设计说明书.doc

柜门缓冲支架冲孔弯曲级进模设计【15张CAD图纸和说明书】

收藏

资源目录
跳过导航链接。
柜门缓冲支架冲孔弯曲级进模设计【15张CAD图纸和说明书】.rar
设计说明书.doc---(点击预览)
毕业设计(论文)任务书.doc---(点击预览)
毕业设计中期检查表.doc---(点击预览)
毕业设计(论文)进度计划表.doc---(点击预览)
开题报告.doc---(点击预览)
外文翻译原文.doc---(点击预览)
外文翻译中文.doc---(点击预览)
CAXA图纸
02(凸模固定板).exb
03(弯曲凹模).exb
04(压料板).exb
05(下垫板).exb
06(弯曲凸模).exb
07(侧刃凸模).exb
上垫板.exb
下料凸模.exb
下料凸模2.exb
冲孔凸模.exb
凹模.exb
总图.exb
排样图.exb
模柄.exb
零件图.exb
02(凸模固定板).dwg
03(弯曲凹模).dwg
04(压料板).dwg
05(下垫板).dwg
06(弯曲凸模).dwg
07(侧刃凸模).dwg
上垫板.dwg
下料凸模.dwg
下料凸模2.dwg
冲孔凸模.dwg
凹模.dwg
总图.dwg
排样图.dwg
模柄.dwg
零件图.dwg
压缩包内文档预览:(预览前20页/共42页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:9944435    类型:共享资源    大小:2.17MB    格式:RAR    上传时间:2018-04-06 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
柜门 缓冲 支架 冲孔 弯曲 曲折 级进模 设计 15 cad 图纸 以及 说明书 仿单
资源描述:

摘  要

 冲压模具技术是模具制造业中最重要的组成部分,机械、电子、轻工业等制造生产中大量使用了冲压零件。冲压模具技术水平的高低,发展前景的好坏直接影响到整个制造业的发展。随着产品竞争日益激烈,产品更新加速,促使了冲压技术的发展更加快速、更加完善。

 多工位级进模是在普通级进模的基础上发展起来的精密、高效、高寿命的先进模具。多工位级进模在不同的工位可以连续完成复杂零件的冲裁、弯曲、拉深、翻孔、翻边及其它成形等工序。主要用于生产批量大、材料厚度较薄、形状复杂、精度要求较高的中小型冲压件的生产。

 本毕业设计以柜门缓冲支架冲孔弯曲级进模设计为题,内容包括产品的工艺分析和设计模具的整个冲压模设计的流程。首先,从该产品的特点入手,通过进行工艺分析,确定该制件的加工流程,用一套级进模一次性依次完成冲孔、冲裁外形、弯曲、成形。阐述了冲孔弯曲级进模的整体结构特点及工作过程,应注意的问题和装配工艺性。重点分析了级进模具的结构的工作原理。冲孔弯曲模是本次毕业设计的难点和创新点,它在未来的模具发展中具有重要的实用性。


关键词:冲压;级进模;冲孔;弯曲


Abstract

Stamping die mold manufacturing technology is the most important part of the machinery, electronics, light industry manufacturing heavy use of stamping parts. The level of stamping die technology, the development prospects of a direct impact on the entire manufacturing industry. With the increasingly competitive products, product updates to accelerate, prompting the stamping technology faster and more complete.

    Multi-position into modules are o-level into mode in the developed on the basis of precision, high efficiency, high life-span advanced mold. Multi-position into the mold in different location can continuously complete complex components cutting, bending, deep drawing, the hole flanging, flanging and other forming processes. Mainly for the production of batch big, material is very thin, complex shape, higher accuracy of small and medium-sized stamping production.

The graduation to the door cushion bracket punching bending progressive die design stage title,level of technology includes product design and analysis of the whole stamping die mould design process. First, from the product's characteristics of technology, through analysis of the parts, and determine the processing flow, using a set of complete progressive die in Punching, blanking, bending, forming shape. Expounds the Progressive die punching bending a mold structure characteristics and working process, Focus on the analysis of the structure of progressive die working principle . Punching bending die is the graduation design difficulties and innovations, it in future mould development have an important practical.


Key words: stamping;Progressive die;punching;bending 


目    录


引  言 1

1  冲裁件的工艺性分析 3

1.1 冲裁件的结构工艺性 3

1.1.1 冲裁件的形状 3

1.1.2 冲裁件的尺寸精度 4

2  制件冲压工艺方案的确定 5

2.1 冲压工序的组合 5

2.2 冲压顺序的安排 5

3  制件排样图的设计及材料利用率的计算 6

3.1 展开尺寸的计算 6

3.2 制件排样图的设计 7

3.2.1搭边与料宽 8

3.2.2 材料利用率的计算 10

4 确定总冲压力和选用压力机及计算压力中心 11

4.1 冲压力 11

4.1.1 冲裁力的计算 11

4.1.2卸料力、推件力及顶件力的计算 11

4.1.3弯曲力的计算 11

4.2 压力中心的计算 13

4.3 压力机的选用 14

5  凸、凹模刃口尺寸计算 16

5.1 凸、凹模刃口尺寸计算原则 16

5.2 凸、凹模刃口尺寸计算方法 17

5.2.1 凸模和凹模分开加工 17

5.2.2 弯曲部分刃口尺寸的计算 19

6  模具整体结构形式设计 24

7  模具零件的结构设计 25

7.1 凹模的设计 25

7.2 凸模的设计 25

7.3 凸模固定板的设计 27

7.4 压料板的设计 27

7.5 垫板的设计 28

7.6 模架和模柄的确定 28

8  模具的总装配 32

8.1 模具的安装与装配 32

8.1.1模具的安装 32

8.1.2模具安装 32

8.2 模具的试冲与调整 33

8.2.1试冲过程的调整 33

结  论 34

致  谢 35

参考文献 36


引  言

模具行业的发展现状及市场前景。现代模具工业有“不衰亡工业”之称。世界模具市场总体上供不应求,市场需求量维持在700亿至850亿美元,同时,我国的模具产业也迎来了新一轮的发展机遇。近几年,我国模具产业总产值保持15%的年增长率(据不完全统计,2005年国内模具进口总值达到700多亿,同时,有近250个亿的出口),到2007年模具产值预计为700亿元,模具及模具标准件出口将从现在的每年9000多万美元增长到2006年的2亿美元左右。单就汽车产业而言,一个型号的汽车所需模具达几千副,价值上亿元,而当汽车更换车型时约有80%的模具需要更换。2005年我国汽车产销量均突破550万辆,预计2007年产销量各突破700万辆,轿车产量将达到300万辆。另外,电子和通讯产品对模具的需求也非常大,在发达国家往往占到模具市场总量的20%之多。目前,中国17000多个模具生产厂点,从业人数约50多万。1999年中国模具工业总产值已达245亿元人民币。工业总产值中企业自产自用的约占三分之二,作为商品销售的约占三分之一。在模具工业的总产值中,冲压模具约占50%,塑料模具约占33%,压铸模具约占6%,其它各类模具约占11%。

 模具的发展是体现一个国家现代化水平高低的一个重要标志,就我国而言,经过了这几十年曲折的发展,模具行业也初具规模,从当初只能靠进口到现在部分进口已经跨了一大步,但还有一些精密的冲模自己还不能生产只能通过进口来满足生产需要。随着各种加工工艺和多种设计软件的应用使的模具的应用和设计更为方便。随着信息产业的不断发展,模具的设计和制造也越来越趋近于国际化。现在模具的计算机辅助设计和制造(CAD/CAM)技术的研究和应用。大大提搞了模具设计和制造的效率。减短了生产周期。采用模具CAD/CAM技术,还可提高模具质量,大大减少设计和制造人员的重复劳动,使设计者有可能把精力用在创新和开发上。尤其是pro/E和UG等软件的应用更进一步推动了模具产业的发展。。数控技术的发展使模具工作零件的加工趋进于自动化。电火花和线切割技术的广泛应用也对模具行业起到了飞越发展。模具的标准化程度在国内外现在也比较明显。特别是对一些通用件的使用应用的越来越多。其大大的提高了它们的互换性。加强了各个地区的合作。对整个模具的行业水平的提高也起到了重要的作用。


内容简介:
编号毕业设计论文外文翻译(原文)学院专业机械设计制造及其自动化学生姓名学号指导教师单位姓名职称讲师2014年3月09日0SOLIDMODELINGANDFINITEELEMENTANALYSISOFANOVERHEADCRANEBRIDGECALKIN,CEIMRAK,HKOCABASABSTRACTTHEDESIGNOFANOVERHEADCRANEBRIDGEWITHADOUBLEBOXGIRDERHASBEENINVESTIGATEDANDACASESTUDYOFACRANEWITH35TONCAPACITYAND13MSPANLENGTHHASBEENCONDUCTEDINTHEINITIALPHASEOFTHECASESTUDY,CONVENTIONALDESIGNCALCULATIONSPROPOSEDBYFEMRULESANDDINSTANDARDSWEREPERFORMEDTOVERIFYTHESTRESSANDDEFLECTIONLEVELSTHECRANEDESIGNWASMODELEDUSINGBOTHSOLIDSANDSURFACESFINITEELEMENTMESHESWITH4NODETETRAHEDRALAND4NODEQUADRILATERALSHELLELEMENTSWEREGENERATEDFROMTHESOLIDANDSHELLMODELS,RESPECTIVELYAFTERACOMPARISONOFTHEFINITEELEMENTANALYSES,THECONVENTIONALCALCULATIONSANDPERFORMANCEOFTHEEXISTINGCRANE,THEANALYSISWITHQUADRATICSHELLELEMENTSWASFOUNDTOGIVETHEMOSTREALISTICRESULTSASARESULTOFTHISSTUDY,ADESIGNOPTIMIZATIONMETHODFORANOVERHEADCRANEISPROPOSEDKEYWORDSOVERHEADCRANE,FINITEELEMENTMETHOD,SOLIDMODELING,BOXGIRDERNOTATIONBDISTANCEBETWEENTWOSIDEPLATESBKWIDTHOFLOWERPLATEFAASTATICLOADDUETOTHETROLLEYFYLOADDUETOTHEWORKINGLOADH0HEIGHTOFTHEGIRDERENDH2HEIGHTOFTHESIDEPLATESLADISTANCEBETWEENTROLLEYWHEELSLKSPANOFCRANEGIRDERLPDISTANCEBETWEENTWOADJACENTSUPPORTSQWEIGHTOFONEMETERPLATFORMQKWEIGHTOFONEMETERMAINTENANCEPLATFORMQPUNIFORMLYDISTRIBUTEDMASSUNITSOFBRIDGET1THICKNESSOFTHEUPPERANDLOWERPLATEST2THICKNESSOFTHESIDEPLATESX2DISTANCEBETWEENCENTEROFGRAVITYANDTHEMIDPOINTOFTHELEFTSIDEPLATEX4DISTANCEBETWEENCENTEROFGRAVITYANDTHEMIDPOINTOFTHERAILY1DISTANCEBETWEENNEUTRALAXISANDTHEMIDPOINTOFTHERAILY3DISTANCEBETWEENCENTEROFGRAVITYANDTHEMIDPOINTOFTHETOPPLATEY5DISTANCEBETWEENNEUTRALAXISANDTHEMIDPOINTOFTHETOPPLATEWX1MOMENTOFRESISTANCEONXAXIS1WY1MOMENTOFRESISTANCEONYAXISAMPLIFYINGCOEFFICIENTCDYNAMICCOEFFICIENT1INTRODUCTIONCRANESARETHEBESTWAYOFPROVIDINGAHEAVYLIFTINGFACILITYCOVERINGVIRTUALLYTHEWHOLEAREAOFABUILDINGANOVERHEADCRANEISTHEMOSTIMPORTANTMATERIALSHANDLINGSYSTEMFORHEAVYGOODSTHEPRIMARYTASKOFTHEOVERHEADCRANEISTOHANDLEANDTRANSFERHEAVYPAYLOADSFROMONEPOSITIONTOANOTHERTHUSTHEYAREUSEDINAREASSUCHASAUTOMOBILEPLANTSANDSHIPYARDS1,2THEIRDESIGNFEATURESVARYWIDELYACCORDINGTOTHEIRMAJOROPERATIONALSPECIFICATIONS,SUCHASTYPEOFMOTIONOFTHECRANESTRUCTURE,WEIGHTANDTYPEOFTHELOAD,LOCATIONOFTHECRANE,GEOMETRICFEATURESANDENVIRONMENTALCONDITIONSSINCETHECRANEDESIGNPROCEDURESAREHIGHLYSTANDARDIZEDWITHTHESECOMPONENTS,MOSTEFFORTANDTIMEARESPENTONINTERPRETINGANDIMPLEMENTINGTHEAVAILABLEDESIGNSTANDARDS3THEREAREMANYPUBLISHEDSTUDIESONSTRUCTURALANDCOMPONENTSTRESSES,SAFETYUNDERSTATICLOADINGANDDYNAMICBEHAVIOROFCRANES516SOLIDMODELINGOFBRIDGESTRUCTURESANDFINITEELEMENTANALYSISTOFINDTHEDISPLACEMENTSANDSTRESSVALUESHASBEENINVESTIGATEDBYDEMIRSOY17SOLIDMODELINGTECHNIQUESAPPLIEDFORROADBRIDGESTRUCTURES,ANDANANALYSISOFTHESESTRUCTURESUSINGTHEFINITEELEMENTMETHODAREPROVIDEDIN18INTHISSTUDY,STRESSANDDISPLACEMENTSWEREFOUNDUSINGFEM90SOFTWARESOLIDMODELINGOFACRANEBRIDGE,THELOADINGATDIFFERENTPOINTSONTHEBRIDGEANDTHENAPPLICATIONOFTHEFINITEELEMENTMETHODHAVEBEENSTUDIEDBYCELIKTAS19SHEPRESENTEDTHERESULTSOFFINITEELEMENTMETHODSFORANOVERHEADCRANEDINTASCHENBUCHANDFEMFEDERATIONEUROPENNEDELAMANUTENTIONRULESOFFERDESIGNMETHODSANDEMPIRICALAPPROACHESANDEQUATIONSTHATAREBASEDONPREVIOUSDESIGNEXPERIENCEANDWIDELYACCEPTEDDESIGNPROCEDURESDINTASCHENBUCH44AND185AREACOLLECTIONOFSTANDARDSRELATEDTOCRANEDESIGNDINNORMSGENERALLYSTATESTANDARDVALUESOFDESIGNPARAMETERSFEMRULESAREMAINLYANACCEPTEDCOLLECTIONOFRULESTOGUIDECRANEDESIGNERSITINCLUDESCRITERIAFORDECIDINGONTHEEXTERNALLOADSTOSELECTCRANECOMPONENTS3,20INTHISSTUDY,THECALCULATIONSAPPLYTHEFEMRULESANDDINSTANDARDS,WHICHAREUSEDFORBOXGIRDERCRANEBRIDGESTHECALCULATIONOFTHEBOXGIRDERUSESTHECESANINCSTANDARDBRIDGETABLESTHENASOLIDMODELOFTHECRANEBRIDGEISGENERATEDWITHTHESAMEDIMENSIONSASINTHECALCULATIONRESULTSTHENSTATICANALYSISISPERFORMED,USINGTHEFINITEELEMENTMETHODBEFORESTARTINGTHESOLUTION,THEBOUNDARYCONDITIONSAREAPPLIEDASINPRACTICE22OVERHEADCRANESWITHADOUBLEBOXGIRDEROVERHEADTRAVELLINGCRANESWITHADOUBLEBOXGIRDERNOTONLYHOISTLOADSBUTALSOCARRYTHEMHORIZONTALLYADOUBLEBEAMOVERHEADCRANEISBUILTOFATROLLEYTRAVELLINGONBRIDGES,ANDBRIDGESTRAVELLINGONRAILSTHETROLLEYHOISTSORLOWERSTHELOADSANDCARRIESTHEMONTHEBRIDGESTRUCTURETHEBRIDGESCARRYTHELOADSONARAILASARESULT,THREEPERPENDICULARMOVEMENTSAREPERFORMEDTHESYSTEMISDEPICTEDINFIG1,WHERETHEPAYLOADOFTHEMASSISATTACHEDTOTHEBRIDGEWITHWIREROPES21,22THEDOUBLEBOXGIRDERSARESUBJECTEDTOVERTICALANDHORIZONTALLOADSBYTHEWEIGHTOFTHECRANE,THEWORKINGHOOKLOADANDTHEDYNAMICLOADSWITHADOUBLEBOXGIRDERCONSTRUCTION,THETROLLEYRUNSABOVEORBETWEENTHEGIRDERSTHEACCEPTABLECONSTRUCTIONREQUIREMENTSANDVALUESFORABOXGIRDERBRIDGESTRUCTUREARESHOWNINFIG2FIG1OVERALLVIEWOFANOVERHEADCRANEFIG2CONSTRUCTIONREQUIREMENTSFORABOXGIRDERBRIDGE33APPLICATIONOFFEMTOANOVERHEADCRANEAMONGNUMERICALTECHNIQUES,THEFINITEELEMENTMETHODISWIDELYUSEDDUETOTHEAVAILABILITYOFMANYUSERFRIENDLYCOMMERCIALSOFTWARESTHEFINITEELEMENTMETHODCANANALYSEANYGEOMETRY,ANDSOLVESBOTHSTRESSESANDDISPLACEMENTS23FEMAPPROXIMATESTHESOLUTIONOFTHEENTIREDOMAINUNDERSTUDYASANASSEMBLAGEOFDISCRETEFINITEELEMENTSINTERCONNECTEDATNODALPOINTSONTHEELEMENTBOUNDARIESTHEAPPROXIMATESOLUTIONISFORMULATEDOVEREACHELEMENTMATRIXANDTHEREAFTERASSEMBLEDTOOBTAINTHESTIFFNESSMATRIX,ANDDISPLACEMENTANDFORCEVECTORSOFTHEENTIREDOMAININTHISSTUDYFINITEELEMENTMODELINGISCARRIEDOUTBYMEANSOFTHECOSMOSWORKSANDMSCCOMMERCIALPACKAGEPATRANAND4NODETETRAHEDRALELEMENTSAND4NODEQUADRILATERALSHELLELEMENTSHAVEBEENUSEDFORMODELINGTHEOVERHEADCRANEBRIDGETHEFOURNODETETRAHEDRALELEMENTISTHESIMPLESTTHREEDIMENSIONALELEMENTUSEDINTHEANALYSISOFSOLIDMECHANICSPROBLEMSSUCHASBRACKETSTRESSANALYSISTHISELEMENTHASFOURNODES,WITHEACHNODEHAVINGTHREETRANSLATIONALANDTHREEROTATIONALDEGREESOFFREEDOMONTHEX,Y,ANDZAXESASHELLELEMENTMAYBEDEFINED,WHICHALLOWSINTHEPLANEORCURVEDSURFACEOFTHEELEMENTANDPOSSESBOTHLENGTHITWIDTHANDMAYONLYBEUSEDIN3DSIMULATIONSTHEFOURNODESHELLELEMENTISOBTAINEDBYASSEMBLINGTHEBENDINGELEMENTTOTHEAPPROPRIATEDEGREESOFFREEDOMTHISISSUFFICIENTASLONGASTHESHELLELEMENTDEFLECTIONISWITHINTHEPREDEFINEDRATIOOFSHELLTHICKNESS,OTHERWISETHESYSTEMWORKSASALARGEDEFLECTION4ATYPICALFOURNODETETRAHEDRALELEMENTANDFOURNODEQUADRATICSHELLELEMENT,ANDTHEIRCOORDINATESYSTEMSAREILLUSTRATEDINFIG324THEFOURNODETETRAHEDRALELEMENTCHOSENHASSIXDEGREESOFFREEDOMATEACHNODETRANSLATIONINTHENODALX,Y,ANDZDIRECTIONSANDROTATIONSABOUTTHENODALX,Y,ANDZDIRECTIONSFORTHEFOURNODEQUADRATICSHELLELEMENTUSEDTOMODELTHEOVERHEADCRANEGIRDER,RANDSDENOTETHENATURALCOORDINATESANDISTHETHICKNESSOFTHEELEMENTTHISSYSTEMDOESNOTHAVEANYHORIZONTALFORCETHEAXIALDISPLACEMENTSANDROTATIONSOFTHEFIRSTANDLASTFACESAREEQUALTOZEROINADDITION,THETRANSVERSEDISPLACEMENTISZEROATTHEFIRSTANDLASTFACENODESTHEEXTERNALFORCESACTINGONTHESYSTEMARETHEMASSOFTHEMAINGIRDEROFTHECRANEDISTRIBUTEDLOADANDTHEFORCESACTINGONTHEWHEELSOFTHETROLLEYALONGTHECRANEACTIVELOADTHEFORCESACTINGONTHETROLLEYWHEELSARECAUSEDBYTHEMASSOFTHETROLLEY,ANTHELIFTINGLOADWHICHWILLBEMOVEDONTHECRANE4NODETETRAHEDRALELEMENT4NODEQUADRATICSHELLELEMENT5FIG3ELEMENTSUSEDTOMODELANOVERHEADCRANEGIRDER4SOLIDANDFINITEELEMENTMODELINGOFANOVERHEADCRANEBRIDGETHEFINITEELEMENTMETHODISANUMERICALPROCEDURETHATCANBEAPPLIEDTOOBTAINSOLUTIONSTOAVARIETYOFPROBLEMSINENGINEERINGSTEADY,TRANSIENT,LINEARORNONLINEARPROBLEMSINSTRESSANALYSIS,HEATTRANSFER,FLUIDFLOWANDELECTROMECHANISMPROBLEMSMAYBEANALYSEDWITHFINITEELEMENTMETHODSTHEBASICSTEPSINTHEFINITEELEMENTMETHODAREDEFINEDASFOLLOWSPREPROCESSINGPHASE,SOLUTIONPHASE,ANDPOSTPROCESSINGPHASEREALCRANEDATAWASGATHEREDFROMCESANINC,ATURKISHCOMPANYINVOLVEDINMASSPRODUCTIONOFOVERHEADCRANESFIRST,THECRANEBRIDGEISMODELEDASASURFACEBRIDGEGEOMETRYISSUITABLEFORTHIS,ANDLONGANDTHINPARTSSHOULDALSOBEMODELEDASASURFACELATER,AMESHISCREATEDINTHISSTUDY,AQUADRATICELEMENTTYPEISUSEDSOLIDMODELINGISGENERATEDFORTHECALCULATEDCRANEBRIDGEANDTHESOLIDMODELISSHOWNINFIG420SOLIDMODELOFACRANEBRIDGEWIREFRAMEVIEWOFACRANEBRIDGEFIG4MODELSOFANOVERHEADCRANEBRIDGE65NUMERICALEXAMPLEOFANOVERHEADCRANEA35TONCAPACITYOVERHEADCRANEOFOVERALLLENGTH13MANDTOTALWEIGHT225TONSWASSELECTEDASASTUDYOBJECTTHECONFIGURATIONOFTHEOVERHEADCRANEISSHOWNINFIG1THEOVERHEADCRANECONSISTSOFTWOGIRDERS,TWOSADDLESTOCONNECTTHEM,ANDATROLLEYMOVINGINTHELONGITUDINALDIRECTIONOFTHEOVERHEADCRANEANDWHEELSTHEDRIVINGUNITISINSTALLEDINONEOFTHETWOGIRDERSTHEOVERHEADCRANEISSUPPORTEDBYTWORAILSANDTHERUNWAYGIRDERSINSTALLEDINBUILDINGINORDERTOCALCULATETHESTRESSINTHESTRUCTURE,THERULESOFFEM1001AREAPPLIEDTHEDESIGNVALUESUSEDINTHEBRIDGEANALYSISFROMTHEFEMANDDINSTANDARDSAREGIVENINTABLE1TABLE1BRIDGEPROPERTYVALUESFIRSTTHEMAXIMUMANDMINIMUMSTRESSESANDTHENTHESHEARSTRESSARECALCULATEDUSINGTHEFEMRULESUSINGTHEFINITEELEMENTMETHODFORTHECONSIDEREDGIRDER,WEOBTAINTHESTRESSVALNESWEOBTAINTHESTATICLOADSDUETOTHEDEADWEIGHT,THELOADSDUETOTHEWORKINGLOADMULTIPLIEDBYTHEDYNAMICCOEFFICIENT,ANDTHETWOMOSTUNFAVOURABLEHORIZONTALEFFECTS,EXCLUDINGTHEBUFFERFORCESHANDLINGCAPACITY35TONTROLLEYWEIGHT3TONBRIDGELENGTH13MDISTANCEBETWEENWHEELSOFTROLLEY2MTROLLEYVELOCITY20M/MINCRANEVELOCITY15M/MINHOISTINGVELOCIT27M/MINTOTALDURATIONOFUSEU4LOADSPECTRUMCLASSQ3APPLIANCEGROUPA5LOADINGTYPEHMAINLOADDYNAMICCOEFFICIENT115AMPLIFYINGCOEFFICIENT1117THEMAXIMUMSTRESSCONSISTSOFTHESTRESSONTHEBRIDGEDEADWEIGHTS,THESTRESSONTHETROLLEYDEADWEIGHT,THESTRESSFROMTHEHOISTINGLOAD,STRESSFROMTHEINERTIAFORCESANDTHESTRESSOFTHETROLLEYCONTRACTIONTHEMINIMUMSTRESSINCLUDESTHESTRESSONTHEBRIDGEDEADWEIGHTSANDTHESTRESSONTHETROLLEYDEADWEIGHTTHEMAXIMUMANDMINIMUMSTRESSESFORTHEGIVENVALUESACCORDINGTOTHEFEMRULES20AREWRITTENINSTANDARDFORMASAND,THEVALUEOFTHEDYNAMICCOEFFICIENTISAPPLIEDTOTHELOADINGARISINGFROMTHEWORKINGLOADTHEVALUEOFTHEAMPLIFYINGCOEFFICIENTDEPENDSTHEGROUPCLASSIFICATIONOFTHEAPPLICATION,ANDTHEWEIGHTOFONEMETERMAINTENANCEPLATFORMISZEROINTHISWORK25ITISASSUMEDTHATTHETOTALLOAD372780NISEFFECTEDONTHEMIDPOINTOFTHERAILANDEACHGIRDERSHARESTHISTOTALLOADEQUALLYTHISLOADISAPPLIEDVIATHECONTACTPOINTSOFTHETWOTROLLEYWHEELSINTHISSYSTEMTHEREFORETHEVALUEOFTHEACTINGFORCEONEACHPOINTIS93195NAPPLYINGTHETOTALLOADINTHESYSTEM,THEVALUEOFTHEMAXIMUMSTRESSACCORDINGTOEQ1IS14390N/MM2TOTWODECIMALPLACES,ANDTHEVALUEOFTHEMINIMUMSTRESSACCORDINGTOEQ2IS4733N/MM2TOTWODECIMALPLACESACCORDINGTOFIG5,THEPERMISSIBLESTRESSINSHEARCONSISTSOFTHESHEARSTRESSESOFTHEWHEELFORCES,ANDISDEFINEDAS20THEVALUEOFTHEMAXIMUMSHEARSTRESSIS2482N/MM2TOTWODECIMALPLACES8FROMEQ5SUBSTITUTINGEQ13THEEQUIVALENTSTRESSISGIVENBYTHEVALUEOFTHEEQUIVALENTSTRESSIS15018N/MM2TOTWODECIMALPLACESFIG5INERTIAANDMOMENTOFRESISTANCEINABOXGIRDER6RESULTSFROMAGIRDERMODELWITHAFOURNODETETRAHEDRALELEMENTTOMODELTHEOVERHEADCRANEGIRDERWITHAFOURNODETETHRAHEDRALELEMENT,COSMOSWORKSSOFTWAREWASUSEDFORFINITEELEMENTANALYSISUSINGTHEGIRDERSOLIDMODELGENERATEDBYMEANSOFSOLIDWORKS2003YOUNGSMODULUSEIS21105N/MM2ANDTHEPOISSONRATIOIS03FORFINITEELEMENTANALYSISTHEVALUEOFTHEMAXIMUMSTRESSOFTHESIDEPLATEIS1207N/MM2TOTWODECIMALPLACESANDTHEVALUEOFTHEMAXIMUMSTRESSOFTHEBOTTOMPLATEIS1508N/MM2TOTWODECIMALPLACESFROMFIG620THEDISPLACEMENTOFTHEMODELLEDOVERHEADCRANEGIRDERWASOBTAINEDFROMCOSMOSWORKS,ANDISILLUSTRATEDINFIG7THEVALUEOFMAXIMUMDISPLACEMENTOFTHEGIRDERISABOUT22MM9FIG6STRESSVALUESOFANOVERHEADCRANEGIRDERWITHAFOURNODETETRAHEDRALELEMENTFIG7DISPLACEMENTSOFANOVERHEADCRANEGIRDERWITHAFOURNODETETRAHEDRALELEMENT7RESULTSFROMAGIRDERMODELWITHAFOURNODEQUADRATICSHELLELEMENTTOMODELTHEOVERHEADCRANEGIRDERWITHAFOURNODEQUADRATICSHELLELEMENT,MSCPATRANSOFTWAREWASUSEDFORTHEFINITEELEMENTANALYSISYOUNGSMODULUSEIS2110N/MM2ANDTHEPOISSONRATIO_STIS03FORFINITEELEMENTANALYSISTHEVALUEOFTHEMAXIMUMSTRESSOFTHESIDEPLATEIS3540N/MM2TOTWODECIMALPLACES,10ANDTHEVALUEOFTHEMAXIMUMSTRESSOFTHEBOTTOMPLATEIS4930N/MM2TOTWODECIMALPLACES,FROMFIG820THEDISPLACEMENTOFTHEMODELLEDOVERHEADCRANEGIRDERWASOBTAINEDFROMMSCPATRAN,ANDISILLUSTRATEDINFIG9THEVALUEOFMAXIMUMDISPLACEMENTOFTHEGIRDERISABOUT389MMTHEVALUEOFTHEMAXIMUMSTRESSACCORDINGTOEQ1ISCALCULATEDAS14390N/MM2TOTWODECIMALPLACESTHESAFETYFACTORSHOULDBECONSIDEREDBETWEEN2AND3FOROVERHEADCRANEGIRDERDESIGNTHEMAXIMUMSTRESSVALUEOFTHESIDEPLATEISBETWEEN2414AND3621N/MM2TOTWODECIMALPLACES,ANDTHEMAXIMUMSTRESSVALUEOFTHEBOTTOMPLATEISBETWEEN3016AND4524N/MM2TOTWODECIMALPLACESFORAFOURNODETETRAHEDRALELEMENT,TAKINGINTOACCOUNTTHESAFETYFACTORTHEMAXIMUMSTRESSVALUEOFTHESIDEPLATEISBETWEEN708AND1062N/MM2TOTWODECIMALPLACESANDTHEMAXIMUMSTRESSVALUEOFTHEBOTTOMPLATEISBETWEEN986AND1479N/MM2TOTWODECIMALPLACESFORAFOURNODEQUADRATICSHELLELEMENT,TAKINGINTOACCOUNTTHESAFETYFACTORTHEPERMISSIBLEDISPLACEMENTOFTHEGIRDERIS13MMACCORDINGTOFEMRULESTHEMAXIMUMDISPLACEMENTOBTAINEDFROMTHEFINITEELEMENTMODELWITHAFOURNODETETRAHEDRALELEMENTISBETWEEN440AND660MM,TAKINGINTOACCOUNTTHESAFETYFACTORTHEMAXIMUMDISPLACEMENTOBTAINEDFROMTHEFINITEELEMENTMODELWITHAFOURNODEQUADRATICSHELLELEMENTISBETWEEN778AND1167MM,TAKINGINTOACCOUNTTHESAFETYFACTOR11FIG8STRESSVALUESOFANOVERHEADCRANEGIRDERWITHAQUADRATICSHELLELEMENTFIG9DISPLACEMENTSOFANOVERHEADCRANEGIRDERWITHAFOURNODEQUADRATICSHELLELEMENT8CONCLUSIONINTHISSTUDY,UNLIKETHEOTHERSTUDIESCARRIEDOUTPREVIOUSLY,SHELLELEMENTSIN12FINITEELEMENTMODELINGOFANOVERHEADBOXGIRDERHAVEBEENEXAMINEDINORDERTOSHOWTHEUSEOFSHELLELEMENTS,ONEILLUSTRATIVEOVERHEADCRANEBRIDGEEXAMPLEISGIVENTHEMAXIMUMSTRESSVALUEIS14390N/MM2AND4524N/MM2FORAFOURNODETETRAHEDRALELEMENTAND1479N/MM2FORAFOURNODEQUADRATICSHELLELEMENTUSINGBOTHCALCULATIONSACCORDINGTOTHEFEMRULESANDFINITEELEMENTANALYSISTHEVALUEOFTHEEQUIVALENTSTRESSIS15018N/MM2TOTWODECIMALPLACESTAKINGINTOACCOUNTTHESAFETYFACTOR,THESTRESSVALUEVARIESBETWEEN971455N/MM2,WHICHISOBTAINEDFROMMSCPATRANTHERATIOOFLENGTHTOTHICKNESSOFTHEELEMENTUSEDINMODELLINGTHEOVERHEADCRANEBOXGIRDERISHIGHERTHAN20THEREFORE,INORDERTOSHOWTHEACCURACYOFTHEANALYSISOFTHEOVERHEADCRANEBRIDGES,AFOURNODEQUADRATICSHELLELEMENTISUSEDINSTEADOFTHEFOURNODETETRAHEDRALELEMENTFORFINITEELEMENTANALYSISACKNOWLEDGMENTITISPLEASURETOACKNOWLEDGEMUCHSTIMULATINGCORRESPONDENCEWITHDRHAYDARLIVATYALIANDGRATEFULLYTOACKNOWLEDGETHESUPPORTOFCESANINC,WHICHPROVIDEDTHEDESIGNDATAMACHINETOOLNUMERICALCONTROLREFORMS1CNCSYSTEMSANDTHEDEVELOPMENTTRENDOFHISTORY1946BIRTHOFTHEWORLDSFIRSTELECTRONICCOMPUTER,WHICHSHOWSTHATHUMANBEINGSCREATEDTOENHANCEANDREPLACESOMEOFTHEMENTALWORKTOOLSITANDHUMANAGRICULTURE,INDUSTRIALSOCIETYINTHECREATIONOFTHOSEWHOMERELYINCREASECOMPAREDTOMANUALTOOLS,FROMAQUALITATIVELEAPFORMANKINDSENTRYINTOTHEINFORMATIONSOCIETYLAIDTHEFOUNDATIONSIXYEARSLATER,IN1952,COMPUTERTECHNOLOGYAPPLIEDTOTHEMACHINEINTHEUNITEDSTATESWASBORNFIRSTCNCMACHINETOOLSSINCETHEN,THETRADITIONALMACHINEPRODUCEDAQUALITATIVECHANGENEARLYHALFACENTURYSINCETHECNCSYSTEMHASEXPERIENCEDTWOPHASESANDSIXGENERATIONSOFDEVELOPMENT11NUMERICALCONTROLNCPHASE1952TO197013EARLYCOMPUTERSCOMPUTATIONALSPEEDLOWANDTHEPREVAILINGSCIENTIFICCOMPUTINGANDDATAPROCESSINGISNOTAFFECTED,BUTCANNOTMEETTHEREQUIREMENTSOFREALTIMECONTROLMACHINEPEOPLEHAVETOUSEDIGITALLOGICCIRCUIT“TIED“INTOASINGLEMACHINEASADEDICATEDCOMPUTERNUMERICALCONTROLSYSTEM,KNOWNASTHEHARDWARECONNECTIONNCHARDWIREDNC,CALLEDTHENUMERICALCONTROLNCWITHTHEDEVELOPMENTOFCOMPONENTSOFTHISPHASEAFTERTHREEGENERATIONS,THATIS,IN1952THEFIRSTGENERATIONTUBE1959OFTHESECONDGENERATIONTRANSISTOR1965OFTHETHIRDGENERATIONSMALLSCALEINTEGRATEDCIRCUITS12COMPUTERNUMERICALCONTROLCNCPHASE1970TOPRESENTTO1970,GMHASBEENASMALLCOMPUTERANDMASSPRODUCEDSOITTRANSPLANTSYSTEMASTHECORECOMPONENTOFNC,HAVEENTEREDACOMPUTERNUMERICALCONTROLCNCSTAGEINFRONTOFTHECOMPUTERSHOULDBE“UNIVERSAL“WORDOMITTEDTO1971,THEUNITEDSTATESINTELCOMPANYINTHEWORLDWILLBETHEFIRSTTIMETHETWOMOSTCORECOMPUTERCOMPONENTSCOMPUTINGANDCONTROLLER,ALARGESCALEINTEGRATEDCIRCUITTECHNOLOGYINTEGRATIONINACHIP,CALLEDTHEMICROPROCESSORMICROPROCESSOR,ALSOKNOWNASTHECENTRALPROCESSINGUNITCPU1974MICROPROCESSORTOBEUSEDINCNCSYSTEMTHISISBECAUSETHEFUNCTIONOFTHECOMPUTERISTOOSMALLTOCONTROLAMACHINETOOLCAPACITYAFFLUENTTHETIMEHASBEENUSEDTOCONTROLMORETHANONEMACHINE,CALLEDGROUPCONTROL,ASAREASONABLEECONOMICUSEOFTHEMICROPROCESSORMINICOMPUTERRELIABILITYANDTHENNOTIDEALEARLYMICROPROCESSORSPEEDANDFUNCTIONALITYWHILESTILLNOTHIGHENOUGH,BUTCANBEADOPTEDTOSOLVETHEMULTIPROCESSORARCHITECTUREASMICROPROCESSORCOREISAGENERALCOMPUTERCOMPONENTS,ITISSTILLKNOWNASTHECNCBY1990,PCMACHINESPERSONALCOMPUTERS,DOMESTICHABITSTHATCOMPUTERPERFORMANCEHASBEENDEVELOPEDTOAHIGHSTAGE,ASACNCSYSTEMTOMEETTHEREQUIREMENTSOFTHECORECOMPONENTSNCSYSTEMBASEDONPCHASNOWENTEREDTHESTAGEINSHORT,CNCHASALSOEXPERIENCEDASTAGETHREEGENERATIONSTHATIS,IN1970SFOURTHGENERATIONSMALLCOMPUTER1974OFTHEFIFTHGENERATIONMICROPROCESSORSANDTHESIXTHGENERATION1990BASEDONTHEPCCALLEDPCBASEDABROADALSOPOINTEDOUTTHAT,ALTHOUGHTHEFOREIGNCOMPUTERHASBEENRENAMEDNCCNC,BUTCHINASTILLCUSTOMARYSAIDNUMERICALCONTROLNCTHEREFORE,WESTRESSTHEDAYTODAY“NC“,INESSENCE,ISTHAT“COMPUTERNUMERICALLYCONTROLLED“1413THETRENDOFFUTUREDEVELOPMENTOFNC131CONTINUETOOPEN,THESIXTHGENERATIONOFPCBASEDDEVELOPMENTBASEDONTHEPCWITHTHEOPEN,LOWCOST,HIGHRELIABILITY,RICHINRESOURCESSUCHASHARDWAREANDSOFTWAREFEATURES,ANDMORECNCSYSTEMMANUFACTURERSWILLEMBARKONTHISPATHATLEASTITUSEDPCASAFRONTENDMACHINE,TODEALWITHTHEHUMANMACHINEINTERFACE,PROGRAMMING,NETWORKINGANDCOMMUNICATIONSPROBLEMS,THEFORMERNCSOMESYSTEMSHAVETHEMANDATEPCMACHINEWITHTHEFRIENDLYINTERFACE,WILLBEUNIVERSALTOALLCNCSYSTEMREMOTECOMMUNICATIONS,REMOTEDIAGNOSTICSANDMAINTENANCEWILLBEMOREWIDESPREAD132HIGHSPEEDANDHIGHPRECISIONDEVELOPMENTTHISISTOADAPTTOHIGHSPEEDANDHIGHPRECISIONMACHINETOOLSTOTHENEEDSOFTHEDEVELOPMENTDIRECTION133INTELLIGENTDIRECTIONTOTHEDEVELOPMENTWITHARTIFICIALINTELLIGENCEINTHECOMPUTERFIELDINFILTRATIONANDTHECONTINUINGDEVELOPMENTOFTHEINTELLIGENTNUMERICALCONTROLSYSTEMWILLBECONTINUOUSLYIMPROVED(1)ADAPTIVECONTROLTECHNOLOGYCNCSYSTEMCANDETECTSOMEIMPORTANTINFORMATIONINTHEPROCESS,ANDAUTOMATICALLYADJUSTSYSTEMPARAMETERSTOIMPROVETHESYSTEMRUNNINGSTATEPURPOSES(2)THEINTRODUCTIONOFEXPERTGUIDANCEPROCESSINGSYSTEMTHEEXPERIENCEOFSKILLEDWORKERSANDEXPERTS,PROCESSINGANDTHEGENERALRULESOFLAWOFSPECIALDEPOSITSYSTEM,THEPROCESSPARAMETERSTOTHEDATABASEASTHEFOUNDATION,ANDESTABLISHARTIFICIALINTELLIGENCEEXPERTSYSTEM(3)INTRODUCTIONOFFAULTDIAGNOSISEXPERTSYSTEM(4)INTELLIGENTDIGITALSERVODRIVESAUTOMATICIDENTIFICATIONCANLOAD,ANDAUTOMATICALLYADJUSTPARAMETERSTOGETTHEBESTDRIVESYSTEMOPERATION2CNCOFTHENEEDFORTRANSFORMATION21MICROSCOPICVIEWOFTHENECESSITYOFFROMTHEMICROPERSPECTIVE,CNCMACHINETOOLSTHANTRADITIONALMACHINESHAVETHEFOLLOWINGPROMINENTSUPERIORITY,ANDTHESEADVANTAGESAREFROMTHENCSYSTEMINCLUDESCOMPUTERPOWER15211CANBEPROCESSEDBYCONVENTIONALMACHININGISNOTTHECURVE,SURFACEANDOTHERCOMPLEXPARTSBECAUSECOMPUTERSARESUPERB
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:柜门缓冲支架冲孔弯曲级进模设计【15张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-9944435.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!