人脸识别最新英文论文1_第1页
人脸识别最新英文论文1_第2页
人脸识别最新英文论文1_第3页
人脸识别最新英文论文1_第4页
人脸识别最新英文论文1_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

MKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUCTDVD11MINDABSTABSVCTDVD12MKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUMKUNDUINTERNATIONALJOURNALOFIMAGEPROCESSINGIJIP,VOLUME4ISSUE16TOGENERATETHEFUSEDIMAGECOFCOEFFICIENTITWILLADDTHATVALUEWHICHISDEDUCTEDFROMTHEVISUALIMAGEDURINGTHECALCULATIONOFABSOLUTEVALUEDOFTHERMALTANDVISUALVIMAGEFORALLTHECOEFFICIENTSUSINGFUSIONMETHODSHOWNATEQUATION1112CONSEQUENTLYTHERECONSTRUCTIONPROCESSISPERFORMEDUSINGINVERSEOFWAVELETTRANSFORMATIONSTOGENERATESYNTHESIZEDFUSEDIMAGEXIDWT2CA,CH,CV,CD,WNAME13XIDWT2CA,CH,CV,CD,LO_R,HI_R14IDWTUSESTHEWAVELETWNAMETOCOMPUTETHESINGLELEVELRECONSTRUCTIONOFANIMAGEX,BASEDONAPPROXIMATIONMATRIXCAANDDETAILEDMATRICESCH,CVANDCDHORIZONTAL,VERTICALANDDIAGONALRESPECTIVELYBYTHEEQUATIONNO14,WECANRECONSTRUCTTHEIMAGEUSINGFILTERSLO_RRECONSTRUCTLOWPASSANDHI_RRECONSTRUCTHIGHPASSANDHAARANDDB2ASTHETIMEOFRECONSTRUCTIONOFANIMAGE33FIGURE2ASHOWNONEOFTHETHIRDLEVELDECOMPOSITIONOFLEVEL5BORIGINALIMAGEUSEDINTHEDECOMPOSITIONCORTHOGONALWAVELETREPRESENTATIONOFASAMPLEIMAGETHEDECOMPOSITIONPROCESSCANBEITERATED,WITHSUCCESSIVEAPPROXIMATIONSBEINGDECOMPOSEDINTURN,SOTHATONEIMAGEISBROKENDOWNINTOMANYLOWERRESOLUTIONCOMPONENTSTHISISCALLEDTHEWAVELETDECOMPOSITIONTREEINTHISWORK,DECOMPOSITIONWASDONEUPTOLEVELFIVEUSINGHAARANDDAUBECHIESDB2WAVELETTRANSFORMATIONS,ASSHOWNINFIGURE3AVERAGEOFCORRESPONDINGTRANSFORMCOEFFICIENTSFROMVISUALANDTHERMALIMAGESGIVESTHEMATRIXOFFUSEDCOEFFICIENTS,WHICHWHENTRANSFORMEDINTOTHEIMAGEINSPATIALDOMAINBYINVERSEWAVELETTRANSFORMPRODUCESFUSEDFACEIMAGETHESEFUSEDIMAGESTHUSFOUNDAREPASSEDTHROUGHPCAFORDIMENSIONALITYREDUCTION,WHICHISDESCRIBEDNEXTFIGURE3WAVELETDECOMPOSITIONTREEA3H3V3D3H2V2D2H1V1D1ABC3413423433446781234022232458687882185MKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUMKUNDUINTERNATIONALJOURNALOFIMAGEPROCESSINGIJIP,VOLUME4ISSUE172BDIMENSIONALITYREDUCTIONPRINCIPALCOMPONENTANALYSISPCAISBASEDONTHESECONDORDERSTATISTICSOFTHEINPUTIMAGE,WHICHTRIESTOATTAINANOPTIMALREPRESENTATIONTHATMINIMIZESTHERECONSTRUCTIONERRORINALEASTSQUARESSENSEEIGENVECTORSOFTHECOVARIANCEMATRIXOFTHEFACEIMAGESCONSTITUTETHEEIGENFACESTHEDIMENSIONALITYOFTHEFACEFEATURESPACEISREDUCEDBYSELECTINGONLYTHEEIGENVECTORSPOSSESSINGSIGNIFICANTLYLARGEEIGENVALUESONCETHENEWFACESPACEISCONSTRUCTED,WHENATESTIMAGEARRIVES,ITISPROJECTEDONTOTHISFACESPACETOYIELDTHEFEATUREVECTORTHEREPRESENTATIONCOEFFICIENTSINTHECONSTRUCTEDFACESPACETHECLASSIFIERDECIDESFORTHEIDENTITYOFTHEINDIVIDUAL,ACCORDINGTOASIMILARITYSCOREBETWEENTHETESTIMAGESFEATUREVECTORANDTHEPCAFEATUREVECTORSOFTHEINDIVIDUALSINTHEDATABASE27,30,36,37,342CARTIFICIALNEURALNETWORKUSINGBACKPROPAGATIONWITHMOMENTUMNEURALNETWORKS,WITHTHEIRREMARKABLEABILITYTODERIVEMEANINGFROMCOMPLICATEDORIMPRECISEDATA,CANBEUSEDTOEXTRACTPATTERNSANDDETECTTRENDSTHATARETOOCOMPLEXTOBENOTICEDBYEITHERHUMANSOROTHERCOMPUTERTECHNIQUESATRAINEDNEURALNETWORKCANBETHOUGHTOFASAN“EXPERT”INTHECATEGORYOFINFORMATIONITHASBEENGIVENTOANALYZETHEBACKPROPAGATIONLEARNINGALGORITHMISONEOFTHEMOSTHISTORICALDEVELOPMENTSINNEURALNETWORKSITHASREAWAKENEDTHESCIENTIFICANDENGINEERINGCOMMUNITYTOTHEMODELINGANDPROCESSINGOFMANYQUANTITATIVEPHENOMENATHISLEARNINGALGORITHMISAPPLIEDTOMULTILAYERFEEDFORWARDNETWORKSCONSISTINGOFPROCESSINGELEMENTSWITHCONTINUOUSDIFFERENTIABLEACTIVATIONFUNCTIONSSUCHNETWORKSASSOCIATEDWITHTHEBACKPROPAGATIONLEARNINGALGORITHMAREALSOCALLEDBACKPROPAGATIONNETWORKS24,25,26,27,28,29,383EXPERIMENTALRESULTSANDDISCUSSIONSTHISWORKHASBEENSIMULATEDUSINGMATLAB7INAMACHINEOFTHECONFIGURATION213GHZINTELXEONQUADCOREPROCESSORAND1638400MBOFPHYSICALMEMORYWEANALYZETHEPERFORMANCEOFOURALGORITHMUSINGTHEIRISTHERMAL/VISUALFACEDATABASEINTHISDATABASE,ALLTHETHERMALANDVISIBLEUNREGISTEREDFACEIMAGESARETAKENUNDERVARIABLEILLUMINATIONS,EXPRESSIONS,ANDPOSESTHEACTUALSIZEOFTHEIMAGESIS320X240PIXELSFORBOTHVISUALANDTHERMALTOTAL30CLASSESAREPRESENTINTHATDATABASE31SOMETHERMALANDVISUALIMAGESANDTHEIRCORRESPONDINGFUSEDIMAGESFORHAARANDDAUBECHIESDB2WAVELETSARESHOWNINFIGURE4ANDFIGURE5RESPECTIVELYTOCOMPARERESULTSOFHAARANDDAUBECHIESDB2WAVELETS,FUSIONOFVISUALANDTHERMALIMAGESWEREDONESEPARATELYFORTHATPURPOSE200THERMALAND200VISUALIMAGESWERECONSIDEREDWEHAVEINCREASEDTHESIZEOFTESTINGIMAGEFORBOTHTHEWAVELETFIRSTLYWEHAVETESTEDOURSYSTEMUSING100FUSEDIMAGESUSINGTWODIFFERENTWAVELETANDWEINCREASE10IMAGESPERCLASSFOR10DIFFERENTCLASSESIETOTAL100IMAGETHEDATABASEISCATEGORIZEDINTO10CLASSESBASEDONCHANGESINILLUMINATIONANDEXPRESSIONSTHECLASSESWITHILLUMINATIONSANDEXPRESSIONCHANGESARECLASS1,CLASS2,CLASS3,CLASS4,CLASS6,CLASS7,ANDCLASS9,WHEREASCLASS5,CLASS8ANDCLASS10AREWITHCHANGESINEXPRESSIONSONLYBOTHTHETECHNIQUESWEREAPPLIEDANDEXPERIMENTALRESULTSTHUSOBTAINEDARESHOWNINFIGURE6AFTERINCREASINGTHENUMBEROFTESTINGIMAGESTHERECOGNITIONRATESAREINCREASEDFORBOTHTHEWAVELETSPREVIOUSLYWEHAVEAVERAGERECOGNITIONRATEIS85FORHAARWAVELETAND90019FORDAUBECHIESWAVELETWHENTHENUMBEROFTESTINGIMAGEIS100IE10IMAGEPERCLASSNOWWEHAVEAVERAGERECOGNITIONRATEIS87FORHAARAND915FORDAUBECHIESWAVELETAFTERINCREASETHENUMBEROFTESTINGIMAGE100TO200IE20IMAGEPERCLASSMKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUMKUNDUINTERNATIONALJOURNALOFIMAGEPROCESSINGIJIP,VOLUME4ISSUE18FIGURE4SAMPLEIMAGESOFIRISDATABASEATHERMALIMAGESBVISUALIMAGESCCORRESPONDINGFUSEDIMAGESUSINGHAARWAVELETTRANSFORMFIGURE5SAMPLEIMAGESOFIRISDATABASEATHERMALIMAGESBVISUALIMAGESCCORRESPONDINGFUSEDIMAGESUSINGDAUBECHIESWAVELETTRANSFORMABCABCMKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUMKUNDUINTERNATIONALJOURNALOFIMAGEPROCESSINGIJIP,VOLUME4ISSUE19FIGURE6RECOGNITIONRATEOFHAARANDDAUBECHIESWAVELETINTHEFIGURE6,ALLTHERECOGNITIONRATESFORHAARASWELLASDAUBECHIESWAVELETTRANSFORMATIONSHAVEBEENSHOWNINTHISFIGURE“DOTTED”LINEINDICATESRESULTSUSINGHAARWAVELETWITHROUNDANDTRIANGLESHAPEMARKERAND“SOLID”LINEINDICATESRESULTSUSINGDAUBECHIESWAVELETWITHBOXANDDIAMONDSHAPEMARKERFROMTHISFIGURE,ITCANBEEASILYINFERREDTHATOVERALLRESULTSUSING“DAUBECHIES”DB2WAVELETPRODUCESBETTERRESULTTHAN“HAAR”WAVELETFINALRESULTSHAVEBEENCOMPUTEDASAVERAGEOFALLTHECATEGORIESANDGIVENALONGWITHRESULTSOFOTHERRECENTMETHODSINTABLEIIHERE,WEFINDRESULTSUSINGDAUBECHIESWAVELETSDB2SHOWSCOMPARABLERESULTSTABLE2COMPARISONBETWEENDIFFERENTFUSIONTECHNIQUES4CONSLUSIONINTHISPAPER,ACOMPARATIVESTUDYONTWODIFFERENTWAVELETTRANSFORMATIONS,NAMELY,HAARANDDAUBECHIESDB2FORIMAGEFUSIONHASBEENPRESENTEDAFTERCOMPLETIONOFFUSION,IMAGESWEREPROJECTEDINTOANEIGENSPACETHOSEPROJECTEDFUSEDEIGENFACESARECLASSIFIEDUSINGAMULTILAYERPERCEPTRONEIGENSPACEISCONSTITUTEDBYTHEIMAGESBELONGTOTHETRAININGSETOFTHECLASSIFIER,WHICHISAMULTILAYERPERCEPTRONTHEEFFICIENCYOFTHESCHEMEHASBEENDEMONSTRATEDONIRISSYSTEMHASACHIEVEDAMAXIMUMRECOGNITIONRATEOF100USINGBOTHTHEWAVELETSIEHAARANDDAUBECHIESBUTONANAVERAGE85AND90019USING100TESTINGIMAGESAND87AND915USING200TESTINGIMAGESRECOGNITIONRATESWEREACHIEVEDFORHAARWAVELETANDDAUBECHIESWAVELETRESPECTIVELY5ACKNOWLEDGMENTMRMKBHOWMIKISTHANKFULTOTHEPROJECTENTITLED“DEVELOPMENTOFTECHNIQUESFORHUMANFACEBASEDONLINEAUTHENTICATIONSYSTEMPHASEI”SPONSOREDBYDEPARTMENTOFINFORMATIONTECHNOLOGYUNDERTHEMINISTRYOFCOMMUNICATIONSANDINFORMATIONTECHNOLOGY,NEWDELHI110003,GOVERNMENTOFINDIAVIDENO1214/08ESD,DATED27/01/2009ATTHEDEPARTMENTOFCOMPUTERSCIENCEENGINEERING,TRIPURAUNIVERSITY799130,TRIPURAWEST,INDIAFORPROVIDINGTHENECESSARYINFRASTRUCTURALFACILITIESFORCARRYINGOUTTHISWORKTHEFIRSTAUTHORWOULDALSOLIKETOTHANKPROFBARINKUMARDE,HODPHYSICSANDDEANOFSCIENCEOFTRIPURAUNIVERSITY,FORHISKINDSUPPORTTOCARRYOUTTHISRESEARCHWORK6REFERENCES1APENTLANDANDTCHOUDHURY“FACERECOGNITIONFORSMARTENVIRONMENTS”IEEECOMPUTER3325055,20002PPHILLIPSETAL,THEFERETDATABASEANDEVALUATIONPROCEDUREFORFACERECOGNITIONALGORITHMSIMAGEANDVISIONCOMPUTINGMAY1998PP295306IMAGEFUSIONTECHNIQUERECOGNITIONRATEHAAR8587PRESENTMETHODDAUBECHIES90019WHENTESTINGIMAGE100915WHENTESTINGIMAGE200SIMPLESPATIALFUSION159100FUSIONOFTHERMALANDVISUAL329000ABSMAXSELECTIONINDWT159031WINDOWBASEDABSOLUTEMAXIMUMSELECTION159031FUSIONOFVISUALANDLWIRPCA68787MKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUMKUNDUINTERNATIONALJOURNALOFIMAGEPROCESSINGIJIP,VOLUME4ISSUE1103LWISKOTTETAL,“FACERECOGNITIONBYELASTICBUNCHGRAPHMATCHING”TRANSIEEEPATTERNANALYSISANDMACHINEINTELLIGENCE19777577919974BMOGHADDAMANDAPENTLAND“PROBABILISTICVISUALRECOGNITIONFOROBJECTRECOGNITION”TRANSIEEEPATTERNANALYSISANDMACHINEINTELLIGENCE19769671019975PPENEVANDJATICK“LOCALFEATUREANALYSISAGENERALSTATISTICALTHEORYFOROBJECTREPRESENTATION”NETWORKCOMPUTATIONINNEURALSYSTEMSMAR1996,PP4775006IPAVLIDISANDPSYMOSEK“THEIMAGINGISSUEINANAUTOMATICFACE/DISGUISEDETECTINGSYSTEM”PROCEEDINGSOFTHEIEEEWORKSHOPONCOMPUTERVISIONBEYONDTHEVISIBLESPECTRUMMETHODSANDAPPLICATIONSCVBVS20007YADINI,YMOSES,ANDSULLMAN“FACERECOGNITIONTHEPROBLEMOFCOMPENSATINGFORCHANGESINILLUMINATIONDIRECTION”IEEETRANSONPATTERNANALYSISANDMACHINEINTELLIGENCEVOL19,NO7PP721732,19978AROSSANDAJAIN“INFORMATIONFUSIONINBIOMETRICS”PATTERNRECOGNITIONLETTERSVOL24,NO13PP2115212520039TKHO,JJHULL,ANDSNSRIHARI“DECISIONCOMBINATIONINMULTIPLECLASSIFIERSYSTEMS”IEEETRANSONPATTERNANALYSISANDMACHINEINTELLIGENCEVOL16NO1PP6675199410CSANDERSONANDKKPALIWAL“INFORMATIONFUSIONANDPERSONVERIFICATIONUSINGSPEECHANDFACEINFORMATION”IDIAPRESEARCHREPORT0233MARTIGNYSWITZERLAND200211JHEO,SGKONG,BRABIDIANDMAABIDI“FUSIONOFVISUALANDTHERMALSIGNATURESWITHEYEGLASSREMOVALFORROBUSTFACERECOGNITION”CONFERENCEONCOMPUTERVISIONANDPATTERNRECOGNITIONWORKSHOPCVPRW04VOL8PP122122USA200412IPAVLIDIS,PSYMOSEK,BFRITZ“ANEARINFRAREDFUSIONSCHEMEFORAUTOMATICDETECTIONOFHUMANS”USPATENTPENDINGH1625929USFILEDINSEPTEMBER3,199913AGYAOUROVA,GBEBISANDIPAVLIDIS“FUSIONOFINFRAREDANDVISIBLEIMAGESFORFACERECOGNITION”LECTURENOTESINCOMPUTERSCIENCE2004SPRINGERBERLIN14ASELINGER,DSOCOLINSKY“APPEARANCEBASEDFACIALRECOGNITIONUSINGVISIBLEANDTHERMALIMAGERYACOMPARATIVESTUDY”TECHNICALREPORT0201EQUINOXCORPORATION200215MHANIFANDUALI“OPTIMIZEDVISUALANDTHERMALIMAGEFUSIONFOREFFICIENTFACERECOGNITION”IEEECONFERENCEONINFORMATIONFUSION200616GBEBIS,AGYAOUROVA,SSINGHANDIPAVLIDIS“FACERECOGNITIONBYFUSINGTHERMALINFRAREDANDVISIBLEIMAGERY”IMAGEANDVISIONCOMPUTINGVOL24,ISSUE7JULY2006PP72774217AHAAR“ZURTHEORIEDERORTHOGONALENFUNKTIONENSYSTEMEGERMAN”18HTTP/EOMSPRINGERDE/O/O070308HTM19WGGILBERT,SXIAOPING“WAVELETSANDOTHERORTHOGONALSYSTEMS”200120TPAUL“AFFINECOHERENTSTATESANDTHERADIALSCHRODINGEREQUATIONRADIALHARMONICOSCILLATORANDHYDROGENATOM”PREPRINTMKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUMKUNDUINTERNATIONALJOURNALOFIMAGEPROCESSINGIJIP,VOLUME4ISSUE11121IDAUBECHIESTENLECTURESONWAVELETS,CBMSNSFCONFERENCESERIESINAPPLIEDMATHEMATICSSIAMED199222SGMALLAT“ATHEORYFORMULTIRESOLUTIONSIGNALDECOMPOSITIONTHEWAVELETREPRESENTATION”IEEETRANSPATTERNANALMACHINEINTELL,VOL11PP674693JULY198923YMEYERWAVELETSANDOPERATORSCAMBRIDGEUNIVPRESS199324MKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUANDMKUNDU“CLASSIFICATIONOFPOLARTHERMALEIGENFACESUSINGMULTILAYERPERCEPTRONFORHUMANFACERECOGNITION”INPROCEEDINGSOFTHE3RDIEEECONFERENCEONINDUSTRIALANDINFORMATIONSYSTEMSICIIS2008IITKHARAGPURINDIADEC8102008PAGENO11825DBHATTACHARJEE,MKBHOWMIK,MNASIPURI,DKBASUANDMKUNDU“CLASSIFICATIONOFFUSEDFACEIMAGESUSINGMULTILAYERPERCEPTRONNEURALNETWORK”PROCEEDINGSOFINTERNATIONALCONFERENCEONROUGHSETSFUZZYSETSANDSOFTCOMPUTINGNOVEMBER57,2009ORGANIZEDBYDEPTTOFMATHEMATICSTRIPURAUNIVERSITYPP28930026MKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUANDMKUNDU“CLASSIFICATIONOFLOGPOLARVISUALEIGENFACESUSINGMULTILAYERPERCEPTRON”PROCEEDINGSOFTHE2NDINTERNATIONALCONFERENCEONSOFTCOMPUTINGICSC2008IETALWARRAJASTHANINDIANOV8102008PP10712327MKBHOWMIK,DBHATTACHARJEE,MNASIPURI,DKBASUANDMKUNDU“HUMANFACERECOGNITIONUSINGLINEFEATURES”PROCEEDINGSOFNATIONALSEMINARONRECENTADVANCESONINFORMATIONTECHNOLOGYRAIT2009FEB67,2009INDIANSCHOOLOFMINESUNIVERSITYDHANBADPP38528MKBHOWMIK”ARTIFICIALNEURALNETWORKASASOFTCOMPUTINGTOOLACASESTUDY”INPROCEEDINGSOFNATIONALSEMINARONFUZZYMATHITSAPPLICATIONTRIPURAUNIVERSITYNOV2526,2006PP314629MKBHOWMIK,DBHATTACHARJEEANDMNASIPURI“TOPOLOGICALCHANGEINARTIFICIALNEURALNETWORKFORHUMANFACERECOGNITION”PROCEEDINGSOFNATIONALSEMINARONRECENTDEVELOPMENTINMATHEMATICSANDITSAPPLICATIONTRIPURAUNIVERSITYNOV1415,2008PP434930HKEKENELANDBSANKUR“MULTIRESOLUTIONFACERECOGNITION”IMAGEANDVISIONCOMPUTING2005VOL23PP46947731HTTP/WWWCSEOHIOSTATEEDU/OTCBVSBENCH/DATA/02/DOWNLOADHTML32ASINGH,GBGYAOURVAANDIPAVLIDIS“INFRAREDANDVISIBLEIMAGEFUSIONFORFACERECOGNITION”PROCSPIEVOL5404PP5855

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论