




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 1 页(共 19 页) 2016年湖南省邵阳市武冈三中九年级(上)第一次月考数学试卷 一、选择题( 310=30 分) 1下列函数是反比例函数的是( ) A y= 2x B y= C y= D y=1 2反比例函数 y= 的图象与 x 轴的交点有( ) A 3 个 B 2 个 C 1 个 D 0 个 3若反比例函数 y= 的图象经过点( 2, m),则 m 的值是( ) A B C 4 D 4 4若反比例函数 的图象位于第二、四象限,则 k 的取值可以是( ) A 0 B 1 C 2 D以上都不是 5如图,点 A 在双曲线 y= 上, y 轴于 B, S ,则 k=( ) A 3 B 6 C 18 D不能确定 6若 a 是方程 2x 3=0 的一个解,则 2a 的值为( ) A 3 B 3 C 9 D 9 7用配方法解方程 2x 5=0 时,原方程应变形为( ) A( x+1) 2=6 B( x 1) 2=6 C( x+2) 2=9 D( x 2) 2=9 8下列方程没有实数根的是( ) A x=0 B x2+x 1=0 C 2x+3=0 D( x 2)( x 3) =12 9现定义运 算 “ ”,对于任意实数 a、 b,都有 a b=3a+b,如: 4 5=42 3 4+5,若 x 2=6,则实数 x 的值是( ) 第 2 页(共 19 页) A 4 或 1 B 4 或 1 C 4 或 2 D 4 或 2 10如图,直线 y=x 与反比例函数 y= 相交于点 A,在 x 轴上找一点 P 使 符合条件的点 P 有( )个 A 1 B 2 C 3 D 4 二、填空题( 38=24 分) 11已知函数 y=( k 3) x 为反比例函数,则 k= 12一次函数 y= 的图象经过( 1, 2),则反比例函数 的图象经过点( 2, ) 13方程 2( x+1) 2=1 化为一般式后,一次项的系数为 14三个连续奇数的平方和是 251,求这三个数,若设最小的数为 x,则可列方程为 15三角形两边的长是 3 和 4,第三边的长是方程 12x+35=0 的根,则该三角形的周长为 16若 x=1 是一元 二次方程 x+m=0 的一个根,则 m= 17如图,反比例函数 的图象经过点 A( 1, 2)则当 x 1 时,函数值y 的取值范围是 18已知 3a+1=0,则 = 第 3 页(共 19 页) 三、解答题 19解方程 ( 2x+3) 2 25=0 7x 18=0 2x 5=0( 配方法) ( x 2)( x 3) =2 20如图,是反比例函数 y= 的图象中的一支,请回答 ( 1)另一支在第 象限 ( 2) m 的取值范围为 ( 3)点 A( 2, B( 1, 在该图象上,则 或 或 =) ( 4)若直线 y= x 与图象交于点 P,且线段 ,则 m= 21关于 x 的一元二次方程 6x+2p+5=0 的 一个根为 2 ( 1)求 p 值 ( 2)求方程的另一根 22已知关于 x 的方程 m+2) x+2=0( m 0) ( 1)求证:方程总有两个实数根; ( 2)若方程的两个实数根都是整数,求正整数 m 的值 四、应用题( 8 分 2=16 分) 23电动自行车已成为市民日常出行的首选工具据某品牌自行车经销商 1 至 3月份统计, 1 月份销售 150 辆, 3 月份销售 216 辆,若每个月增长率相同 ( 1)求月增长率 ( 2)若该自行车进价为 2300 元,售价为 2800 元,当全部售出时,求该经销商1 至 3 月共盈利多少元? 24小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次第 4 页(共 19 页) 性购买不超过 10 件,单价为 80 元;如果一次性购买多于 10 件,那么每增加 1件,购买的所有服装的单价降低 2 元,但单价不得低于 50 元按此优惠条件,小丽一次性购买这种服装付了 1200 元请问她购买了多少件这种服装? 五、综合题 25如图,已知 A( m, 2)是直线 l 与双曲线 y= 的交点 ( 1)求 m 的值 ( 2)若直线 l 分别与 x 轴、 y 轴交于 E、 F 两点,并且 A 为 中点,试确定 ( 3)在双曲线上另取一点 B,作 x 轴于 K,将( 2)中的直线 l 绕点 A 旋转后所得的直线记为 l,若 l与 y 轴的正半轴交于点 C,且 问,在 y 轴上是否存在点 P,使得 S 存在,求出 P 的坐标;若不存在,请说明理由 第 5 页(共 19 页) 2016年湖南省邵阳市武冈三中九年级(上)第一次月考数学试卷 参考答案与试题解析 一、选择题( 310=30 分) 1下列函数是反比例函数的是( ) A y= 2x B y= C y= D y=1 【考点】 反比例函数的定义 【分析】 根据反比例函数的定义进行判断 【解答】 解: A、该函数是正比例函数,故本选项错误; B、该函数符合反比例函数的定义,故本选项正确; C、该函数是正比例函数,故本选项错误; D、该函数是二次函数,故本选项错误; 故选: B 2反比例函数 y= 的图象与 x 轴的交点有( ) A 3 个 B 2 个 C 1 个 D 0 个 【考点】 反比例函数图象上点的坐标特征 【分析】 根据反比例函数的图象即可判断 【解答】 解: 反比例函数 y= , 函数的图象与 x 轴无交点, 故选 D 3若反比例函数 y= 的图象经过点( 2, m),则 m 的值是( ) A B C 4 D 4 【考点】 反比例函数图象上点的坐标特征 第 6 页(共 19 页) 【分析】 将点( 2, m)代入反比例函数 y= 即可求出 m 的值 【解答】 解:将点( 2, m)代入反比例函数 y= 得, m= = 4, 故选 C 4若反比例函数 的图象位于第二、四象限,则 k 的取值可以是( ) A 0 B 1 C 2 D以上都不是 【考点】 反比例函数的性质 【分析】 反比例函数 的图象位于第二、四象限,比例系数 k 1 0,即 k 1,根据 k 的取值范围进行选择 【解答】 解: 反比例函数 的图象位于第二、四象限, k 1 0, 即 k 1 故选: A 5如图,点 A 在双曲线 y= 上, y 轴于 B, S ,则 k=( ) A 3 B 6 C 18 D不能确定 【考点】 反比例函数系数 k 的几何意义 【分析】 根据反比例函数比例系数 k 的几何意义即可直接求解 【解答】 解:设 A 的坐标是( m, n),则 mn=k AB=m, OB=n S B= k= 第 7 页(共 19 页) 故选 B 6若 a 是方程 2x 3=0 的一个解,则 2a 的值为( ) A 3 B 3 C 9 D 9 【考点】 一元二次方程的解 【分析】 将 a 代入方程 2x 3=0 中,再将其变形可得所要求代数式的值 【解答】 解:若 a 是方程 2x 3=0 的一个根,则有 2a 3=0, 变形得, 2a=3, 故选 A 7用配方法解方程 2x 5=0 时,原方程应变形为( ) A( x+1) 2=6 B( x 1) 2=6 C( x+2) 2=9 D( x 2) 2=9 【考点】 解一元二次方程 【分析】 方程常数项移到右边,两边加上 1 变形即可得 到结果 【解答】 解:方程移项得: 2x=5, 配方得: 2x+1=6, 即( x 1) 2=6 故选: B 8下列方程没有实数根的是( ) A x=0 B x2+x 1=0 C 2x+3=0 D( x 2)( x 3) =12 【考点】 根的判别式 【分析】 根据根的判别式 =4一分析四个选项中方程根的判别式的符号,由此即可得出结论 【解答】 解: A、在方程 x=0 中, =42=16 0, 该方程有两个不相等的实数根; B、在方程 x2+x 1=0 中, =12 4 1 ( 1) =5 0, 该方程有两个不相等的实数根; 第 8 页(共 19 页) C、在方程 2x+3=0 中, =( 2) 2 4 1 3= 8 0, 该方程没有实数根; D、方程( x 2)( x 3) =12 可变形为 5x 6=0, =( 5) 2 4 1 ( 6)=49 0, 该方程有两个不相等的实数根 故选 C 9现定义运算 “ ”,对于任意实数 a、 b,都有 a b=3a+b,如: 4 5=42 3 4+5,若 x 2=6,则实数 x 的值是( ) A 4 或 1 B 4 或 1 C 4 或 2 D 4 或 2 【考点】 解一 元二次方程 【分析】 先根据新定义得到 3x+2=6,整理得 3x 4=0,再把方程左边分解,原方程化为 x 4=0 或 x+1=0,然后解一次方程即可 【解答】 解: x 2=6, 3x+2=6, 整理得 3x 4=0, ( x 4)( x+1) =0, x 4=0 或 x+1=0, , 1 故选 B 10如图,直线 y=x 与反比例函数 y= 相交于点 A,在 x 轴上找一点 P 使 符合条件的点 P 有 ( )个 A 1 B 2 C 3 D 4 【考点】 反比例函数综合题 第 9 页(共 19 页) 【分析】 当点 P 位于 x 轴的正半轴上时,可能有 P、 P 和 P 三种情况;当点 P 位于 x 轴的负半轴上时,只有 P据此可以得到符合条件的点的个数 【解答】 解: 等腰三角形, 点 P 位于 x 轴的正半轴上时,可能有 P、 P 和 P 三种情况; 当点 P 位于 x 轴的负半轴上时,只有 P 一种情况; 符合条件的点共有 4 个, 选 D 二、填 空题( 38=24 分) 11已知函数 y=( k 3) x 为反比例函数,则 k= 3 【考点】 反比例函数的定义 【分析】 根据反比例函数的定义得到 8 1 且 k 3 0 【解答】 解: 函数 y=( k 3) x 为反比例函数, 8 1 且 k 3 0 解得 k= 3 故答案是: 3 12一次函数 y= 的图象经过( 1, 2),则反比例函数 的图象经过点( 2, ) 【考点】 反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征 【分析】 把点( 1, 2)代入一次函数解析式求得 k 的值然后利用反比例函数图象上点的坐标特征来填空 【解答】 解: 一次函数 y= 的图象经过( 1, 2), 2=k+1, 解得, k=1 则反比例函数解析式为 y= , 第 10 页(共 19 页) 当 x=2 时, y= 故答案是: 13方程 2( x+1) 2=1 化为一般式后,一次项的系数为 4 【考点】 一元二次方程的一般形式 【分析】 根据一般地,任何一个关于 x 的一元二次方程经过整理,都能化成如下形式 bx+c=0( a 0)这种形式叫一元二次方程的一般形式其中 做二次项, a 叫做二次项系数; 做一次项; c 叫做常数项可得答案 【解答】 解:化简,得 2x+1, 一次项系数为 4, 故答案为: 4 14 三个连续奇数的平方和是 251,求这三个数,若设最小的数为 x,则可列方程为 ( x 2) 2+ x+2) 2=251 【考点】 由实际问题抽象出一元二次方程 【分析】 三个连续奇数中间的一个数为 x,则另外两个数为:( x 2),( x+2),依题意列方程 【解答】 解:设三个连续奇数中间的一个数为 x,则另外两个数为:( x 2),( x+2),依题意得 ( x 2) 2+ x+2) 2=251, 故答案为:( x 2) 2+ x+2) 2=251 15三角形两边的长是 3 和 4,第三边的长是方程 12x+35=0 的根,则该三角形的周长为 12 【考点】 解一元二次方程 角形三边关系 【分析】 先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长 【解答】 解:解方程 12x+35=0, 第 11 页(共 19 页) 得 , , 1 第三边 7, 第三边长为 5, 周长为 3+4+5=12 16若 x=1 是一元二次方程 x+m=0 的一个根,则 m= 4 【考点】 一元二次方程的解 【分析】 一元二次方程的根就是能够使方程左右两边相等的未知数的值即用这个数代替未知数 所得式子仍然成立 【解答】 解:把 x=1 代入一元二次方程 x+m=0,得 1+3+m=0,即 m= 4 故本题答案为 m= 4 17如图,反比例函数 的图象经过点 A( 1, 2)则当 x 1 时,函数值y 的取值范围是 0 y 2 【考点】 反比例函数图象上点的坐标特征 【分析】 把 A( 1, 2)代入反比例函数 可得 k=2,而当 x=1, y=2,根据反比例图象分布在第一、第三象限,在每一象限, y 随 x 的增大而减小,得到当x 1 时,函数值的范围为 0 y 2 【解答】 解: 反比例函数 的图象经过点 A( 1, 2), 2= , k=2, y= , 第 12 页(共 19 页) 当 x=1, y=2, 当 x 1 时,函数值的范围为 0 y 2 故答案为 0 y 2 18已知 3a+1=0,则 = 47 【考点】 完全平方公式 【分析】 先把已知条件两边都除以 a,然后再利用完全平方公式计算即可 【解答】 解: 3a+1=0, a 3+ =0, 即 a+ =3, 两边平方得, + =9, =7, 再平方得, + =49, =47 答案为: 47 三、解答题 19解方程 ( 2x+3) 2 25=0 7x 18=0 2x 5=0(配方法) ( x 2)( x 3) =2 【考点】 解一元二次方程 一元二次方程 一元二次方程 【分析】 利用因式分解法解方程; 利用因式分解法解方程; 利用配方法解方程; 第 13 页(共 19 页) 先把方程化为一般式,然后利用因式分解法解方程 【解答】 解: ( 2x+3 5)( 2x+3+5) =0, 2x+3 5=0 或 2x+3+5=0, 所以 , 4; ( x+2)( x 9) =0, x+2=0 或 x 9=0, 所以 2, ; 2x=5, 2x+1=6, ( x 1) 2=6, x 1= , 所以 + , ; 5x+4=0, ( x 1)( x 4) =0, x 1=0 或 x 4=0, 所以 , 20如图,是反比例函数 y= 的图象中的一支,请回答 ( 1)另一支在第 四 象限 ( 2) m 的取值范围为 m 1 ( 3)点 A( 2, B( 1, 在该图象上,则 或 或 =) ( 4)若直线 y= x 与图象交于点 P,且线段 ,则 m= 19 【考点】 反比例函数与一次函数的交点问题 【分析】 ( 1)直接根据反比例函数的图象关于原点对称即可得出结论; ( 2)根据反比例函数的图象与系数的关系即可得出结论; 第 14 页(共 19 页) ( 3)根据反比例函数的增减性即可得出结论; ( 4)设 P( a, a)求出 a 的值,进而可得出 P 点坐标,代入反比例函数的解析式即可得出结论 【解答】 解:( 1) 反比例函数的图象关于原点对称, 另一支在第三象限 故答案为:四; ( 2) 反比例函数的图象在第二象限, 1 m 0,解得 m 1 故答案为 : m 1; ( 3) 点 A( 2, B( 1, 在该图象上, 2 1, 故答案为: ; ( 4)设 P( a, a)( a 0), , = a =6,解得 a= 3 , P( 3 , 3 ) 点 P 在反比 例函数 y= 上, 3 ( 3 ) =1 m,解得 m=19 故答案为: 19 21关于 x 的一元二次方程 6x+2p+5=0 的一个根为 2 ( 1)求 p 值 ( 2)求方程的另一根 【考点】 根与系数的关系;一元二次方程的解 【分析】 ( 1)将 x=2 代入原方程可得出关于 p 的一元二次方程,解方程即可得出p 的值; 第 15 页(共 19 页) ( 2)设方程的另一个根为 m,由根与系数的关系可得出 m+2=6,解之即可得出结论 【解答】 解:( 1)将 x=2 代入原方程,得: 4 12+2p+5=0, 整理,得: 2p 3=0, 解得: p= 1 或 p=3 ( 2)设方程的另一个根为 m, 根据韦达定理,得: m+2=6, m=4 答:方程的另一根为 4 22已知关于 x 的方程 m+2) x+2=0( m 0) ( 1)求证:方程总有两个实数根; ( 2)若方程的两个实数根都是整数,求正整数 m 的值 【考点】 根的判别式 【分析】 ( 1)先计算判别式的值得到 =( m+2) 2 4m 2=( m 2) 2,再根据非负数的值得到 0,然后根据判别式的意义得到方程总有两个实数根; ( 2)利用因式分解法解方程得到 , ,然后利用整数的整除性确定正整数 m 的值 【解答】 ( 1)证明: m 0, =( m+2) 2 4m 2 =4m+4 =( m 2) 2, 而( m 2) 2 0,即 0, 方程总有两个实数根; ( 2)解:( x 1)( 2) =0, x 1=0 或 2=0, , , 当 m 为正整数 1 或 2 时, 整数, 第 16 页(共 19 页) 即方程的两个实数根都是整数, 正整数 m 的值为 1 或 2 四、应用题( 8 分 2=16 分) 23电动自行车已成为市民日常出行的首选工具据某品牌自行车经销商 1 至 3月份统计, 1 月份销售 150 辆, 3 月份销售 216 辆,若每个月增长率相同 ( 1)求月增长率 ( 2)若该自行车进价为 2300 元,售价为 2800 元,当全部售出时,求该经销商1 至 3 月共盈利多少元? 【考点】 一元二次方程的应用 【分析】 ( 1)设该品牌电动自行车销售量的月均增长 率为 x等量关系为: 1 月份的销售量 ( 1+增长率) 2=3 月份的销售量,把相关数值代入求解即可 ( 2)根据( 1)求出增长率后,再计算出二月份的销量,即可得到答案 【解答】 解:( 1)设该品牌电动自行车销售量的月均增长率为 x, 根据题意列方程: 150( 1+x) 2=216, 解得 220%(不合题意,舍去), 0% 答:该品牌电动自行车销售量的月均增长率 20% ( 2)二月份的销量是: 150 ( 1+20%) =180(辆) 所以该经销商 1 至 3 月共盈利: =500 546=273000(元) 24小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过 10 件,单价为 80 元;如果一次性购买多于 10 件,那么每增加 1件,购买的所有服装的单价降低 2 元,但单价不得低于 50 元按此优惠条件,小丽一次性购买这种服装付了 1200 元请问她购买了多少件这种服装? 【考点】 一元二次方程的应用 【分析】 根据一次性购买多于 10 件,那么每增加 1 件,购买的所有服装的单价降低 2 元,表示出每件服装的单价,进而得出等式方程求出即可 【解答】 解:设购买了 x 件这种服装且多于 10 件,根据题意得出: 第 17 页(共 19 页) 80 2( x 10) x=1200, 解得: 0, 0, 当 x=20 时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年水路旅客运输服务合作协议书
- 2025年异丙安替比林合作协议书
- 2025年时间频率计量标准器具合作协议书
- 年度绩效与奖金收入证明书(6篇)
- 个人社保缴纳及工作证明(6篇)
- 软件开发外包合同及验收交付说明
- 市场推广宣传协议与成果评估机制规范指南
- 2025年频率测量仪器合作协议书
- 商业物业保洁与绿化维护服务合同
- 行政管理的教育培训试题及答案
- 高温后超高性能混凝土力学性能研究
- 高中主题班会 常规管理促状态规范月课件-高二上学期主题班会
- 金属冶炼负责人安管人员培训
- 关于比的知识图文
- 拓扑结构特征提取-深度研究
- 建筑美学知到智慧树章节测试课后答案2024年秋华南理工大学
- 统编版语文七年级下第18课《井冈翠竹》公开课一等奖创新教学设计
- 针刺伤预防与处理-2024中华护理学会团体标准
- 《高等教育心理学》讲义
- 2025年汽车转向桥总成行业深度研究分析报告
- 基装合同范例版
评论
0/150
提交评论