试备考题库及答案解析
- 江西省铁路航空投资集团2026年校园招聘笔试考试参考题库及答案解析
- 2026中央纪委国家监委机关直属单位招聘工作人员24人考试笔试参考题库附答案解析
- 2025年新能源行业企业数字化转型与能源行业环境效益
- 2025年新能源行业绿色产业发展路径与政策引导报告
- 2025年新能源行业储能设备市场前景与投资策略报告
- 江苏省沭阳县修远中学2024-2025学年高一生物上学期第二次月考试题
- DZ∕T 0213-2020 矿产地质勘查规范 石灰岩、水泥配料类(正式版)
- SMD-PFMEA模板中英文版
- 医保异地备案委托书
- 十八大以来的成果
- 八大腺体与荷尔蒙课件
- 建筑碲化镉薄膜光伏系统技术规程
- 《千里江山图》课件ppt
- 《建筑工程施工转包违法分包等违法行为认定查处管理办法》解读
- DB32-T 4281-2022 江苏省建筑工程施工现场专业人员配备标准
- 钢结构提升安全技术交底
评论
0/150
提交评论