Facial Expression Recognition with Faster R-CNN.docx

用更快的R-CNN进行人脸表情识别【中文3606字】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图
编号:9931492    类型:共享资源    大小:1.86MB    格式:ZIP    上传时间:2018-04-05 上传人:闰*** IP属地:河南
15
积分
关 键 词:
用更快 cnn 进行 表情 识别 辨认 中文
资源描述:
用更快的R-CNN进行人脸表情识别【中文3606字】,用更快,cnn,进行,表情,识别,辨认,中文
内容简介:
AVAILABLEONLINEATWWWSCIENCEDIRECTCOMSCIENCEDIRECTPROCEDIACOMPUTERSCIENCE1072017135140INTERNATIONALCONGRESSOFINFORMATIONANDCOMMUNICATIONTECHNOLOGYICICT2017FACIALEXPRESSIONRECOGNITIONWITHFASTERRCNNJIAXINGLIA,DEXIANGZHANGA,JINGJINGZHANGA,JUNZHANGA,TENGLIA,YIXIAA,QINGYANA,ANDLINAXUNAATHESCHOOLOFELECTRICALENGINEERINGANDAUTOMATIONANHUIUNIVERSITY,HEFEI230601,CHINACORRESPONDINGAUTHORZDXDZXY126COMTEL086055163861094ABSTRACTINORDERTOAVOIDTHECOMPLEXEXPLICITFEATUREEXTRACTIONPROCESSANDTHEPROBLEMOFLOWLEVELDATAOPERATIONINVOLVEDINTRADITIONALFACIALEXPRESSIONRECOGNITION,WEPROPOSEDAMETHODOFFASTERRCNNFASTERREGIONSWITHCONVOLUTIONALNEURALNETWORKFEATURESFORFACIALEXPRESSIONRECOGNITIONINTHISPAPERFIRSTLY,THEFACIALEXPRESSIONIMAGEISNORMALIZEDANDTHEIMPLICITFEATURESAREEXTRACTEDBYUSINGTHETRAINABLECONVOLUTIONKERNELTHEN,THEMAXIMUMPOOLINGISUSEDTOREDUCETHEDIMENSIONSOFTHEEXTRACTEDIMPLICITFEATURESAFTERTHAT,RPNSREGIONPROPOSALNETWORKSISUSEDTOGENERATEHIGHQUALITYREGIONPROPOSALS,WHICHAREUSEDBYFASTERRCNNFORDETECTIONFINALLY,THESOFTMAXCLASSIFIERANDREGRESSIONLAYERISUSEDTOCLASSIFYTHEFACIALEXPRESSIONSANDPREDICTBOUNDARYBOXOFTHETESTSAMPLE,RESPECTIVELYTHEDATASETISPROVIDEDBYCHINESELINGUISTICDATACONSORTIUMCLDC,WHICHISCOMPOSEDOFMULTIMODALEMOTIONALAUDIOANDVIDEODATAEXPERIMENTALRESULTSSHOWTHEPERFORMANCEANDTHEGENERALIZATIONABILITYOFTHEFASTERRCNNFORFACIALEXPRESSIONRECOGNITIONTHEVALUEOFTHEMAPISAROUND082KEYWORDSFACIALEXPRESSIONRECOGNITIONFASTERRCNNDEEPLEARNINGGRAPHICSPROCESSINGUNIT1INTRODUCTIONFACIALEXPRESSIONISAKINDOFEFFECTIVEWAYOFHUMANCOMMUNICATIONFACIALEXPRESSIONRECOGNITIONISTHEKEYTECHNOLOGYFORREALIZINGHUMANCOMPUTERINTERACTIONTOBETHEEMOTIONALCOMPUTINGSYSTEMFACIALEXPRESSIONHASABROADAPPLICATIONPROSPECTINMANYRESEARCHFIELDS,SUCHASVIRTUALREALITY,VIDEOCONFERENCE,CUSTOMERSATISFACTIONSURVEYANDOTHERFIELDSDESPITEOFGREATENCOURAGINGPROGRESSHAVEBEENMADEINTHISRESEARCHFIELD,THEREARESTILLMANYPROBLEMSEXISTINGONONEHAND,THETRADITIONALFEATUREEXTRACTIONMETHODSARECOMPLETELYRELIEDONHUMANEXPERIENCE,WHICHISSTILLTOOCOMPLICATEDFORREALAPPLICATIONTHEREFORE,THETRADITIONALMETHODSAREVERYDIFFICULTTOEXTRACTUSEFULFEATURESCOMPREHENSIVELYANDEFFECTIVELYONTHEOTHERHAND,THETRADITIONALMETHODSCANNOTDISPOSETHEBIGDATAANDACHIEVEBETTERPERFORMANCESOITISNOTEASYTOMEETTHEREALAPPLICATIONREQUIREMENTINMOSTSITUATIONS,THISKINDOFMETHODCANNOTBEEMPLOYEDEFFECTIVELY187705092017THEAUTHORSPUBLISHEDBYELSEVIERBVTHISISANOPENACCESSARTICLEUNDERTHECCBYNCNDLICENSEHTTP/CREATIVECOMMONSORG/LICENSES/BYNCND/40/PEERREVIEWUNDERRESPONSIBILITYOFTHESCIENTIFICCOMMITTEEOFTHE7THINTERNATIONALCONGRESSOFINFORMATIONANDCOMMUNICATIONTECHNOLOGYDOI101016/JPROCS201703069136JIAXINGLIETAL/PROCEDIACOMPUTERSCIENCE1072017135140TOADDRESSTHEABOVEISSUES,WEPROPOSEANENDTOENDRECOGNITIONMETHODBASEDONFASTERRCNN1THEPROPOSEDMETHODCANBEUSEDTOSOLVETHEEXISTINGPROBLEMSFIRST,THEREGIONPROPOSALNETWORKSRPNS1AREUSEDTOPREDICTEFFICIENTANDACCURATEREGIONPROPOSAL4THEPIPELINEOFTHEPROPOSEDMETHODJUSTUSEONECONVOLUTIONALNEURALNETWORKCNNFORALLPURPOSESO,THEREGIONPROPOSALISNEARLYCOSTFREEBYSHARINGCONVOLUTIONALFEATURESOFTHEDOWNFLOWDETECTIONNETWORKSECOND,THERPNALSOIMPROVEDTHEREGIONALPROPOSAL4QUALITYANDTHEACCURACYOFTHEOVERALLTARGETDETECTION2FASTERRCNNALGORITHMFASTERRCNN1CANBESIMPLYREGARDEDASTHESYSTEMCONSISTINGOFREGIONALPROPOSALNETWORKANDFASTREGIONSWITHCONVOLUTIONALNEURALNETWORKFEATURESFASTRCNNTHEREGIONALPROPOSALNETWORKISUSEDTOINSTEADSELECTIVESEARCHALGORITHM4OFFASTRCNNTHEPROPOSEDMETHODFOCUSESONSOLVINGTHREEPROBLEMS1HOWTODESIGNAREGIONALPROPOSALNETWORK2HOWTOMAKEPROPOSALNETWORKREGION3HOWTOSHAREFEATUREEXTRACTIONNETWORK21CANDIDATEREGIONANCHORSCHARACTERISTICSCANBESEENASA256CHANNELIMAGEWITHASCALEOF5139,FOREACHPOSITIONOFTHEIMAGETHEMETHODCONSIDERSTHENINEPOSSIBLECANDIDATEWINDOWS,WHICHARETHREEAREASOF128,256,512MULTIPLIEDBYTHREERATIOSOF11,12,21THESECANDIDATEWINDOWSARESAIDTOBEAS“ANCHORS“FIG1SHOWSTHEANCHOR5139CENTER,ASWELLAS9ANCHOREXAMPLESFIG1THE5139ANCHORCENTERSASWELLAS9ANCHOREXAMPLESEACHPOSITIONOFTHEOUTPUTOFCLASSIFICATIONLAYER6CLS_SCORESHOWSTHEPROBABILITYTHATTHE9ANCHORSBELONGTOTHEFOREGROUNDANDBACKGROUNDANDEACHPOSITIONOFTHEOUTPUTOFREGRESSIONLAYER6BBOX_PREDSHOWSTHATTHECORRESPONDINGWINDOWOFTHE9ANCHORSSHOULDBETRANSLATEDTOSCALEPARAMETERSFOREACHLOCATION,THECLASSIFICATIONLAYEROUTPUTSTHEPROBABILITYOFTHEFOREGROUNDANDTHEBACKGROUNDFROMTHE256DIMENSION,WHILETHEREGRESSIONLAYEROUTPUTS4TRANSLATIONSCALINGPARAMETERSFROMALOCALRESPECTIVE,THETWOLAYERSARETHEWHOLECONNECTIONNETWORK,WHILEFROMAGLOBALRESPECTIVE,SINCETHENETWORKSHARESAMEPARAMETERSINALLPOSITIONS5139,THENETWORKUSEDINTHEPRESENTSTUDYISACTUALLYWITHASIZEOF1122SHARINGFEATUREREGIONPROPOSALNETWORKRPNANDFASTRCNNREQUIREANORIGINALFEATUREEXTRACTIONNETWORKTHEIMAGENETCLASSIFICATIONLIBRARYISUSEDTOTRAINTHEINITIALPARAMETER0OFTHENETWORKTHENTHENETWORKISFINETUNEDBYTHESPECIFIEDDATASETTHEPROPOSEDMETHODPROVIDESTHREEMETHODS1TRAINRPNTOEXTRACTTHEANCHORSONTHETRAININGSETFROM02TRAINFASTRCNNBYUSINGTHEANCHORSFROM0,ANDTHEPARAMETERISDENOTEDAS13TRAINRPNFROM1FIG2SHOWSTHEDETAILSTEPSOFTHESHAREDFEATUREJIAXINGLIETAL/PROCEDIACOMPUTERSCIENCE1072017135140137INPUTTRAININGIMAGECONVFEATUREMAPROIPIFIG2THESTEPSOFTHESHAREDFEATUREWITHTHESEDEFINITIONS,WEMINIMIZEANOBJECTIVEFUNCTIONFOLLOWINGTHEMULTITASKLOSSINFASTRCNN2FORANANCHORBOXI,ITSLOSSFUNCTIONISDEFINEDASLP,TLP,PPLT,T1IICLSIIIREGIIHEREPIISTHEANCHORIBEINGANOBJECT1OFTHEPROBABILITYOFPREDICTIONIFTHEANCHORLABELISPOSITIVE,IS1,IFITISNEGATIVE,ITIS0TITX,TY,T,THIREPRESENTSTHEPREDICTEDBOUNDINGBOXOF4PARAMETERIZEDCOORDINATES6,ANDTT,T,T,TINDICATESTHATTHEGROUNDTRUTHBOX6ISASSOCIATEDWITHAPOSITIVEIXYHIANCHORTHECLASSIFICATIONLOSSLREGISTHESOFTMAXLOSSOFTWOCLASSES5THEDETAILSOFOURFACIALEXPRESSIONRECOGNITIONMETHODISILLUSTRATEDINFIG3DEEPROIPOOLINGLAYERRPNSFULLCONNECTIONNETWORKSOFTMAXREGRESSOROUTPUTSFIG3FLOWCHARTOFOURFACIALEXPRESSIONRECOGNITIONMETHOD3EXPERIMENTS31DATASETANDFEATURESTHEDATASETISPROVIDEDBYCHINESELINGUISTICDATACONSORTIUMCLDC9,WHICHISCOMPOSEDOFMULTIMODALEMOTIONALAUDIOANDVIDEODATATOTALEIGHTEXPRESSIONARECOLLECTEDFROMTVSERIESORMOVIESSOMEEXAMPLESARESHOWNINFIG4138JIAXINGLIETAL/PROCEDIACOMPUTERSCIENCE1072017135140FIG4THEPICTUREOFTHEDATAFROMCLDCFROMLEFTTORIGHTWORRIED,ANGRY,DISGUST,SURPRISE,ANXIOUS,HAPPY,SADANDNEURALINTHEEXPERIMENT,THEDATASETCONSISTSOF66486PICTURESWITHEIGHTCATEGORIESAMONGTHEMARE6174WORRIEDPICTURES,10862ANGRYPICTURES,1687DISGUSTPICTURES,2574SURPRISEPICTURES,12019ANXIOUSPICTURES,9867HAPPYPICTURES,18326SADPICTURESAND4977NEURALPICTURESTHERATIOOFTRAINING,VALIDATIONANDTESTINGDATAIS811SINCEFASTERRCNNWASUSEDTODETECTFACEDIRECTLY,THEBACKGROUNDWASCONSIDEREDASONECLASSSO,TOTAL9CATEGORIESWEREUSEDINTHISRESEARCH32DATALABELMAKINGSINCEFASTERRCNNISUSED,THEREGIONOFINTERESTROIOFEACHIMAGEMUSTBEMARKEDFIRSTTHESOFTWARECANBEEMPLOYEDTOACHIEVETHECOORDINATESOFROITHENTHECOORDINATESARETRANSFERINTOXMLFORMATTHEROIOFSOMEIMAGESISSHOWNINFIG5FIG5DATALABELMAKING33MODELDESIGNWEUSETHETHREEPASCAL_VOCMODELPROVIDEDBYTHEPYFASTERRCNN,RESPECTIVELY,VGG_CNN_M_10248,ZF7ANDVGG163,WHICHARECALLEDTHEFASTER_RCNN_ALT_OPTNETWORKTOFINETURNIMAGENETMODELTHEDEPTHOFTHETHREENETWORKSISINCREASINGSOWECANCOMPARETHEEXPERIMENTALRESULTSTOFURTHERANALYZETHEACCURACYOFTHEEXPERIMENTTHROUGHTHETHREENETWORKS34PARAMETERSETTINGTHESOLVERPARAMETERSOFTHENETWORKARESETASFOLLOWSSTAGE1_FAST_RCNN_TRAINPTBASE_LRFASTER0001,LR_POLICYFASTER“STEP“,STEPSIZEFASTER30000,DISPLAYFASTER20,AVERAGE_LOSSFASTER100,MOMENTUMJIAXINGLIETAL/PROCEDIACOMPUTERSCIENCE1072017135140139FASTER09,WEIGHT_DECAYFASTER00005STAGE1_RPN_TRAINPTBASE_LRFASTER0001,LR_POLICYFASTER“STEP“,STEPSIZEFASTER60000,DISPLAYFASTER20,AVERAGE_LOSSFASTER100,MOMENTUMFASTER09,WEIGHT_DECAYFASTER00005STAGE2_FAST_RCNN_TRAINPTBASE_LRFASTER0001,LR_POLICYFASTER“STEP“,STEPSIZEFASTER30000,DISPLAYFASTER20,AVERAGE_LOSSFASTER100,MOMENTUMFASTER09,WEIGHT_DECAYFASTER00005STAGE2_RPN_TRAINPTBASE_LRFASTER0001,LR_POLICYFASTER“STEP“,STEPSIZEFASTER60000,DISPLAYFASTER20,AVERAGE_LOSSFASTER100,MOMENTUMFASTER09,WEIGHT_DECAYFASTER00005THEPARTIALPARAMETERSOFTHENETWORKARESETASFOLLOWSDATA_PARAM_STR_NUM_CLASSES9,CLS_SCORE_NUM_OUTPUT9,BBOX_PRED_NUM_OUTPUT3635TRAININGANDTESTINGWETREATOVER08IOUOVERLAPFORALLREGIONPROPOSALSWITHAGROUNDTRUTHBOXASPOSITIVESANDTHERESTASNEGATIVESFORBOXSCLASSWEBIASTHESAMPLINGTOWARDSPOSITIVEWINDOWSBECAUSETHEYAREEXTREMELYRARECOMPAREDTOBACKGROUND4EXPERIMENTALRESULTINORDERTOIMPROVETHERELIABILITYOFTHEEXPERIMENTALRESULTS,THREEDIFFERENTDEPTHOFTHENETWORKISUSEDTOTRAINANDTESTDATA,THATIS,VGG_CNN_M_10248,ZF7ANDVGG163THETRAININGRESULTSOFTHETHREEKINDSOFNETWORKSARESHOWNINTABLE1ASWECANSEEFROMTABLE1,WITHTHEINCREASEOFTHEDEPTHOFTHENETWORK,THEMAPVALUEOFTHETRAININGDETECTIONISIMPROVEDITCANBECLEARTOFINDTHATSOMETYPESWITHLARGEAMOUNTDATA,SUCHASTHETYPEOFANXIOUS,THERECOGNITIONRATEISNOTVERYHIGHONTHECONTRARY,SOMETYPESWITHSMALLTRAININGDATA,SUCHASTHETYPEOFDISGUST,BUTTHERECOGNITIONRATEISRELATIVELYHIGHTHATSBECAUSEITISNOTBALANCEDFORTHETRAININGDATAOFEACHTYPE,ITLEADSTOTHEMUTUALINTERFERENCEOFSOMEKINDSOFDATAINTRAININGBUTIT,THISPROBLEM,HASNOTMUCHIMPACTONTHERESULTSOFTHETRAININGDATA,WECANSTILLOBTAINTHEFINALRECOGNITIONRATEANDRECOGNITIONRESULTSINTHEFUTURE,WEWILLMAKETHEAPPROPRIATEJUDGMENTANDCORRECTIONFORTHEIMBALANCEOFTHEDATA,SOTHATTHEPROBLEMWILLNOTAFFECTTHERESULTSOFTHEEXPERIMENT,SOASTOIMPROVETHEREADABILITYANDACCURACYOFTHEDATAFROMTHETABLE1,THERECOGNITIONRATEOFTHENEURALTYPEISVERYLOWMAKETHEMAPVALUEISNOTVERYHIGHFORALLTESTDATATHENEURALEXPRESSIONISVERYHARDTOIDENTIFYBECAUSETHEREARETOOMANYHUMANFACTORSTODETERMINENEURALTYPEWHENLABELIMAGES,SOMEOTHERCLASSEXPRESSIONAREVERYEASILYDETERMINEDTOBEANEURALTYPEINTHEFUTURE,WECANIMPROVETHERECOGNITIONRATEBYINCREASINGTHETRAININGDATAOFTHENEURALTYPETABLE1THETRAININGRESULTSOFTHETHREEKINDSOFNETWORKSPASCAL_VOCMODELWORRIEDANGRYDISGUSTSURPRISEANXIOUSHAPPYSADNEURALMAPVGG_CNN_MSOMEEXAMPLEDETECTIONSUSINGFASTERRCNNONCLDCARESHOWNINFIG6WECANSEEFROMTHEFIG5,ITISVERYGOODFORRECOGNITIONEFFECTOF6KINDSOFTYPESWORRIED,ANGRY,DISGUST,ANXIOUS,HAPPYANDSAD,ANDSOMERECOGNITIONRATEEVENREACHED100,SUCHASTHETYPESOFDISGUSTANDANGRYITCANBESEENTHATTHEEXPERIMENTALRESULTSHAVEREACHEDTHEEXPECTEDGOALHOWEVER,THEREARENOTVERYGOODIDENTIFICATIONFORTHETYPESOFSURPRISEANDNEURALFIRST,THETYPEOFSURPRISEHAVEMANYSIMILARITIESWITHTHETYPESOFANGRYANDHAPPY,WHICHDOESNOTHAVETHEVERYGOODRECOGNITIONFEATURESOTHETYPEOFSURPRISEAREIDENTIFIEDASANGRYORHAPPYINTESTINGDATATHETYPEOFNEURALISALSODUETOTHEHUMANELEMENTWHENITISUSEDASALABELINLATEREXPERIMENTS,WECANINCREASETHEWEIGHTOFTHEEYESANDMOUTHFROMTHEIMAGETORECOGNIZETHEFEATUREOFIMAGESACCURATELY,BECAUSEITISMAINLYTHROUGHTHEBEHAVIORCHARACTERISTICSOFTHE_1024079220899809798088790880608513090780360408200ZF080150899809739089790879908666090830334408203VGG16083150901609782089730885708812090910364608312140JIAXINGLIETAL/PROCEDIACOMPUTERSCIENCE1072017135140EYESANDMOUTHFORTHEFACIALEXPRESSIONRECOGNITIONATTHESAMETIME,ITCANINCREASETHETRAININGDATAOFEACHTYPEANDENHANCETHERECOGNITIONOFTHEDATATOINCREASETHERECOGNITIONRATEOFTHETYPEFIG6EXAMPLEDETECTIONSUSINGFASTERRCNNONCLDC5CONCLUSIONINTHISPAPER,FASTERRCNNWASUSEDTOIDENTIFYFACIALEXPRESSIONTHEREARETHEFOLLOWINGADVANTAGESUSEDINFACIALEXPRESSIONRECOGNITIONTHEORIGINALIMAGEWASUSEDASTHEWHOLENETWORKINPUTTHEPROCESSOFFEATUREEXTRACTIONINTHETRADITIONALFACIALEXPRESSIONRECOGNITIONISAVOIDEDTHEFEATURESAREEXTRACTEDBYNETWORKFROMTRAININGDATASETAUTOMATICALLYTHEREGIONPROPOSALNETWORKSRPNSWASUSEDTOGENERATEAEFFICIENTANDAACCURATEREGIONPROPOSALINEACHIMAGE,THEPROPOSEDMETHODLOCATETHEFACEREGIONANDRECOGNI
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:用更快的R-CNN进行人脸表情识别【中文3606字】
链接地址:https://www.renrendoc.com/p-9931492.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!