2026届贵州省衡水安龙实验中学高一数学第二学期期末复习检测模拟试题含解析_第1页
2026届贵州省衡水安龙实验中学高一数学第二学期期末复习检测模拟试题含解析_第2页
2026届贵州省衡水安龙实验中学高一数学第二学期期末复习检测模拟试题含解析_第3页
2026届贵州省衡水安龙实验中学高一数学第二学期期末复习检测模拟试题含解析_第4页
2026届贵州省衡水安龙实验中学高一数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届贵州省衡水安龙实验中学高一数学第二学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数又在(0,+∞)上是单调递减的是()A.y=-cosx B.y=lgx2.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,A.815 B.18 C.13.函数的图象可能是().A. B. C. D.4.若满足条件C=60°,AB=,BC=的△ABC有()个A.

B. C.

D.35.设,,在,,…,中,正数的个数是()A.15 B.16 C.18 D.206.在长方体中,,,则异面直线与所成角的余弦值为()A. B.C. D.7.已知不等式的解集是,则()A. B.1 C. D.38.有穷数列中的每一项都是-1,0,1这三个数中的某一个数,,且,则有穷数列中值为0的项数是()A.1000 B.1010 C.1015 D.10309.用数学归纳法证明“”,从“到”左端需增乘的代数式为()A. B. C. D.10.已知等比数列{an}的前n项和为Sn,若2Sn=an+1﹣1(n∈N*),则首项a1为()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列则.12.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高,,三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在内的学生中抽取的人数应为________.13.计算:__________.14.执行如图所示的程序框图,则输出的S的值是______.15.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.16.已知数列是等差数列,,那么使其前项和最小的是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,.(1)求的最小值(2)证明:.18.五一放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量(单位:千辆/小时)与汽车的平均速度(单位:千米/小时)之间满足的函数关系(为常数),当汽车的平均速度为千米/小时时,车流量为千辆/小时.(1)在该时间段内,当汽车的平均速度为多少时车流量达到最大值?(2)为保证在该时间段内车流量至少为千辆/小时,则汽车的平均速度应控制在什么范围内?19.如图,四棱锥中,,平面平面,,为的中点.(1)求证://平面;(2)求点到面的距离(3)求二面角平面角的正弦值20.如图,某人在离地面高度为的地方,测得电视塔底的俯角为,塔顶的仰角为,求电视塔的高.(精确到)21.已知向量,.(1)当为何值时,与垂直?(2)若,,且三点共线,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先判断各函数奇偶性,再找单调性符合题意的即可。【详解】首先可以判断选项D,y=e然后,由图像可知,y=-cosx在(0,+∞)上不单调,y=lg只有选项C:y=1-x【点睛】本题主要考查函数的性质,奇偶性和单调性。2、C【解析】试题分析:开机密码的可能有(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5),共15种可能,所以小敏输入一次密码能够成功开机的概率是115【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)=m3、D【解析】

首先判断函数的奇偶性,排除选项,再根据特殊区间时,判断选项.【详解】是偶函数,是奇函数,是奇函数,函数图象关于原点对称,故排除A,B,当时,,,排除C.故选D.【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项.4、C【解析】

通过判断与c判断大小即可得到知道三角形个数.【详解】由于,所以△ABC有两解,故选C.【点睛】本题主要考查三角形解得个数判断,难度不大.5、D【解析】

根据数列的通项公式可判断出数列的正负,然后分析的正负,再由的正负即可确定出,,…,中正数的个数.【详解】当时,,当时,,因为,所以,因为,,所以取等号时,所以均为正,又因为,所以均为正,所以正数的个数是:.故选:D.【点睛】本题考查数列与函数综合应用,着重考查了推理判断能力,难度较难.对于数列各项和的正负,可通过数列本身的单调性周期性进行判断,从而为判断各项和的正负做铺垫.6、C【解析】

画出长方体,将平移至,则,则即为异面直线与所成角,由余弦定理即可求解.【详解】根据题意,画出长方体如下图所示:将平移至,则即为异面直线与所成角,,由余弦定理可得故选:C【点睛】本题考查了长方体中异面直线的夹角求法,余弦定理在解三角形中的应用,属于基础题.7、A【解析】

的两个解为-1和2.【详解】【点睛】函数零点、一元二次等式的解、函数与x轴的交点之间的相互转换。8、B【解析】

把(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870展开,将a1+a2+a3+…+a2015=425,代入化简得:=1005,由于数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,即可得出.【详解】(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870,展开可得:+2(a1+a2+…+a2015)+2015=3870,把a1+a2+a3+…+a2015=425,代入化简可得:=1005,∵数列a1,a2,a3,…,a2015中的每一项都是﹣1,0,1这三个数中的某一个数,∴有穷数列a1,a2,a3,…,a2015中值为0的项数等于2015﹣1005=1.故选B.【点睛】本题考查了乘法公式化简求值、数列求和,考查了推理能力与计算能力,属于中档题.9、B【解析】

分别求出时左端的表达式,和时左端的表达式,比较可得“从到”左端需增乘的代数式.【详解】由题意知,当时,有,当时,等式的左边为,所以左边要增乘的代数式为.故选:.【点睛】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从到,考查学生仔细观察的能力,是中档题.10、A【解析】

等比数列的公比设为,分别令,结合等比数列的定义和通项公式,解方程可得所求首项.【详解】等比数列的公比设为,由,令,可得,,两式相减可得,即,又所以.故选:A.【点睛】本题考查数列的递推式的运用,等比数列的定义和通项公式,考查方程思想和运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】试题分析:根据公式,,将代入,计算得n=1.考点:等差数列的通项公式.12、3【解析】

先由频率之和等于1得出的值,计算身高在,,的频率之比,根据比例得出身高在内的学生中抽取的人数.【详解】身高在,,的频率之比为所以从身高在内的学生中抽取的人数应为故答案为:【点睛】本题主要考查了根据频率分布直方图求参数的值以及分层抽样计算各层总数,属于中档题.13、0【解析】

直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.14、4【解析】

模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【点睛】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.15、0.72【解析】

根据对立事件的概率公式即可求解.【详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【点睛】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.16、5【解析】

根据等差数列的前n项和公式,判断开口方向,计算出对称轴,即可得出答案。【详解】因为等差数列前项和为关于的二次函数,又因为,所以其对称轴为,而,所以开口向上,因此当时最小.【点睛】本题考查等差数列前n项和公式的性质,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)见解析【解析】

(1)根据基本不等式即可求出,(2)利用x2+y2+z2(x2+y2+z2+x2+y2+y2+z2+x2+z2),再根据基本不等式即可证明【详解】(1)因为,,所以,即,当且仅当时等号成立,此时取得最小值1.(2).当且仅当时等号成立,【点睛】本题考查了基本不等式求最值和不等式的证明,属于中档题.18、(1)当汽车的平均速度时车流量达到最大值。(2)【解析】

(1)首先根据题意求出,再利用基本不等式即可求出答案.(2)根据题意列出不等式,解不等式即可.【详解】(1)有题知:,解得.所以,因为,当且仅当时,取“”.所以当汽车的平均速度时车流量达到最大值.(2)有题知:,整理得:,解得:.所以当时,在该时间段内车流量至少为千辆/小时.【点睛】本题第一问考查利用基本不等式求最值,第二问考查了二次不等式的解法,属于中档题.19、(1)见详解;(2);(3)【解析】

(1)通过取中点,利用中位线定理可得四变形为平行四边形,然后利用线面平行的判定定理,可得结果.(2)根据,可得平面,可得结果.(3)作,作,可得二面角平面角为,然后计算,可得结果.【详解】(1)取中点,连接,如图由为的中点,所以//且又,且,所以//且,故//且,所以四变形为平行四边形,故//又平面,平面所以//平面(2)由,平面平面平面,平面平面所以平面,又平面所以,由,所以为正三角形,所以则平面所以平面,且所以点到面的距离即(3)作交于点,作交于点,连接由平面平面,平面平面平面平面,所以平面,平面,所以,又平面,所以平面又平面,所以所以二面角平面角为,又为等腰直角三角形所以,所以所以又二面角平面角为故所以二面角平面角的正弦值为【点睛】本题考查了线面平行的判定定理,还考查了点面距和面面角的求法,第(3)中难点在于找到二面角的平面角,掌握定义以及综合线面,面面的位置关系,细心计算,属中档题.20、【解析】

过作的垂线,垂足为,再利用直角三角形与正弦定理求解【详解】解:设人的位置为,塔底为,塔顶为,过作的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论