机床上下料机械手设计【优秀机械机电毕业设计论文】【A6015】
收藏
资源目录
压缩包内文档预览:(预览前20页/共95页)
编号:981369
类型:共享资源
大小:966.69KB
格式:RAR
上传时间:2017-01-11
上传人:木***
认证信息
个人认证
高**(实名认证)
江苏
IP属地:江苏
50
积分
- 关 键 词:
-
机床
上下
机械手
设计
优秀
优良
机械
机电
电机
毕业设计
论文
a6015
- 资源描述:
-
文档包括:
说明书一份,65页,25000字左右.
英文翻译一份.
任务书一份.
图纸共6张:
A0-整体装配图.dwg
A0-PLC接线图.dwg
A1-腰部结构图.dwg
A1-液压系统图.dwg
A2-机械手手臂联结座.dwg
A2-手爪.dwg







- 内容简介:
-
姓名: 安兴伟 任务下达日期: 2006 年 3 月 13 日 设计(论文)开始日期: 2006 年 3 月 13 日 设计(论文)完成日期: 2006 年 6 月 20 日 一、设计(论文)题目 : 数控机床上下料机械手 设计 二、专题题目: 高速切削的数控加工工艺 三、设计的目的和意义: 通过对机械设计制造及其自动化专业机制方向大学本科四年的所学知识进行整合,完成一个特定功能、特殊要求的检测、控制仪器的制作,能够充分、完整地体现电子信息工程专业类毕业生的理论研究水平,实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,能够实现理论到实践的有机结合。本设计能够广泛应用于家庭、车站、码头、医疗机构等需要对人体温度进行实时检测的 场所,满足用户对体温实时测试的要求,并能够对体温进行实时显示和对体温异常现象进行报警。目前,本设 计的国内外研究及应用主要体现在 2003 年全国抗击“非典”期间,清华大学深圳研究所研制的“红外数字体温计”以及同时期出现的国内其他生产厂家制作的“数字遥感体温计”。 四、设计(论文)主要内容: ( 1) 机械手 的整体结构设计及其总装图 、液压 系统 图和 线图 以及具体零件图的绘制( 一 张零号图, 三 张一号图,二 张二号图,合计三张零号图)( 2)具体设计过程及其合理性的文字说明。 五、设计目标 : 完成 对 机械手 的总体结构设计,主要是设计合理的 液压传动系统,以及 制程序 , 能合理地 控制机械手上下料。 六 、进度计划: 2006 年 3 月 13 日至 3 月 31 日进行为期 3周的生产实习; 4 月 1 日至 4 月 20 日完成对设计题目的资料收集与查询; 4 月 21 日至 5 月 31 日完成对 设计图纸的绘制 ; 6 月 1 日至 6 月 20 日完成 毕业设计说明书的编写 ; 6月 21 日至 6 月 24 日最后的审稿及说明书和图纸的打印 。 七、参考文献资料: 1 付永领 , 王岩 , 裴忠才 . 基于 线液压喷漆机器人控制系统设计与实现 . 机床与液压 . 2003, (6): 9092 2 丁又青 , 朱新才 . 一种新型型钢翻面机液压系统设计 . 机床与液 . 2003, (5): 128129 3 刘剑雄 , 韩建华 . 物流自动化搬运机械手机电系统研究 . 机床与液压 . 2003, (1): 126128 4 徐轶 , 杨征瑞 , 朱敏华 , 温齐全 . 电液比例与伺服控制系统中的应用 . 机床与液压 . 2003, (5): 143144 5 胡学林 . 可编程控制器 (基础篇 ). 北京 : 电子工业出版社 , 2003. 6 胡学林 . 可编程控制器 (实训篇 ). 北京 : 电 子工业出版社 , 2004. 7 孙兵 , 赵斌 , 施永康 . 基于 机械手混合驱动控制 . 液压与气动 . 2005, (3): 3739 8 孙兵 , 赵斌 , 施永康 . 物料搬运机械手的研制 . 机电一体化 . 2005, (2): 4345 9 王田苗 , 丑武胜 . 机电控制基础理论及应用 . 北京 : 清华大学出版社 , 2003. 10 李建勇 . 机电一体化技术 . 北京 : 科学出版社 , 2004. 11 王孙安 , 杜海峰 , 任华 . 机械电子工程 . 北京 : 科学出版社 ,2003. 12 张启玲 , 何玉安 . 气动控制称量包装装置中的应用 . 液压与气动 . 2005, (1): 3133 13 赵文 . 数字控制技术在龙门刨床电控系统中的应用 . 电气传动 . 2005. 35 卷 (3): 5557 14 沈兴全 , 吴秀玲 . 液压传动与控制 . 北京 : 国防工业出版社 , 2005. 15 王宪军 , 赵存友 . 液压传 动 . 哈尔 滨 : 哈尔滨工程大学出版社 , 2002. 16 徐灏等 . 机械设计手册 . 第 5 卷 . 北京 : 机械工业出版社 , 2000. 17 陈铁鸣 , 王连明 , 王黎钦 . 机械设计 (修订版 ). 哈尔 滨 : 哈尔滨工业大学出版社 , 2003. 18 邓星钟 . 机电传动控制 (第三版 ). 武汉 : 华中科技大学出版社 , 2001. 19 西门子自动化与驱动集团 (G). 统手册 . 2002. 20 蔡行健 . 深入浅出西门子 北京 : 北京航空航天大学出版社 , 2003. 22 张利平 . 现代液压技术应用 220 例 . 化学工业出版社 , 2004. 23 高西林 . 锻床上料机械手 . 轻工机械 . 2001, (2): 24 李春波 , 王大明 , 李哲 , 王祖 温 . 制的气动上下料机械手 . 液压气动与密封 , 1999. 12. (6): 2124 25 尹自荣 , 熊晓红 , 骆际焕 , 王建坤 . 数控上下料机械手的研究及应用 . 锻压机械 . 1994, (6): 35 26 张波 , 李卫民 , 尚锐 . 多功能上下料用机械手液压系统 . 2002, (8): 3132 27 侯沂 , 刘涛 . 装卸机械手设计研究 . 机械 . 2004, 第 31 卷 (6): 5354 28 叶爱芹 , 袁金强 . 机械手控制系统中的应用 . 安徽技术师范学院学报 . 2001, 15 卷 (4): 64 65 29 王会香 , 孙全颖 . 自动涂胶机械手的 制 . 哈尔滨理工大学学报 . 2002, 7 卷 (5): 1618 30 潘沛霖 , 杨宏 , 高波 , 吴伟光 . 四自由度折叠式机械手的结构设计与分析 1994, 26 卷 (4): 9095 31 刘新一 . 多工位自动冲床机械手控制器设计 . 广州大学学报(综合版) . 2000, 第 14 卷 (3): 1920 32 吉爱国 , 冯汝鹏 , 郭伟 , 张锦江 . 计算机在机械手控制中的应用 . 机械与电子 . 1996, (6): 89 指 导 教 师: 院(系)主管领导: 年 月 日 毕业设计(或论文)说明书 I 摘 要 通过对机械设计制造及其自动化专业大学本科四年的所学知识进行整合,对工业机械手各部分机械结构和功能的论述和分析,设计了一种圆柱坐标形式的数控机床上下料机械手。重点针对机械手的腰座、手臂、手爪等各部分机械结构以及机械手控制系统进行了详细的设计。具体进行了机械手的总体设计,腰座结构的设计,机械手手臂结构的设计,机械手腕部的结构设计,末端执行器(手爪)的结构设计,机械手的机械传动机构的设计,机械手驱动系统的设计。同时对液压系统和控制系统进行了理论分析和计算。基于 计,通过对机械手作业的工艺过程和控制要求的分析,设计了控制系统的硬件电路,同时编制了机械手的控制程序。设计达到了设计的预期目标。 关键词: 机械手; 压伺服定位;电液系统 毕业设计(或论文)说明书 of of of a of to NC In s s s s of At s of of is In a of to 毕业设计(或论文)说明书 录 摘要 . . 第 1 章 绪论 . 1 题背景 . 1 计目的 . 1 内外研究现状和趋势 . 2 计原则 . 3 第 2 章 设计方案的论证 . 3 . 3 械手总体结构的类型 . 3 计具体采用方案 . 4 . 5 械手腰座结构的设计要求 . 5 计具体采 用方案 . 6 . 7 械手手臂的设计要求 . 7 计具体采用方案 . 8 . 9 设计要求 . 9 . 10 爪)的结构设计 . 10 . 11 器人夹持器的运动和驱动方式 . 12 . 12 . 13 . 13 . 14 . 15 计具体采用方案 . 18 . 18 . 18 毕业设计(或论文)说明书 工业机器人驱动系统的选择原则 . 19 系统 . 20 . 21 器人电动驱动系统 . 23 计具体采用方案 . 25 . 26 器人平衡机构的形式 . 26 计具体采用的方案 . 26 第 3 章 理论分析和设计计算 . 27 . 27 定液压系统基本方案 . 27 定液压执行元件运动控制回路 . 28 压源系统的设计 . 28 制液压系统图 . 29 . 30 算和选择液压元件 . 35 压系统性能的验算 . 37 . 37 有关参数的计算 . 37 电机型号的选择 . 40 第 4 章 机械手控制系统的设计 . 41 . 41 机械手工艺过程与控制要求 . 41 机械手的作业流程 . 42 机械手操作面板布置 . 43 控制器的选型 . 45 控制系统原理分析 . 45 . 46 I/. 47 . 49 . 49 . 49 技术经济分析 . 51 结论 . 52 毕业设计(或论文)说明书 V 专题 部分 . 53 参考文献 . 64 附录 1 . 66 附录 2 . 71 附录 3 . 78 致谢 . 94 1 附录 1: 车床及其切削加工 车床主要是为了进行车外圆、车端面和镗孔等项工作而设计的机床。车削很少在其他种类的机床上进行,而且任何一种其他机床都不能像车床那样方便地进行车削加工。由于车床还可以用来钻孔和铰孔,车床的多功能性可以使工件在一次安装中完成几种加工。因此,在生产中使用的各种车床比任何其他种类的机床都多。 车床的基本部件有:床身、主轴箱组件、尾架组件、溜板组件、丝杠和光杠。 床身是车床的基础件。它通常是由经过充分正火或时效处理的灰铸铁或者球墨铸铁制成。它是一个坚固的刚性框架,所有其他基本部件都安装在床身 上。通常在床身上有内外两组平行的导轨。有些制造厂对全部四条导轨都采用导轨尖顶朝上的三角形导轨 (即山形导轨 ),而有的制造厂则在一组中或者两组中都采用一个三角形导轨和一个矩形导轨。导轨要经过精密加工,以保证其直线度精度。为了抵抗磨损和擦伤,大多数现代机床的导轨是经过表面淬硬的,但是在操作时还应该小心,以避免损伤导轨。导轨上的任何误差,常常意味着整个机床的精度遭到破坏。 主轴箱安装在内侧导轨的固定位置上,一般在床身的左端。它提供动力,并可使工件在各种速度下回转。它基本上由一个安装在精密轴承中的空心主轴和一系列变速 齿轮 类似于卡车变速箱一所组成。通过变速齿轮,主轴可以在许多种转速下旋转。大多数车床有 8转速,一般按等比级数排列。而且在现代机床上只需扳动 2手柄,就能得到全部转速。一种正在不断增长的趋势是通过电气的或者机械的装置进行无级变速。 由于机床的精度在很大程度上取决于主轴,因此,主轴的结构尺寸较大,通常安装在预紧后的重型圆锥滚子轴承或球轴承中。主轴中有一个贯穿全长的通孔,长棒料可以通过该孔送料。主轴孔的大小是车床的一个重要尺寸,因为当工件必须通过主轴孔供料时,它确定了能够加工的棒料毛坯的最大尺寸。 尾架组件主要由三部分组成。底板与床身的内侧导轨配合,并 2 可以在导轨上做纵向移动。底板上有一个可以使整个尾架组件夹紧在任意位置上的装置。尾架体安装在底板上,可以沿某种类型的键槽在底板上横向移动,使尾架能与主轴箱中的主轴对正。尾架的第三个组成部分是尾架套筒。它是一个直径通常大约在 51 76之间的钢制空心圆柱体。通过手轮和螺杆,尾架套筒可以在尾架体中纵向移人和移出几英寸。 车床的规格用两个尺寸表示。第一个称为车床床面上最大加工直径。这是在车床上能够旋转的工件的最大直径。它大约是两顶尖连线与导轨上最 近点之间距离的两倍。第二个规格尺寸是两顶尖之间的最大距离。车床床面上最大加工直径表示在车床上能够车削的最大工件直径,而两顶尖之间的最大距离则表示在两个顶尖之间能够安装的工件的最大长度。 普通车床是生产中最经常使用的车床种类。它们是具有前面所叙述的所有那些部件的重载机床,并且除了小刀架之外,全部刀具的运动都有机动进给。它们的规格通常是:车床床面上最大加工直径为 3052寸 ) ;两顶尖之间距离为 610 1 2194寸 )。但是,床面上最大加工直径达到 1 2700英寸 )和 两顶尖之间距离达到 3 6582 英尺 )的车床也并不少见。这些车床大部分都有切屑盘和一个安装在内部的冷却液循环系统。小型的普通车床 车床床面最大加工直径一般不超过 3303英寸 ) 被设计成台式车床,其床身安装在工作台或柜子上。 虽然普通车床有很多用途,是很有用的机床,但是更换和调整刀具以及测量工件花费很多时间,所以它们不适合在大量生产中应用。通常,它们的实际加工时间少于其总加工时间的 30。此外,需要技术熟练的工人来操作普通车床,这种工人的工资高而且很难雇到。然而,操作工人的大部分时间却花费在 简单的重复调整和观察切屑产生过程上。因此,为了减少或者完全不雇用这类熟练工人,六角车床、螺纹加工车床和其他类型的半自动和自动车床已经很好地研制出来,并已经在生产中得到广泛应用。 普通车床作为最早的金属切削机床中的一种,目前仍然有许多有用的和为人们所需要的特性。现在,这些机床主要用在规模较小的工厂中,进行小批量的生产,而不是进行大批量的生产。 在现代的生产车间中,普通车床已经被种类繁多的自动车床所 3 取代,诸如自动仿形车床,六角车床和自动螺丝车床。现在,设计人员已经熟知先利用单刃刀具去除大量的金属余量,然后利用成 型刀具获得表面光洁度和精度这种加工方法的优点。这种加工方法的生产速度与现在工厂中使用的最快的加工设备的速度相等。 普通车床的加工偏差主要依赖于操作者的技术熟练程度。设计工程师应该认真地确定由熟练工人在普通车床上加工的试验零件的公差。在把试验零件重新设计为生产零件时,应该选用经济的公差。 对生产加工设备来说,目前比过去更着重评价其是否具有精确的和快速的重复加工能力。应用这个标准来评价具体的加工方法,六角车床可以获得较高的质量评定。 在为小批量的零件 (100 200 件 )设计加工方法时,采用六角车床是最经济的。为 了在六角车床上获得尽可能小的公差值,设计人员应该尽量将加工工序的数目减至最少。 自动螺丝车床通常被分为以下几种类型:单轴自动、多轴自动和自动夹紧车床。自动螺丝车床最初是被用来对螺钉和类似的带有螺纹的零件进行自动化和快速加工的。但是,这种车床的用途早就超过了这个狭窄的范围。现在,它在许多种类的精密零件的大批量生产中起着重要的作用。工件的数量对采用自动螺丝车床所加工的零件的经济性有较大的影响。如果工件的数量少于 1 000 件,在六角车床上进行加工比在自动螺丝车床上加工要经济得多。如果计算出最小经济批量,并且针对工 件批量正确地选择机床,就会降低零件的加工成本。 因为零件的表面粗糙度在很大程度上取决于工件材料、刀具、进给量和切削速度,采用自动仿形车床加工所得到的最小公差不一定是最经济的公差。 在某些情况下,在连续生产过程中,只进行一次切削加工时的公差可以达到 0 05于某些零件,槽宽的公差可以达到0 125孔和采用单刃刀具进行精加工时,公差可达到0 0125希望获得最大产量的大批量生产中,进行直径和长度的车削时的最小公差值为土 0 125经济的。 金属切削加工在制造业中得到了广泛的应用。 其特点是工件在加工前具有足够大的尺寸,可以将工件最终的几何形状尺寸包容在里面。不需要的材料以切屑、颗粒等形式被去除掉。去除切屑是获 4 得所要求的工件几何形状,尺寸公差和表面质量的必要手段。切屑量多少不一,可能占加工前工件体积的百分之几到 70 80不等。 由于在金属切削加工中,材料的利用率相当低,加之预测到材料和能源的短缺以及成本的增加,最近十年来,金属成形加工的应用越来越多。然而,由于金属成形加工的模具成本和设备成本仍然很高,因此尽管金属切削加工的材料消耗较高,在许多情况下,它们仍然是最经济的。由此可以预料 ,在最近几年内,金属切削加工在制造业中仍将占有重要的位置。而且,金属切削加工的自动生产系统的发展要比金属成形加工的自动生产系统的发展要快得多。 在金属切削加工中,信息的传递是通过刚性传递介质 (刀具 )实现的。刀具相对工件运动,机械能通过刀具作用于工件。因此,刀具的几何形状和刀具与工件的运动方式决定了工件的最终形状。这个基本过程是机械过程:实际上是一个剪切与断裂相结合的过程。 如前所述,在金属切削加工中,多余的材料由刚性刀具切除,以获取需要的几何形状、公差和表面光洁度。属于此类加工方法的例子有车削、钻削、铰孔、 铣削、牛头刨削、龙门刨削、拉削、磨削、珩磨和研磨。 大多数切削加工 (或称机械加工 )过程是以两维表面成形法为基础的。也就是说,刀具与工件材料之间需要两种相对运动。一种定义为主运动 (决定切削速度 ),另一种定义为进给运动 (向切削区提供新的加工材料 )。 车削时,工件的回转运动是主运动;龙门刨床刨削时,工作台的直线运动是主运动。车削时,刀具连续的直线运动是进给运动;而在龙门刨床刨削中,刀具间歇的直线运动是进给运动。 切削速度 v 是主运动中刀具 (在切削刃的指定点 )相对工件的瞬时速度。车削、钻削和铣削等加工方法的切削速度可 以用下式表示: V= m 式中 v 为切削速度,其单位为 m d 是工件上将要切削部分的直径,其单位为 m; n 是工件或主轴的转速,单位为 据具体运动方式不同, v、 d 和 n 可能与加工材料或工具有关。在磨削进,切削速度通常以 m s 为单位度量。 在主运动之外,当刀具或工件作进给运动 f 时,便产生重复的或 5 连续的切屑切除过程,从而形成所要求的加工表面。进给运动可以是间歇的,或者是连续的。进给速度 义为在切削刃的某一选定点上,进给运 动要对于工件的瞬时速度。 对于车削和钻削,进给量 f 以工件或刀具每转的相对移动量 (表示;对于龙门刨削和牛头刨削,进给量 f 以刀具或工件每次行程的相对移动量 (表示。对于铣削,以刀具的每齿进给量 表示, 相邻两齿间工件的移动距离。所以,工作台的进给速度 刀具齿数 z,刀具每分钟转数 n 与每齿进给量人的乘积 (vf= 包含主运动方向和进给运动方向的平面被定义为工作平面,因为该平面包含决定切削作用的两种基本运动。 车削时的切 削深度 (有时也被称为背吃刀量 )是刀具切削刃切进或深人工件表面内的距离。切削深度决定工件的最终尺寸。在车削加工中采用轴向进给时,切削深度可以通过直接测量工件半径的减少量来确定;在车削加工中采用径向进给时,切削深度等于工件长度的减少量。在钻削中,切削深度等于钻头直径。对于铣削,切削深度定义为侧吃刀量 e,它等于铣刀径向吃刀深度,而铣刀轴向吃刀深度 (背吃刀量 )被称为 p。 未变形状态时的切屑厚度 h,就是在垂直于切削方向的平面内垂直于切削刃测量得到的切屑厚度。切削后的切屑厚度 (即切屑实际厚度 大于未变形时的 切屑厚度,也就是说切削比或者切屑厚度比r=h1/是小于 1。 未变形状态的切屑宽度 b,是在与切削方向垂直的平面内沿切削刃测得的切屑宽度。 对于单刃刀具切削加工,切削面积 A 是未变形的切屑厚度 切屑宽度 b 的乘积 (即 A=切削面积也可以用进给量 f 和切削深度表示如下: H1= b=a 式中 x 为主偏角 (即切削刃与工作平面形成的夹角 )。 因此,可以由下式求出切削面积 A= 6 附录 2: t s to do is on of do it do to be a of of in of a is of a It is of or or a on of on on an in or to of On to be in a to in of is is in a on at of It a of at it o f a in a of to a be at a of 8 in a on be by to An is to a 7 or of a is on it is of in or a be d is an of a it of be be of A on of a in An on be on of to of is is a 1 6 2 in be in of by of a of a is by is as is of be on a It is on is be in of be in on in 05 10 12 4 10 219 24 8 up 270 50 up 658 12 8 a 30 13 in to be on a or of on is 0% of In a is in of s is by in to or of is of in of a of in in s by a of as of of at s on a on on of be in of an on by a In an be be in of to 9 of a a In 00 00 it to In on a of of of a in of a of an pmt in of on 000 be to up on on of be if is is be on In in be on be On is a 0. 125mm is on of in by of is be by is as so a to 10 of a 0% - 80% of of to of of in an of of in in of as it be in of In of is by a of is to is is of l of of is a As in is by a so of in of or on a as In is by of 11 in it is by of in is a of in it is an of v is of of to at a on be as v = dn m/ v is in m/d of to be in n or in v, d, n to or on In is in m/s. f is to or to to a or of by or vf is as of to at a on f is mm/of or f is mm/of or In is of f z(mm/ of of vf(mm/of is of of z of of n, vf= A of is as it In of a ( 12 is or of of of In an of is a of in of of is to in of In of is to of of is as ae is of of is hi in is of to in a to of i. e., is or r =h1/h2 is he b in is of in a to of of is of h l b ( A = of be by of a as H1=f b = a/ k is i. e., of is = 1 第 1 章 绪论 题背景 机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,它是在机械化、自动化生产过程中发展起来的一种新型装置。近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手能代替人类完成危险、重复枯燥的工作,减轻人类劳动强度,提高劳动生产力。机械手越来越广泛的得到了应用,在机械行业中它可用于零部件组装 ,加工工件的搬运、装卸, 特别是在自动化数控机床、组合机床上使用更普遍。目前,机械手已发展成为柔性制造系统 柔性制造单元 机床设备和机械手共同构成一个柔性加工系统或柔性制造单元,它适应于中、小批量生产,可以节省庞大的工件输送装置,结构紧凑,而且适应性很强。当工件变更时,柔性生产系统很容易改变,有利于企业不断更新适销对路的品种,提高产品质量,更好地适应市场竞争的需要。而目前我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,应用规模和产业化水平低,机械手的研究和开发直接影响到我国自动化生产水平的提高 , 从经济上、技术上考虑都是十分必要的。因此,进行机械手的研究设计是非常有意义的。 计目的 本设计通过对机械设计制造及其自动化专业大学本科四年的所学知识进行整合,完成一个特定功能、特殊要求的数控机床上下料机械手的设计,能够比较好地体现机械设计制造及其自动化专业毕业生的理论研究水平,实践动手能力以及专业精神和态度,具有较强的针对性和明确的实施目标,能够实现理论和实践的有机结合。 目前,在国内很多工厂的生产线上数控机床装卸工件仍由人工 2 完成,劳动强度大、生产效率低。为了提高生产加工的工作效率 ,降低 成本 ,并使生产线发展成为柔性制造系统 ,适应现代自动化大生产 ,针对具体生产工艺 ,利用机器人技术,设计用一台装卸机械手代替人工工作,以提高劳动生产率。 本机械手主要与数控车床(数控铣床,加工中心等)组合最终形成生产线,实现加工过程(上料、加工、下料)的自动化、无人化。目前,我国的制造业正在迅速发展,越来越多的资金流向制造业,越来越多的厂商加入到制造业。本设计能够应用到加工工厂车间,满足数控机床以及加工中心的加工过程安装、卸载加工工件的要求,从而减轻工人劳动强度,节约加工辅助时间,提高生产效率和生产力。 内外研究现状和趋势 目前,在国内外各种机器人和机械手的研究成为科研的热点,其研究的现状和大体趋势如下: A机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机。 B工业机器人控制系统向基于 的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。 C机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还 应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行决策控制;多传感器融合配置技术成为智能化机器人的关键技术。 D关节式、侧喷式、顶喷式、龙门式喷涂机器人产品标准化、通用化、模块化、系列化设计;柔性仿形喷涂机器人开发,柔性仿形复合机构开发,仿形伺服轴轨迹规划研究,控制系统开发; E焊接、搬运、装配、切割等作业的工业机器人产品的标准化、通用化、模块化、系列化研究;以及离线示教编程和系统动态仿真。 总的来说,大体是两个方向:其一是机器人的智能化,多传感器、多控制器, 先进的控制算法,复杂的机电控制系统;其二是与 3 生产加工相联系,满足相对具体的任务的工业机器人,主要采用性价比高的模块,在满足工作要求的基础上,追求系统的经济、简洁、可靠,大量采用工业控制器,市场化、模块化的元件。 计原则 在设计之前,必须要有一个指导原则。 这次 毕业设计 的设计原则是:以 任务书所要求的具体设计要求为根本设计目标,充分考虑机械手工作的环境和工艺流程的具体要求。在满足工艺要求的基础上,尽可能的使结构简练,尽可能采用标准化、模块化的通用元配件,以降低成本,同时提高可靠性。本着科学经济和满足生产 要求的设计原则,同时也考虑本次设计是毕业设计的特点,将大学期间所学的知识,如机械设计、机械原理、 液压、气动、电气传动及控制、传感器、可编程控制器( 电子技术、自动控制、机械系统仿真等知识 尽可能多的综合运用到设计中,使得经过本次设计对大学阶段的知识得到巩固和强化,同时也考虑个人能力 水平 和时间的客观实际, 充分发挥个人能动性, 脚踏实地,实事求是的 做 好本次设计。 第 2 章 设计方案的论证 械手的总体设计 械手总体结构的类型 工 业机器人的结构形式 主要有 直角坐标结构 , 圆柱坐标结构 ,球坐标结构 ,关节型结构 四种 。各结构形式 及其相应的特点,分别介绍如下 。 直角坐标机器人的空间运动是用三个相互垂直的直线运动来实现的,如图 由于直线运动易于实现全闭环的位置控制,所以,直角坐标机器人有可能达到很高的位置精度( m 级)。但是,这种直角坐标机器人的运动空间相对机器人的结构尺寸来讲,是比较小的。因此,为了实现一定的运动空间,直角坐标机器人的结构尺寸要比其他类型的机器人的结构尺寸大得多。 4 直角坐标机器人的工作空间为一空间长方体。直角坐标机器人主要用于装配作业及 搬运作业,直角坐标机器人有悬臂式,龙门式,天车式三种结构。 圆柱坐标机器人的空间运动是用一个回转运动及两个直线运动来实现的,如图 种机器人构造比较简单,精度还可以,常用于搬运作业。其工作空间是一个圆柱状的空间。 3. 球坐标机器人结构 球坐标机器人的空间运动是由两个回转运动和一个直线运动来实现的,如图 种机器人结构简单、成本较低,但精度不很高。主要应用于搬运作业。其工作空间是一个类球形的空间。 4. 关节型机器人结构 关节型机器人的空 间运动是由三个回转运动实现的,如图 节型机器人动作灵活,结构紧凑,占地面积小。相对机器人本体尺寸,其工作空间比较大。此种机器人在工业中应用十分广泛,如焊接、喷漆、搬运、装配等作业,都广泛采用这种类型的机器人。 关节型机器人结构,有水平关节型和垂直关节型两种。 图 2四种机器人坐标形式 计具体采用方案 5 图 2体到本设计,因为设计要求搬运的加工工件的质量达 30长度达 500时考虑到数控机床布局的具体形式及对机械手的具体要求,考虑在满足系统工 艺要求的前提下,尽量简化结构,以减小成本、提高可靠度。该机械手在工作中需要 3 种运动 ,其中手臂的伸缩和立柱升降为两个直线运动 ,另一个为手臂的回转运动 ,综合考虑,机械手自由度数目取为 3,坐标形式选择圆柱坐标形式,即一个转动自由度两个移动自由度,其特点是 :结构比较简单 ,手臂运动范围大 ,且有较高的定位准确度。 机械手工作布局图如图 2 示 。 械手腰座结构的设计 进行了机械手的总体设计后,就要针对机械手 的腰部、手臂、手腕、末端执行器 等各个 部分进行详细设计。 械手腰座结构的设计要求 工 业机器人腰座,就是圆柱坐标机器人,球坐标机器人及关节型机器人的回转基座。它是机器人的第一个回转关节,机器人的运动部分全部安装在腰座上,它承受了机器人的全部重量。在设计机器人腰座结构时,要注意以下设计原则: 6 保证机器人在工作时整体安装的稳定性。 此,机器人的基座和腰部轴及轴承的结构要有足够大的强度和刚度,以保证其承载能力。 对机器人末端的运动精度 影响最大,因此,在设计时要特别注意腰部轴系及传动链 的精度与刚度的保证。 包括驱动器(电动、液压及气动)及减速器。驱动装置一般都带有速度与位置传感器,以及制动器。 整。腰部与机器人手臂的联结要有可靠的定位基准面,以保证各关节的相互位置精度。要设有调整机构,用来调整腰部轴承间隙及减速器的传动间隙。 高机器人的控制精度,一般腰部回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基座是用铸铁或铸钢材料制成。 计具体 采用 方案 腰座回转的驱动形式 要么是电机通过减速机构来实现,要么是通过摆动液压缸或液压马达来实现,目前的趋势是用前者。因为电动方式控制的精度能够很高,而且结构紧凑,不用设计另外的液压系统及其辅助元件。考虑到腰座是机器人的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。一般电机都不能直接驱动,考虑到转速以及扭矩的具体要求,采用大传动比的齿轮传动系统进行减速和扭矩的放大。因为齿轮传动存在着齿侧间隙,影响传动精度,故采用一级齿轮传动,采用大的传动比(大于 100) , 同时为了减小机械手的整体结构,齿轮采用高强度、高硬 度的材料,高精度加工制造,尽量减小因齿轮传动造成的误差。 腰座具体结构如图 2示 : 7 图 2腰座 结构 图 械手 手臂 的结构设计 械手手臂的设计要求 机器人手臂的作用,是在一定的载荷和一定的速度下,实现在机器人所要求的工作空间内的运动。在进行机器人手臂设计时,要遵循下述原则; 互垂直的轴应尽可能相交于一点,这样可以使机器人运动学正逆运算简化,有利于机器人的控制。 作空间的形 状和大小与机器人手臂的长度,手臂关节的转动范围有密切的关系。但机器人手臂末端工作空间并没有考虑机器人手腕的空间姿态要求,如果对机器人手腕的姿态提出具体的要求,则其手臂末端可实现的空间要小于上述没有考虑手腕姿态的工作空间。 8 在保证机器人手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。力求选用高强度的轻质材料,通常选用高强度铝合金制造机器人手臂。目前,在国外,也在研究用碳纤维复合材料制造机器人手臂。碳纤维复合材料抗拉强度高,抗振性好,比重小(其比 重相当于钢的 1/4,相当于铝合金的 2/3),但是,其价格昂贵,且在性能稳定性及制造复杂形状工件的工艺上尚存在问题,故还未能在生产实际中推广应用。目前比较有效的办法是用有限元法进行机器人手臂结构的优化设计。在保证所需强度与刚度的情况下,减轻机器人手臂的重量。 减小机械间隙所造成的运动误差。因此,各关节都应有工作可靠、便于调整的轴承间隙调整机构。 对减小电机负载和提高机器人手臂运动的响应速度是非常有利的。在设计机器人 的手臂时,应尽可能利用在机器人上安装的机电元器件与装置的重量来减小机器人手臂的不平衡重量,必要时还要设计平衡机构来平衡手臂残余的不平衡重量。 及驱动装置,传动机构及其它元件的安装。 计具体 采用 方案 机械手的垂直手臂(大臂)升降和水平手臂(小臂)的伸缩运动都为直线运动。直线运动的实现一般是气动传动,液压传动以及电动机驱动滚珠丝杠来实现。考虑到搬运工件的重量较大,考虑加工工件的质量达 30中型重量,同时考虑到机械 手的动态性能及运动的稳定性,安全性,对手臂的刚度有较高的要求。综合考虑,两手臂的驱动均选择液压驱动方式,通过液压缸的直接驱动,液压缸既是驱动元件,又是执行运动件,不用 再 设计另外的执行件了;而且液压缸实现直线运动,控制简单,易于实现计算机的控制。 因为液压系统能提供很大的驱动力,因此在驱动力和结构的强度都是比较容易实现的,关键是机械手运动的稳定性和刚度的满足。因此手臂液压缸的设计原则是缸的直径取得大一点(在整体结构允 9 许的情况下),再进行强度的较核。 同时,因为控制 和 具体工作的要求,机械手的手臂的结构不能太大, 若仅仅通过增大液压缸的缸径来增大刚度,是不能满足系统刚度要求的。因此,在设计时另外增设了导杆机构,小臂增设了两个导杆,与活塞杆一起构成等边三角形的截面形式,尽量增加其刚度;大臂增设了四个导杆,成正四边形布置,为减小质量,各个导杆均采用空心结构。通过增设导杆,能显著提高机械手的运动刚度和稳定性,比较好的解决了结构、稳定性的问题。 械手 腕部的结构 设计 机器人的手臂运动(包括腰座的回转运动),给出了机器人末端执行器在其工作空间中的运动位置,而安装在机器人手臂末端的手腕,则给出了机器人末端执行器在其工作空 间中的运动姿态。机器人手腕是机器人操作机的最末端,它与机器人手臂配合运动,实现安装在手腕上的末端执行器的空间运动轨迹与运动姿态,完成所需要的作业动作。 器人手腕结构的设计要求 根据作业需要来设计。机器人手腕自由度数目愈多,各关节的运动角度愈大,则机器人腕部的灵活性愈高,机器人对对作业的适应能力也愈强。但是,自由度的增加,也必然会使腕部结构更复杂,机器人的控制更困难,成本也会增加。因此,手腕的自由度数,应根据实际作业要求来确定。在满足作业要求的前提下,应使自由度数尽可 能的少。一般的机器人手腕的自由度数为 2 至 3 个,有的需要更多的自由度,而有的机器人手腕不需要自由度,仅凭受臂和腰部的运动就能实现作业要求的任务。因此,要具体问题具体分析,考虑机器人的多种布局,运动方案,选择满足要求的最简单的方案。 设计机器人手腕时,应力求减少其重量和体积,结构力求紧凑。为了减轻机器人腕部的重量,腕部机构的驱动器采用分离传动。腕部驱动器一般安装在手臂上,而不采用直接驱动,并选用高强度的铝合金制造。 此,要有标准的联接法 10 兰,结构上要便于装卸末端执行器。 保证力与运动的传递。 减小空回间隙,提高传动精度。 并设置硬限位,以防止超限造成机械损坏。 计具体 采用 方案 通过对数控机床上下料作业的具体分析,考虑数控机床加工的具体形式及对机械手上下料作业时的具体要求,在满足系统工艺要求的前提下提高安全和可靠性,为使机械手的结构尽量简单,降低控制的难度,本设计手腕不增加自由度,实践证明这是完 全能满足作业要求的, 3 个自由度来实现机床的上下料完全足够。具体的手腕(手臂手爪联结梁) 结构见图 2 水平液压缸支承板手臂手爪联结梁执行手爪图 2爪联结结构 械手末端执行器(手爪)的结构设计 11 械手末端执行器的设计要求 机器人末端执行器是安装在机器人手腕上用来进行某种操作或作业的附加装置。机器人末端执行器的种类很多,以适应机器人的不同作业及操作要求。末端执行器可分为搬运用、加工用和测量用等。 搬运用末端执行器是指各种夹持装置,用来抓取或吸附被搬运的物体。 加工用末端执行器是带有喷枪、焊枪、砂轮、铣刀等加工工具的机器 人附加装置,用来进行相应的加工作业。 测量用末端执行器是装有测量头或传感器的附加装置,用来进行测量及检验作业。 在设计机器人末端执行器时,应注意以下问题; 个新的末端执行器的出现,就可以增加一种机器人新的应用场所。因此,根据作业的需要和人们的想象力而创造的新的机器人末端执行器,将不断的扩大机器人的应用领域。 抓取物体的重量及操作力的总和机器人容许的负荷力。因此,要求 机器人末端执行器体积小、重量轻、结构紧凑。 的万能性与专用性是矛盾的。万能末端执行器在结构上很复杂,甚至很难实现,例如,仿人的万能机器人灵巧手,至今尚未实用化。目前,能用于生产的还是那些结构简单、万能性不强的机器人末端执行器。从工业实际应用出发,应着重开发各种专用的、高效率的机器人末端执行器,加之以末端执行器的快速更换装置,以实现机器人多种作业功能,而不主张用一个万能的末端执行器去完成多种作业。因为这种万能的执行器的结构复杂且造价昂贵。 能性是指一机多能,而通用性是指有限的末端执行器,可适用于不同的机器人,这就要求末 端执行器要有标准的机械接口(如法兰),使末端执行器实现标准化和积木化。 于实现计算机控制。 12 用计算机控制最方便的是电气式执行机构。因此,工业机器人执行机构的主流是电气式,其次是液压式和气压式(在驱动接口中需要增加电 气变换环节)。 器人夹持器的运动和驱动方式 机器人夹持器及机器人手爪。一般工业机器人手爪,多为双指手爪。按手指的运动方式,可分为回转型和移动型,按夹持方式来分,有外夹式和内撑式两种。 机器人夹持器(手爪)的驱动方式主要有三种 式 这种驱动系统是用电磁阀来控制手爪的运动方向,用气流调节阀来调节其运动速度。由于气动驱动系统价格较低,所以气动夹持器在工业中应用较为普遍。另外,由于气体的可压缩性,使气动手爪的抓取运动具有一定的柔顺性,这一点是抓取动作十分需要的。 电动驱动手爪应用也较为广泛。这种手爪,一般采用直流伺服电机或步进电机,并需要减速器以获得足够大的驱动力和力矩。电动驱动方式可实现手爪的力与位置控制。但是,这种驱动方式不能用于有防爆要求的条件下,因为电机有可能产生火花和发热。 液压驱动系统传动刚度大,可实现连续位置控制。 器人夹持器的典型结构 利用楔块与杠杆来实现手爪的松、开,来实现抓取工件。 当活塞向前运动时,滑槽通过销子推动手爪合并,产生夹紧动作和夹紧力,当活塞向后运动时,手爪松开。这种手爪开合行程较大,适应抓取大小不同的物体。 手爪 这种手爪在活塞的推力下,连杆和杠杆使手爪产生夹紧(放松)运动,由于杠杆的力放大作用,这种手爪有可能产生较大的夹紧力。通常与弹簧联合使用。 13 这种手爪通 过活塞推动齿条,齿条带动齿轮旋转,产生手爪的夹紧与松开动作。 采用平行四边形机构,因此不需要导轨就可以保证手爪的两手指保持平行运动,比带有导轨的平行移动手爪的摩擦力要小很多。 计具体 采用 方案 结合具体的工作情况,本设计采用连杆杠杆式的手爪。 驱动活塞往复移动,通过活塞杆端部 齿条,中间齿条及扇形齿条 使手指张开或闭合。 手指的最小开度由加工工件的直径来调定。本设计按照工件的直径为 50设计。手爪的具体结构形式如图 2示: 图 2械手末端执行手爪结构图 械手 的机械传动机构的设计 业机器人传动机构设计应注意的问题 机器人是由多级联杆和关节组成的多自由度的空间运动机构。 14 除直接驱动型机器人以外,机器人各联杆及各关节的运动都是由驱动器经过各种机械传动机构进行驱动的。机器人所采用的传动机构与一般机械的传动机构相类似。常用的机械传动机构主要有螺旋传动、齿轮传动、同步带传动、高速带传动等。由于传动部件直接影响着机器人的精度、稳定性和快速响应能力,因此,应设计和选择满足传动间隙小,精度高,低摩擦、体积小、重量轻、运动平稳、响应速度快、传递转矩大、谐振频率高以及与伺 服电动机等其它环节的动态性能相匹配等要求的传动部件。 在设计机器人的传动机构时要注意以下问题: 求机器人各运动部件的重量要轻,惯量要小。因此,机器人的传动机构要力求结构紧凑,重量轻,体积小。 减小反向空回所造成的运动误差。 摩擦力应是尽可能小的正斜率,若为负斜率则易产生爬行,精度降低,寿命减小。因此,要采用低摩擦阻力的传动部件和导向支承部件,如滚珠丝杠副、滚动导向支承等。 链,提高传动与支承刚度,如用预紧的方法提高滚珠丝杠副和滚动导轨副的传动和支承刚度;采用大扭矩、宽调速的直流或交流伺服电机直接与丝杠螺母副连接,以减小中间传动机构;丝杠的支承设计采用两端轴向预紧或预拉伸支承结构等。 达到提高系统分辨率、减少等效到执行元件输出轴上的等效转动惯量,尽可能提高加速能力。 采取消除传动间隙、减少支承变形等措施。 械零件产生共振时,系统的阻尼越大,最大振幅就越小,且衰减越快;但大阻尼也会使系统的失动量和反转误差增大,稳 态误差增大,精度降低。故在设计时要使传动机构的阻尼合适。 业机器人常用的传动机构形式 15 在机器人中常用的齿轮传动机构有圆柱齿轮,圆锥齿轮,谐波齿轮,摆线针轮及蜗轮蜗杆传动等。 机器人系统中齿轮传动设计的一些问题 ( 1) 齿轮传动形式及其传动比的最佳匹配选择。齿轮传动部件是转矩、转速和转向的变换器用于伺服系统的齿轮减速器是一个力矩变换器。齿轮传动比应满足驱动部件与负载之间的位移及转矩、转速的匹配要求,其输入电动机为高转速,低转矩,而输出则为低转速,高转矩。故齿轮传动系统要有足 够的刚度,还要求其转动惯量尽量小,以便在获得同一加速度时所需的转矩小,即在同一驱动功率时,其加速度响应最大。齿轮的啮合间隙会造成传动死区(失动量),若该死区是闭环系统中,则可能造成系统不稳定,常使系统产生低频振荡,因此要尽量采用齿侧间隙小,精度高的齿轮;为尽量降低制造成本,要采用调整齿侧间隙的方法来消除或减小啮合间隙,从而提高传动精度和系统的稳定性。 ( 2) 各级传动比的最佳分配原则。当计算出传动比后,为使减速系统结构紧凑,满足动态性能和提高传动精度的要求,要对各级传动比进行合理的分配,原则如下: a输出轴 转角误差最小原则。 为了提高齿轮传动系统的运动精度,各级传动比应按“先小后大”的原则分配,以便降低齿轮的加工误差、安装误差及回转误差对输出转角精度的影响。设齿轮传动中各级齿轮的转角误差换算到末级输出轴上的总转角误差为,则 )(1m a x / ( 2 式中:kk 个齿轮所具有的转角误差; )(k 个齿轮的转轴至 n 级输出轴的传动比。 则四级齿轮传动系统的各级齿轮的转角误差( 1 、 2 、 .、8) 16 换算到末级输出轴上的总转角误差为 84 7643 54432 321m a x 2 由此可知总转角误差主要取决于最 末级齿轮的转角误差和传动比的大小。因此,在设计中最末两级的传动比应取大一些,并尽量提高其加工精度。 b等效转动惯量最小原则。 利用该原则设计的齿轮系统要使换算到电动机轴上的等效转动惯量最小,各级传动比也是按照“先小后大”的次序分配,以使其结构紧凑。 具体而言有几点: ( 1) 对要求运动平稳,起停频繁和动态性能好的伺服系统,按最小等效转动惯量和总转角误差最小的原则来处理。 ( 2) 对于变负载的传动齿轮系统的各级传动比最好采用不可约的比数,避免同期啮合以降低噪音和振动。 ( 3) 对于提高传动精度和减小回程误差 为主的传动齿轮系统,按总转角误差最小原则;对于增速传动,由于增速时容易破坏传动齿轮系工作的平稳性,应在开始几级就增速,并且要求每级增速比最好大于 1:3,以有利于增加轮系的刚度,减小传动误差。 ( 4) 对以比较大传动比传动的齿轮系,往往需要将定轴轮系和行星轮系结合为混合轮系。对于相当大大传动比、并且要求传动精度与传动效率高,传动平稳以及体积小重量轻时。可选用新型的谐波齿轮传动。 谐波齿轮传动具有结构简单、体积小重量轻,传动比大(几十到几百),传动精度高、回程误差小、噪音低、传动平稳,承载能力强 、效率高等一系列优点。故在工业机器人系统中得到广泛的应用。谐波齿轮传动与少齿差行星齿轮传动十分相似,它是依靠柔性齿轮产生的可控变形波引起齿间的相对错齿来传递动力与运动的,故谐波齿轮传动与一般的齿轮传动具有本质上的差别。 螺旋传动及丝杠螺母,它主要是用来将旋转运动变换为直线运 17 动或将直线运动变换为旋转运动。螺旋传动有传递能量为主的,如螺旋压力机、千斤顶等;有以传递运动为主的,如机床工作台的进给丝杠。 丝杠螺母传动分为普通丝杠(滑动摩擦)和滚珠丝杠(滚动摩擦),前者结构简单、加工方便、制造成本低,具 有自锁能力;但是摩擦阻力矩大、传动效率低( 30%40%)。后者虽然结构复杂、制造成 本 高 , 但 是 其 最 大 的 优 点 是 摩 擦 阻 力 矩 小 、 传 动 效 率 高( 92%98%),其运动平稳性好,灵活度高。通过预紧,能消除间隙、提高传动刚度;进给精度和重复定位精度高。使用寿命长;而且同步性好,使用可靠、润滑简单,因此滚珠丝杠在机器人中应用很多。由于滚珠丝杠传动返行程不能自锁;因此在用于垂直方向传动时,须附加自锁机构或制动装置。在选用滚珠丝杠要考虑以下几项指标: ( 1)滚珠丝杠的精度等级; ( 2)滚珠丝杠的传动间隙允许值和预加载荷的期望 值; ( 3)载荷条件(静、动载荷)以及载荷允许值; ( 4)滚珠丝杠的工作寿命; ( 5)滚珠丝杠的临界转速; ( 6)滚珠丝杠的刚度; 减小滚珠丝杠空回行程的方法,多是采用双螺母结构,使螺母与丝杠之间有一定的预加载荷。这样可以消除传动间隙,提高传动精度与刚度。但是预加载荷会使滚珠丝杠寿命下降,所以,预加载荷不应超过工作载荷的 1/3。 同步带传动是综合了普通带传动和链轮链条传动优点的一种新型传动,它在带的工作面及带轮外周上均制有啮合齿,通过带齿与轮齿作啮合传动。为保证带和带轮作无滑 动的同步传动,齿形带采用了承载后无弹性变形的高强力材料,无弹性滑动,以保证节距不变。同步带具有传动比准确、传动效率高(可达 98%)、节能效果好;能吸振、噪声低、不需要润滑;传动平稳,能高速传动(可达 40m/s)、传动比可达 10,结构紧凑、维护方便等优点,故在机器人中使用很多。其主要缺点是安装精度要求高、中心距要求严格,同时具有一定的蠕变性。同步带带轮齿形有梯形齿形和圆弧齿形。 18 钢带传动的特点是钢带与带轮间接触面积大,是无间隙传动、摩擦阻力大,无滑动,结构简单紧凑、运行可靠、噪声低,驱动力矩大、 寿命长,钢带无蠕变、传动效率高。 在机器人中链传动多用于腕传动上,为了减轻机器人末端的重量,一般都将腕关节驱动电机安装在小臂后端或大臂关节处。由于电机距离被传动的腕关节较远,故采用精密套筒滚子链来传动。 钢丝绳轮传动具有结构简单、传动刚度大、结构柔软,成本较低等优点。其缺点是带轮较大、安装面积大、加速度不宜太高。 计具体 采用方案 具体到本设计,因为选用了液压缸作为机械手的水平手臂和垂直手臂,由于液压缸实现直接驱动,它既是关节机构,又是动力元件。故不需要中间 传动机构,这既简化了结构,同时又提高了精度。而机械手腰部的回转运动采用步进电机驱动,必须采用传动机构来减速和增大扭矩。经分析比较,选择圆柱齿轮传动,为了 保证比较高的精度 ,尽量减小因齿轮传动造成的误差; 同时大大增大扭矩 ,同时 较大的降低电机转速,以使机械手的运动平稳,动态性能好 。这里 只采用一级齿轮传动,采用大的传动比(大于 100) , 齿轮采用高强度、高硬度的材料,高精度加工制造 。 械手驱动系统的设计 器人 各类驱动系统的特点 工业机器人的驱动系统,按动力源分为液压、气动和电动三大类。根据需要也可 这三种基本类型组合成复合式的驱动系统。这三类基本驱动系统的主要特点如下。 由于液压技术是一种比较成熟的技术,它具有动力大、力(或力矩)与惯量比大、快速响应高、易于实现直接驱动等特点。适合于在承载能力大,惯量大以及在防火防爆的环境中工作的机器人。但是,液压系统需要进行能量转换(电能转换成液压能),速度控制 19 多数情况下采用节流调速,效率比电动驱动系统低,液压系统的液体泄露会对环境产生污染,工作噪音也较高。 具有速度快,系统结构简单,维修方便、价格低等特点。适用于中、小负荷的机器 人中采用。但是因难于实现伺服控制,多用于程序控制的机器人中,如在上、下料和冲压机器人中应用较多。 由于低惯量、大转矩的交、直流伺服电机及其配套的伺服驱动器(交流变频器、直流脉冲宽度调制器)的广泛采用,这类驱动系统在机器人中被大量采用。这类驱动系统不需要能量转换,使用方便,噪声较低,控制灵活。大多数电机后面需安装精密的传动机构。直流有刷电机不能直接用于要求防爆的工作环境中,成本上也较其他两种驱动系统高。但因为这类驱动系统优点比较突出,因此在机器人中被广泛的使用。 业机器人驱动系统 的选择原则 设计机器人时,驱动系统的选择,要根据机器人的用途、作业要求、机器人的性能规范、控制功能、维护的复杂程度、运行的功耗、性价比以及现有的条件等综合因素加以考虑。在注意各类驱动系统特点的基础上,综合上述各因素,充分论证其合理性、可行性、经济性及可靠性后进行最终的选择。一般情况下: 括上下料)使用的有限点位控制的程序控制机器人,重负荷的选择液压驱动系统,中等负荷的可选电机驱动系统,轻负荷的可选气动驱动系统。冲压机器人多采用气动驱动系统。 ,要求具有点位和轨迹控制功能,需采用伺服驱动系统。只有采用液压或电动伺服系统才能满足要求。点焊、弧焊机器人多采用电动驱动系统。重负荷的任意点位控制的点焊及搬运机器人选用液压驱动系统。 器人 液压驱动系统 液压系统自 1962 年在世界上第一台机器人中应用到现在,已在工业机器人中获得了广泛的应用。目前,虽然在中等负荷以下的工业机器人中大量采用电机驱动系统,但是在简易经济型、重型的工 20 业机器人和喷涂机器人中采用液压系统的还仍然占有很大的比例。 液压系统在机器人中所起的作用是通过电 件把控制信号进行功率放大,对液压动力机构进行方向、位置、和速度的控制,进而控制机器人手臂按给定的运动规律动作。液压动力机构多数情况下采用直线液压缸或摆动马达,连续回转的液压马达用得很少。在工业机器人中,中、小功率的液压驱动系统用节流调速的为多,大功率的用容积调速系统。节流调速系统,动态特性好,但是效率低。容积调速系统,动态特性不如前者,但效率高。机器人液压驱动系统包括程序控制和伺服控制两类。 这类机器人属非伺服控制的机器人,在只有简单搬运作业功能的机器人中,常常采用简 易的逻辑控制装置或可编程控制器对机器人实现有限点位的控制。这类机器人的液压系统设计要重视以下方面: ( 1) 液压缸设计:在确保密封性的前提下,尽量选用橡胶与氟化塑料组合的密封件,以减小摩擦阻力,提高液压缸的寿命。 ( 2) 定位点的缓冲与制动:因为机器人手臂的运动惯量比较大,在定位点前要加缓冲与制动机构或锁定装置。 ( 3) 对惯量比较大的运动轴的液压缸两侧最好加设安全保护回路,防止因碰撞过载而损坏机械结构。 ( 4) 液压源应该加蓄能器,以利于多运动轴同时动作或加速运动提供瞬时能量储备。 具有点位控制和连续轨迹控制功能的工业机器人,需要采用电 电 液伺服阀,电 以上各类阀件与液压动力机构可组成电 压回转伺服执行器( 各种电 据结构设计的需要,电 液伺服液压缸可以是分离式,也可以是组合成为一体。如果是分离式的连接方式,要尽量缩短连接管路,这样可以减少伺服阀到液压机构间的管道 容积,以增大液压固有频率。 在机器人的驱动系统中,常用的电 液伺服 21 液压缸和电 可以用电 压回转执行器是一种由伺服电机,步进电机或比例电磁铁带动的一个安放在摆动马达或连续回转马达转子内的一个回转滑阀,通过机械反馈,驱动转子运动的一种电 可安装在机器人手臂和手腕的关节上,实现直接驱动。它既是关节机构,又是动力元件。 器人 气动驱动系统 气动机器人采用压缩空气为动力源,一般从工厂的压缩空气站引到机器人作业位置,也可以单独 建立小型气源系统。由于气动机器人具有气源使用方便、不污染环境、动作灵活迅速、工作安全可靠、操作维修简便以及适宜在恶劣环境下工作等特点,因此它在冲压加工、注塑及压铸等有毒或高温条件下作业,机床上、下料,仪表及轻工行业中、小型零件的输送和自动装配等作业,食品包装及运输,电子产品输送、自动插接,弹药生产自动化等方面获得大量应用。 气动驱动系统在多数情况下是用于实现两位式的或有限点位控制的中、小机器人中的。这类机器人多是圆柱坐标型和直角坐标型或二者的组合型结构; 3自由度;负荷在 200N 以下;速度300s;重复定位精度为 +/5制装置目前多数选用可编程控制器( 在易燃、易爆的场合下可采用气动逻辑元件组成控制装置。气动驱动系统 大体由以下几部分 组成 。 由总压缩空气站提供。气源部分包括空气压缩机,储气罐,气水分离器,调压器,过滤器等。如果没有压缩空气站的条件,可以按机器人及配套的其他气动设备需要配置相应供气量的气源设备。 由分水滤气器,调压器,油雾器三大件组成,可以是分离式,也可以是三联组装式的,多数情况下用三联组装式结构。 不论是由压缩空气站供气还是用单独的气源,气动三联件是必备的。虽然用无润滑气缸可以不用油雾器,但是一般情况下,建议也在气路上装上油雾器,以减少气缸摩擦力,增加使用寿命。 气动阀的种类很多,在工业机器人的气动驱动系统中,常用的阀件有电磁气阀、节流调速阀、减压阀等。 多数情况下使用气缸(直线气缸或摆动气 22 缸)。直线气缸分单动式和双动式两类。除个别用单动式气缸外(如手爪机构上用的),多数采用双动气缸。为实现端部缓冲,要选用双向端点位置缓冲的气缸。气缸的结构形式以及与机器人机构 的连接方式(如法兰连接,尾部铰接,前端或中间铰接,气缸杆的螺纹连接或铰接等)由设计机器人时根据结构要求而定。气缸的内径,行程大小可根据对机器人的运动分析和动力分析进行计算。 为了确保气缸的密封要求,同时又要尽量降低摩擦力,密封材料要选用橡胶和氟化塑料组合的密封环。无接触感应式气缸目前在气动系统中已获得广泛的应用,这种气缸在活塞上装有永久磁铁的磁环,通过磁感应,使在气缸外面安装的非接触磁性接近开关动作发讯,进行位置检测。除了直线气缸外,机器人中用得比较多还有有限角摆动气缸,这种摆动缸多用于手腕机构上。 气动机器人的定位问题很大程度上是如何实现停点的制动。气缸活塞的运动速度容许达 s,如果气缸以 1m/s 的速度计算,电磁气阀以较大关闭时间 70,那么气缸活塞两个停点的距离约为 70个停点的步长应大于这个数值。对于小流量的电磁气阀,吸合关闭时间较小,停点的步长也要相应缩短。因此对机器人一个单自由度而言,停点数目最多 6。为增加定位点数,除采用多位置气缸外可采用制动的方法还有:反压制动,制动装置制动。 气动机器人各运动轴的制动和定位点到位发讯,可由编程器 发指令,或由限位开关发讯。根据要求和条件,如果选用无接触感应式气缸,其限位开关是无接触接近开关,这种开关的反映时间小于 20机器人中应用比较理想。当气缸活塞运动到定位点时,为保证定位精度,需要将运动 轴锁紧。常用的限位机构是由电磁阀控制的气缸带动锁紧机构(插锁,滑 块等)将机器人运动机构锁定。再启动时,事先打开锁紧机构。 器人 电动驱动系统 这些年来,针对机器人,数控机床等自动机械而开发的各种类型的伺服电动机及伺服驱动器的大量出现,为机器人驱动系统的更新创造了条件。由于高起动力矩、大转矩 低惯量的交、直流电机在机器人中的应用,因此一般情况下,负重在 100下的工业机器 23 人大多数采用电动驱动系统。其驱动原理方块图如下所示: 在机器人驱动系统中应用的电动机大致可分为如下类型:小惯量永磁直流伺服电动机,有刷绕组永磁直流伺服电动机,大惯量永磁直流伺服电动机(力矩电机),反应式步进电机,同步式交流伺服电动机,异步式交流伺服电动机。 速度传感器多数用的是测速发电机,位置传感器多数用光电编码器。伺服电动机可与测速发电机、光电编码器、制动器、减速器相结合,实现部分组合、由几种组合或全部组合 ,形成伺服电动机驱动单元。为了提高机器人的传动精度,国外近几年开发了直接驱动电动机,并将多级旋转变压器组合在一起,这种旋转变压器每转可达 40个脉冲,这种直接驱动的电机( 动电机)在快速高精度定位的装配机器人中已经得到应用 。 机器人的驱动系统电机的选择要根据机器人的用途、功能、结构特点,结合各类电机自身的特点、性能、结构特点以及性能价格比等综合考虑进行。根据机器人各运动轴所计算的、要求电机的转速、负载额定力矩、加减速特性、额定功率、加速功率等参数选择电机型号。有关各类 驱动 电动机主要特点及性能、结构特点、用途及使用范围、适用的驱动器见 表 2 表 2 称 主要特点及性能 结构特点 用途及使用 范围 驱动器 小惯量直流永磁伺服电动机 电机的惯量小,理论加速度大,快速反应性好, 低速性好, 调速比可达 1: 10围,但低速输出力矩不大, 转 子 直 径小,惯量小 适用于对快速性要求严格而负载力矩不大的场合 直流服 驱 动器 驱动器 有刷绕组转动惯量小,快速响应性能好;转子无铁损,无铁心,具有 轴 向 平可频繁起制动、正反转直流 24 永磁直流伺服电动机 效率高;换向性能好,寿命长;负载波动对转速影响小,输出力矩 平稳。 面间隙 工作,响应迅速,适用于机器人,数控等 服 驱 动器, 驱动器 大惯量永磁直流伺服电动机 输出力矩大,转矩波动小,机械特性硬度大,可以长时间工作在堵转条件下 又 称 力 矩电机,其转子较粗 适用于驱动力矩较大的场合,因可不用齿轮传动,消除了齿轮间隙 直流服 驱 动器, 驱动器 表 2表 反应步进电机 将电脉冲信号直接转换成转角,转角与脉冲数成正比,输出力矩也较大 电 机 转 子无转租,由永 磁 体 构成 转 子 磁极 用于数字系统中作为执行 元件,如数控机床、机器人;开环控制 直流服驱动器 同步交流伺服电动机 转速与定
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。