【2017年整理】硅酸盐水泥熟料矿物组成及其配料计算_第1页
【2017年整理】硅酸盐水泥熟料矿物组成及其配料计算_第2页
【2017年整理】硅酸盐水泥熟料矿物组成及其配料计算_第3页
【2017年整理】硅酸盐水泥熟料矿物组成及其配料计算_第4页
【2017年整理】硅酸盐水泥熟料矿物组成及其配料计算_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1第三章硅酸盐水泥熟料矿物组成及其配料计算第一节硅酸盐水泥熟料矿物组成如前所述,硅酸盐水泥熟料是以适当成分的生料烧到部分熔融,所得以硅酸钙为主要成分的烧结块。因此,在硅酸盐水泥熟料中CAO,SIO2,A1203,FE2O3不是以单独的氧化物存在,而是以两种或两种以上的氧化物经高温化学反应而生成的多种矿物的集合体。其结晶细小,一般为3060ICM。因此可见,水泥熟料是一种多矿物组成的结晶细小的人工岩石。它主要有以下四种矿物硅酸三钙一3CA03I02,可简写为C3S;硅酸二钙2CA0SI02,可简写为C2S;铝酸三钙3CA0A1203,可简写为C3A;铁相固溶体通常以铁铝酸四钙4CA0A1203FE203作为代表式,可简写成C4AF,此外,还有少量游离氧化钙FCA0、方镁石(结晶氧化镁)、含碱矿物及玻璃体。通常熟料中C3S和C2S含量约占75左右,称为硅酸盐矿物。C3FT和C,AF的理论含量约占22左右。在水泥熟料锻烧过程中,C3A和C,AF以及氧化镁、碱等在125012800C会逐渐熔融形成液相,促进硅酸三钙的形成,故称熔剂矿物。一、硅酸三钙C3S是硅酸盐水泥熟料的主要矿物。其含量通常为50左右,有时甚至高达60以上。纯C3S只有在206512500C温度范围内才稳定。在20650C以上不一致熔融为CA0和液相;在12500C以下分解为CZS和CA0,但反应很慢,故纯C,S在室温可呈介稳状态存在。C,S有三种晶系七种变型10700C10600C9900C9600C9200C5200CRMMMTTTR型为三方晶系,M型为单斜晶系,T型为三斜晶系,这些变型的晶体结构相近。但有人认为,R型和M,型的强度比T型的高。在硅酸盐水泥熟料中,C3S并不以纯的形式存在,总含有少量氧化镁、氧化铝、氧化铁等形成固溶液,称为阿利特ALITE)或A矿。纯C3S在常温下,通常只能为三斜晶系T型),如含有少量MG0,A1203,2FE2O3,503,ZNO,CR203,R20等氧化物形成固溶体则为M型或R型。由于熟料中C3S总含MGO,A12O3,FE2O3以及其他氧化物,故阿利特通常为M型或R型。据认为锻烧温度的提高或锻烧时间的延长也有利于形成M型或R型。纯C3S为白色,密度为314G/CM3,其晶体截面为六角形或棱柱形。单斜晶系的阿利特单晶为假六方片状或板状。在阿利特中常以CS和CAO的包裹体存在。C3S凝结时间正常,水化较快,粒径4050JUM的颗粒28D可水化70左右。放热较多,早期强度高且后期强度增进率较大,28D强度可达一年强度的7080,其28D强度和一年强度在四种矿物中均最高。阿利特的晶体尺寸和发育程度会影响其反应能力,当烧成温度高时,阿利特晶形完整,晶体尺寸适中,几何轴比大(晶体长度与宽度之比L/B23,矿物分布均匀,界面清晰,熟料的强度较高。当加矿化剂或用急剧升温等锻烧方法时,虽然含较多阿利特,而且晶体比较细小,但因发育完整、分布均匀,熟料强度也较高。因此,适当提高熟料中的硅酸三钙含量,并且当其岩相结构良好时,可以获得优质熟料。但硅酸三钙的水化热较高,抗水性较差,如要求水泥的水化热低、抗水性较高时,则熟料中的硅酸三钙含量要适当低一些。二、硅酸二钙C2S在熟料中含量一般为20左右,是硅酸盐水泥熟料的主要矿物之一,熟料中硅酸二钙并不是以纯的形式存在,而是与少量MGO,A1203,FE2O3,R20等氧化物形成固溶体,通常称为贝利特BELITE或B矿。纯C2S在14500C以下有下列多晶转变。14250C11600C6306800C5000CHL7808600CH一高温型,L一低温型)在室温下,H,L,等变形都是不稳定的,有转变成Y型的趋势。在熟料中,H型一般较少存在,在烧成温度较高、冷却较快的熟料中,由于固溶3有少量A120,MG0,FE2O3等氧化物,可以型存在。通常所指的硅酸二钙或B矿即为型硅酸二钙。,H型C2S强度较高,而Y型C2S几乎无水硬性。在立窑生产中,若通风不良、还原气氛严重、烧成温度低、液相量不足、冷却较慢,则硅酸二钙在低于5000C下易由密度为328G/CM的R型转变为密度297G/CM3的Y型,体积膨胀10而导致熟料粉化。但若液相量多,可使溶剂矿物形成玻璃体将刀型硅酸二钙晶体包围住,并采用迅速冷却方法使之越过尹Y型转变温度而保留下来。贝利特为单斜晶系,在硅酸盐水泥熟料中常呈圆粒状,这是因为贝利特的棱角已溶进液相而其余部分未溶进液相之故。已全部溶进液相而在冷却过程中结晶出来的贝利特则可以自行出现而呈其他形状。在反射光下,正常温度烧成的熟料中,贝利特有交叉双晶条纹,而烧成温度低冷却慢者,则呈现平行双晶条纹。纯硅酸二钙色洁白,当含有FE20,时呈棕黄色。贝利特水化反应较慢,28D仅水化2000A右,凝结硬化缓慢,早期强度较低但后期强度增长率较高,在一年后可赶上阿利特。贝利特的水化热较小,抗水性较好。在中低热水泥和抗硫酸盐水泥中,适当提高贝利特含量而降低阿利特含量是有利的。中间相填充在阿利特、贝利特之间的物质通称中间相,它可包括铝酸盐、铁酸盐、组成不定的玻璃体和含碱化合物以及游离氧化钙和方镁石。但以包裹体形式存在于阿利特和贝利特中的游离氧化钙和方镁石除外。中间相在熟料缎烧过程中,熔融成为液相,冷却时,部分液相结晶,部分液相来不及结晶而凝固成玻璃体。(一)铝酸钙熟料中铝酸钙主要是铝酸三钙,有时还可能有七铝酸十二钙。在掺氟化钙作矿化剂的熟料中可能存在C11A7CAF2,而在同时掺氟化钙和硫酸钙作矿化剂低温烧成的熟料中可以是C11A7CAF2和C4A2S而无C3A。纯C3A为等轴晶系,无多晶转化。C3A也可固溶部分氧化物,如K2O,NA20,SI02,FE203等,随固溶的碱含量的增加,立方晶体的C,A向斜方晶体NCBA,转变。结晶完善的C3A常呈立方、八面体或十二面体。但在水泥熟料中其形状随冷却速率而异。氧化铝含量高而慢冷的熟料,才可能结晶出完整的大晶体,一般则溶入玻4璃相或呈不规则微晶析出。C3A在熟料中的潜在含量为715。纯C3A为无色晶体,密度为304G/CM3,熔融温度为15330C,反光镜下,快冷呈点滴状,慢冷呈矩形或柱形。因反光能力差,呈暗灰色,故称黑色中间相。C3A水化迅速,放热多,凝结很快,若不加石膏等缓凝剂,易使水泥急凝;硬化快,强度3D内就发挥出来,但绝对值不高,以后几乎不增长,甚至倒缩。干缩变形大,抗硫酸盐性能差。(二)铁相固溶体铁相固溶体在熟料中的潜在含量为1018。熟料中含铁相较复杂,有人认为是C2FC8A3F连续固溶体中的一个成分,也有人认为是C6A2FC6AF2连续固溶体的一部分。在一般硅酸盐水泥熟料中,其成分接近C,AF,故多用C,AF代表熟料中铁相的组成。也有人认为,当熟料中MG0含量较高或含有CAF2等降低液相粘度的组分时,铁相固溶体的组成为C6A2F。若熟料中A1203/FE203064的熟料。若IM064)C3S407C760S672A一286S03C2S860S507A107F215S03一307C287S0754C3SC3A265109FC4AF304F(1320同理,当IM064时,熟料矿物组成计算式如下C3S407C760S447A280F286S03CZS860S338A215S03一307C287S0754C3SC,AF477AC2F170F157A)CASO;170S0三、熟料真实矿物组成与计算矿物组成的差异硅酸盐水泥洲料矿物组成的计算是假设熟料是平衡冷却并生成C3S,C2S,C,A和四种纯矿物,其计算结果与熟料真实矿物组成并不完全一致,有时甚至相差很大。其原因是1固溶体的影响计算矿物为纯C3S,C2S,C3A和C,F,但实际矿物为固溶有少量其他氧化物的固溶体,即阿利特、贝利特、铁相固溶体等。例如,若阿利特组成按CSAS16MA考虑,则计算C3S的公式中SI02前面的系数就不是380而是430,这样实际含量就要提高11,而C3A则因有一部分A1203固溶进阿利特而使它的含量减少。又如,铁相固溶体并非固定组成的C,AF,而在高温或有MGO,CAF2等条件下有可能是C62F,其结果使实际矿物中铁相固溶液含量增加使C3A含量减少。2冷却条件的影响硅酸盐水泥熟料冷却过程,若缓慢冷却而平衡结晶,则液相几乎全部结晶出C3A,C,AF等矿物。但在工业生产条件下,冷却速度较快,因而液相可部分或几乎全部变成玻璃体,此时,实际C3A,C,AF含量均比计算值低,而C3S含量可能增加11使C2S减少。3碱和其他微组分的影响碱的存在可能与硅酸盐矿物形成KC23S12,与铝酸三钙形成NC8A3,而析出CAO,从而使C3A减少而出现NC3A3,碱也可能影响C3S含量。其他次要氧化物如TI02,MGO,P,05也会影响熟料的矿物组成。尽管计算的矿物组成与实测值有一定差异,但它能基本说明对熟料锻烧和性能的影响,也是设计某一矿物组成的水泥熟料时,计算生料组成的唯一可能的方法,因此在水泥工业中仍得到广泛应用。第三节熟料矿物组成的计算熟料的矿物组成可用岩相分析,X射线定量分析等方法测定,也可根据化学成分进行计算。岩相分析基于显微镜下测量出单位面积各矿物所占的面积的百分率再乘以相应的矿物的相对密度而得各矿物含量。这种方法较符合实际情况,但要求操作者要有熟练的技巧,且劳动,强度大。此外,晶体较小,也可重迭而产生误差X射线定量分析基于熟料矿物特征峰强度与基准单矿物特征峰强度之比求其含量。这种方法方便且准确,国外现代化水泥厂都普遍采用。但限于设备条件,我国水泥厂使用的还不多,另外,此方法对含量太低的矿物不适用。我国常用化学方法进行计算。此方法计算出来的仅是理论上可能生成的矿物,称之为“潜在矿物”组成。在生产条件稳定的情况下,熟料真实矿物组成与计算矿物组成有一定的相关性,已能说明矿物组成对熟料及水泥性能的影响,因此在我国仍普遍使用。常用的从化学成分计算熟料矿物组成的方法有两种,即石灰饱和系数法和鲍格法。石灰饱和系数法为了计算方便,先列出有关相对分之质量的比值。C3S380(3KH2)SIO2C2S8601KHSIO2C3A265AL2O3064FE2O3C4AF304FE2O3CASO,17S03鲍格RHBOGUE法12鲍格法也称代数法。根据四种主要矿物以及CASO;的化学组成可计算出各氧化物的百分含量,见表131表131主要矿物中各主要级化物的百分含量)矿物氧化物C2SC2SC3AC4AFCASO4CAO73696512651246164119SIO226312631AL2O337732098FE2O33286SO25881根据上表数值可列出下列方程式C07369C3S06512C2300229C3A04016C,AF04119CAS0,S02631C3ST03488CZSA03773C3A02098C4AFF03286C4AFSO305881CASO4解上述联立方程,可得各矿物百分含量计算式064)C3S407C760S672A一286S03C2S860S507A107F215S03一307C287S0754C3SC3A265109FC4AF304F(1320同理,当IM064时,熟料矿物组成计算式如下C3S407C760S447A280F286S03CZS860S338A215S03一307C287S0754C3SC,AF477AC2F170F157A)CASO;170S0熟料真实矿物组成与计算矿物组成的差异13硅酸盐水泥洲料矿物组成的计算是假设熟料是平衡冷却并生成C3S,C2S,C,A和,AF四种纯矿物,其计算结果与熟料真实矿物组成并不完全一致,有时甚至相差很大。其原因是1固溶体的影响计算矿物为纯C3S,C2S,C3A和C,F,但实际矿物为固溶有少量其他氧化物的固溶体,即阿利特、贝利特、铁相固溶体等。例如,若阿利特组成按CSAS16MA考虑,则计算C3S的公式中SI02前面的系数就不是380而是430,这样实际含量就要提高11,而C3A则因有一部分A1203固溶进阿利特而使它的含量减少。又如,铁相固溶体并非固定组成的C,AF,而在高温或有MGO,CAF2等条件下有可能是C62F,其结果使实际矿物中铁相固溶液含量增加使C3A含量减少。2冷却条件的影响硅酸盐水泥熟料冷却过程,若缓慢冷却而平衡结晶,则液相几乎全部结晶出C3A,C,AF等矿物。但在工业生产条件下,冷却速度较快,因而液相可部分或几乎全部变成玻璃体,此时,实际C3A,C,AF含量均比计算值低,而C3S含量可能增加使C2S减少。3碱和其他微组分的影响碱的存在可能与硅酸盐矿物形成KC23S12,与铝酸三钙形成NC8A3,而析出CAO,从而使C3A减少而出现NC3A3,碱也可能影响C3S含量。其他次要氧化物如TI02,MGO,P,05也会影响熟料的矿物组成。尽管计算的矿物组成与实测值有一定差异,但它能基本说明对熟料锻烧和性能的影响,也是设计某一矿物组成的水泥熟料时,计算生料组成的唯一可能的方法,因此在水泥工业中仍得到广泛应用。第四节熟料矿物组成的选择熟料矿物组成的选择,一般应根据水泥的品种和标号、原料和燃料的品质、生料制备和熟料锻烧工艺综合考虑,以达到优质高产低消耗和设备长期安全运转的目的。水泥品种和标号若要求生产普通硅酸盐水泥,则在保证水泥标号以及凝结时间正常和安定性良好的条件下,其化学成分可在一定范围内变动。可以采用高铁、低铁、低硅、高硅、高饱和系数等多种配料方案。但要注意三个率值配合适当,不能过份强调某一率值。例14如,同样生产525号硅酸盐水泥,华新水泥厂采取的配料方案为X2V89093,SM20V22JM1214,而峨眉水泥厂限于原料、燃料的条件则采取高铁高饱和系数配料方案,KH090093,SM200士010J材08T01,也可生产出525号硅酸盐水泥。生产专用水泥或特性水泥应根据其特殊要求,选择合适的矿物组成。若生产快硬硅酸盐水泥,则要求硅酸三钙和铝酸三钙含量高,因此应提高KH和IM。而生产中热硅酸盐水泥和抗硫酸盐水泥则应减少铝酸兰钙和硅酸三钙含量,即降低KH和IM率。原料品质原料的化学成分和工艺性能对熟料矿物组成的选择有很大影响,在一般情况下,应尽量采用两种或三种原料的配料方案。除非其配料方案不能保证正常生产,才考虑更换原料或掺加另一种校正原料。若石灰石品位低而粘土氧化硅含量又不高,则无法提高石灰饱和系数和硅率,熟料强度难以提高,只有采用品位高的石灰石和氧化硅含量高的粘土才能提高饱和系数和硅率,烧出标号较高的水泥。若石灰石的隧石含量较高而粘土的粗砂含量高,则因为原料难磨,熟料难烧,其熟料的饱和系数也不能高。原料含碱量太高,KH宜降低。燃料品质燃料品质既影响缎烧过程又影响熟料质量。一般说来,发热量高的优质燃料,其火焰温度高,熟料的KH值可高些。若燃料质量差,除了火焰温度低外,还会因煤灰的沉落不均匀,降低熟料质量。水泥窑用煤的质量要求见泥,则要求硅酸三钙和铝酸三钙含量高,因此应提高KH和IM。而生产中热硅酸盐水泥和抗硫酸盐水泥则应减少铝酸兰钙和硅酸三钙含量,即降低KH和IM率。燃料品质既影响缎烧过程又影响熟料质量。一般说来,发热量高的优质燃料,其火焰温度高,熟料的KH值可高些。若燃料质量差,除了火焰温度低外,还会因煤灰的沉落不均匀,降低熟料质量。水泥窑用煤的质量要求见表132。表132水泥烧成用煤的质要求窑型灰分()挥发分()干燥基低热值2090015立波尔窑22900立窑20900煤灰掺入熟料中,除全黑生料的立窑外,往往分布不均匀,对熟料质量影响极大。据统计,由于煤灰不均匀掺入,将使熟料KH值降低0V4V16;硅率下降005020铝率提高。05030。当煤灰掺入量增加时,熟料强度下降此时除了采用提高煤粉细度和用矿化剂等措施外,还应适当降低熟料KH值,以利生产正常进行。当煤质变化时,熟料组成也应相应调整。对回转窑来说,采用的煤的发热量高,挥发分低,则因挥发分低,火焰黑火头长,燃烧部分短,热力集中,熟料易结大块,游离氧化钙增加,耐火砖寿命缩短,除设法使火焰的燃烧部分延长外,还应降低KH值并提高IM值。若用液体或气体燃料,火焰强度很高,形状易控制,几乎无灰分,因此KH值可适当提高。生料细度和均匀性生料化学成分的均匀性,不但对窑的热工制度的稳定和运转率的提高有影响,而且对熟料质量也有影响,因而也就对配料方案的确定有影响。一般说来,生料均匀性好,KH值可高些。据认为,生料碳酸钙滴定值的均匀性达士025时,可生产525号以上的熟料。若生料均匀性差,其熟料KH值应比生料均匀性好的要低一些,否则游离氧化钙增加,强度下降。若生料粒度粗,由于化学反应难以进行完全,KH值也应适当低些。窑型与规格物料在不同类型的窑内受热和锻烧的情况不同,因此熟料的组成也应有所不同。回转窑内物料不断翻滚,与立窑、立波尔窑相比,物料受热和煤灰掺人都比较均匀,物料反应进程较一致,因此KH可适当高些。立波尔窑的热气流自上而下通过加热机的料层,煤灰大部分沉降在上层料面,上部物料温度比下部的高,因此形成上层物料KH值低,分解率高,而下层物料KH值高、分解率低,因此,其KH值应配得低一些。立窑通风、锻烧都不均匀,因此不掺矿化剂的熟料KH值要适当低些。对于掺复合矿化剂的熟料,由于液相出现温度低且液相粘度低,烧成温度范围变宽,一般采用高KH、低SM和高IM配料方案,例如,广西北流水泥厂的熟料各率值为KH094098,SM160180,IM140160。16预分解窑生料预热好,分解率高,另外由于单位产量窑桐体散热损失少以及耗热最大的碳酸盐分解带已移到窑外,因此窑内气流温度高,为了有利于挂窑皮和防止结皮、堵塞、结大块,目前趋于低液相量的配料方案。我国大型预分解窑大多采用高硅率、高铝率、中饱和比的配料方案,即所谓“二高一中”配料方案,例如,安徽宁国水泥厂的配料方案为IM089,SM220230,IM145,窑的规格对熟料组成的设计也有影响。例如日产700T熟料的上海川沙水泥厂,由于窑的规格小,窑内的气流温度比宁国水泥厂的稍低,因此各率值也稍低,其KH089,SM210,1M110。影响熟料组成的选择的因素很多,一个合理的配料方案既要考虑熟料质量,又要考虑物料的易烧性;既要考虑各率值或矿物组成的绝对值,又要考虑它们之间的相互关系。原则上,三个率值不能同时偏高或偏低。不同窑型硅酸盐水泥熟料各率值的参考范围见表133,表133不同窑型硅酸盐水泥熟料率值的参考范围窑型KHSIM预分解窑086089222611L8湿法长窑08809115251V18干法窑086089202351016立波尔窑08508819231018立窑(无矿化剂)085士00220士0113士01立窑(掺加复合矿化剂)09209616221115配料计算熟料组成确定后,即可根据所用原料,进行配料计算,求出符合要求熟料组成的原料配合比配料计算的依据是物料平衡任何化学反应的物料平衡是反应物的量应等于生成物的量。随着温度的升高,生料缎烧成熟料经历着生料干燥蒸发物理水;粘土矿物分解放出结晶水;有机物质的分解、挥发;碳酸盐分解放出二氧化碳,液相出现使熟料烧成。因为有水分、二氧化碳以及某些物质逸出,所以,计算时必须采用统一基准。蒸发物理水以后,生料处于干燥状态,以干燥状态质量所表示的计算单位,称为17干燥基准。干燥基准用于计算干燥原料的配合比和干燥原料的化学成分。如果不考虑生产损失,则干燥原料的质量等于生料的质量,即干石灰石干粘土干铁粉干生料去掉烧失量(结晶水、二氧化碳与挥发物质等)以后,生料处于灼烧状态。以灼烧状质量所表示的计算单位,称为灼烧基准。灼烧基准用于计算灼烧原料的配合比和熟料的化学成分。如果不考虑生产损失,在采用基本上无灰分掺入的气体或液体燃料时,则灼烧原料、灼烧生料与熟料三者的质量相等,即灼烧石灰石灼烧粘土灼烧铁粉灼烧生料熟料如果不考虑生产损失,在采用有灰分掺入的燃煤时,则灼烧生料与掺入熟料的煤灰之和应等于熟料的质量,即灼烧生料煤灰(掺入熟料的)熟料在实际生产中,由于总有生产损失,且飞灰的化学成分不可能等于生料成分,煤灰的掺入量也并不相同。因此,在生产中应以生熟料成分的差别进行统计分析,对配料方案进行校正。熟料中的煤灰掺入量可按下式近似计算PAYS/100,式中GA,熟料中煤灰掺入量,;Q单位熟料热耗,KJ/KG熟料;QY品煤的应用基低热值,KJ/KG煤;AY,煤应用基灰分含量,;S煤灰沉落率,;P煤耗,KG/KG。煤灰沉落率因窑型而异,如表134所示表134不同窑型的煤灰沉落率()窑型无电收尘有电收尘湿法长窑(L/D3050)有链条100100湿法短窑(L/D30)有链条80100湿法短窑带料浆蒸发机70100干法短窑带立筒、旋风预热器90100预分立窑90100立波尔窑80100立窑100100注电收尘窑灰不入窑者按无电收尘器者计算。18生料配料计算方法繁多,有代数法、图解法、尝试误差法(包括递减试凑法)、矿物组成法、最小二乘法等。随着科学技术的发展,电子计算机的应用已逐渐普及到各个领域。有的计算方法由于计算复杂,不够精确而被淘汰。现主要介绍应用比较广泛的尝试误差法。尝试误差法计算方法很多,但原理都相同,其中一种方法是先按假定的原料配合比计算熟料组成,若计算结果不符合要求,则要求调整原料配合比,再行计算,重复至符合为止。另一种方法是从熟料化学成分中依次递减假定配合比的原料成分,试凑至符合要求为止(又称递减试凑法)。现举例说明如下。已知原料、燃料的有关分析数据如表135、136所示,假设用预分解窑以三种原料配合进行生产,要求熟料的三个率值为KH。89,SM21,IM13,单位熟料热耗为3350KJ/K9熟料,计算其配合比。表135中分析数据总和不等于100。这是由于某些物质没有分析侧定,或者某些元素或低价氧化物经灼烧氧化后增加重量所致。为此,小于100时,要以加上其他一项补足100;大于100时,可以不必换算。表135原料与煤灰的化学成分()名称LOSSSIO2AL2O3FE2O3CAOMGO总和石灰石426624203101953130579928粘土527702514725481410929805铁粉3442115348273530099784煤灰535235344464791199930表136煤的工业分析水分挥发物灰分固定碳热值KJ/KG0622422856490220930例试以第一种方法计算原料配合比。1确定熟料组成根据题意,已知熟料率值为KH089,SM21J材13。2计算煤灰掺入量据式(1332)193计算干操原料配合比设干操原料配合比为石灰石81、粘土15、铁粉4,以此计算生料的化学成分。名称配合比烧失量SIO2AL2O3FE2O3CAO石灰石81034551960250154303粘土1500791054221082021铁粉40138046193014生料1000353413883922904333灼烧生料21474524486709煤灰掺入量吼457,则灼烧生料配合比为1004579543。按此计算熟料的化学成分。名称配合比SI02AI2O3FE203CA0灼烧生料()954320484314286402煤灰()457245162020022熟料()1000022935934486424由此计算熟料率值KHCAO165AL2O3035FE2O3/28SIO2SM220IM132上述计算结果中,KH过低,SM过高,IM较接近。为此,应增加石灰石配比,减少粘土配比,铁粉可略增加,根据经验统计,每增减1石灰石(相应减增1粘土),约增减KH值0。05据此,调整原料配合比为石灰石8220、粘土137、铁粉41,重新计算结果如下名称()配合比烧失量SI03AL2O3FE2O3CAO20石灰石()822035071990260164367粘土()1370072962202075010铁粉()410141047198015生料()10000357913022752894401灼烧生料()20284284506854灼烧熟料()954319354084296541煤灰()457245162020022熟料()1000021805704496565则KHCAO165AL2O3035FE2O3/28SIO2SM214IM127所得结果,KH,SM均略高,而铝率略为偏低,但已十分接近要求值。如要降低KH与SM,则应减少石灰石与粘土;这样,就势必再增加铁粉,从而使铝率更低。因此,可按此配料进行生产,考虑到生产波动,熟料率值控制指标可定为KH089士002;SM21士01;IM13士01。按上述计算结果,干燥原料配合比为石灰石822;粘土137;铁粉414计算湿原料的配合比设原料操作水分石灰石为10;粘土08;铁粉41。则湿原料质量配合比为湿石灰石8303湿粘土1381湿铁粉465将上述质量比换算为百分比湿石灰石100818021湿粘土1001361湿铁粉10026822电厂分散控制系统故障分析与处理作者单位摘要归纳、分析了电厂DCS系统出现的故障原因,对故障处理的过程及注意事项进行了说明。为提高分散控制系统可靠性,从管理角度提出了一些预防措施建议,供参考。关键词DCS故障统计分析预防措施随着机组增多、容量增加和老机组自动化化改造的完成,分散控制系统以其系统和网络结构的先进性、控制软件功能的灵活性、人机接口系统的直观性、工程设计和维护的方便性以及通讯系统的开放性等特点,在电力生产过程中得到了广泛应用,其功能在DAS、MCS、BMS、SCS、DEH系统成功应用的基础上,正逐步向MEH、BPC、ETS和ECS方向扩展。但与此同时,分散控制系统对机组安全经济运行的影响也在逐渐增加;因此如何提高分散控制系统的可靠性和故障后迅速判断原因的能力,对机组的安全经济运行至关重要。本文通过对浙江电网机组分散控制系统运行中发生的几个比较典型故障案例的分析处理,归纳出提高分散系统的可靠性的几点建议,供同行参考。1考核故障统计浙江省电力行业所属机组,目前在线运行的分散控制系统,有TELEPERMME、MOD300,INFI90,NETWORK6000,MACS和MACS,XDPS400,A/I。DEH有TOSAMAPGS/C800,DEHIIIA等系统。笔者根据各电厂安全简报记载,将近几年因分散控制系统异常而引起的机组故障次数及定性统计于表1表1热工考核故障定性统计2热工考核故障原因分析与处理根据表1统计,结合笔者参加现场事故原因分析查找过程了解到的情况,下面将分散控制系统异常(浙江省电力行业范围内)而引起上述机组设备二类及以上故障中的典型案例分类浅析如下21测量模件故障典型案例分析23测量模件“异常”引起的机组跳炉、跳机故障占故障比例较高,但相对来讲故障原因的分析查找和处理比较容易,根据故障现象、故障首出信号和SOE记录,通过分析判断和试验,通常能较快的查出“异常”模件。这种“异常”模件有硬性故障和软性故障二种,硬性故障只能通过更换有问题模件,才能恢复该系统正常运行;而软性故障通过对模件复位或初始化,系统一般能恢复正常。比较典型的案例有三种(1)未冗余配置的输入/输出信号模件异常引起机组故障。如有台130MW机组正常运行中突然跳机,故障首出信号为“轴向位移大”,经现场检查,跳机前后有关参数均无异常,轴向位移实际运行中未达到报警值保护动作值,本特利装置也未发讯,但LPC模件却有报警且发出了跳机指令。因此分析判断跳机原因为DEH主保护中的LPC模件故障引起,更换LPC模件后没有再发生类似故障。另一台600MW机组,运行中汽机备用盘上“汽机轴承振动高”、“汽机跳闸”报警,同时汽机高、中压主汽门和调门关闭,发电机逆功率保护动作跳闸;随即高低压旁路快开,磨煤机B跳闸,锅炉因“汽包水位低低”MFT。经查原因系1高压调门因阀位变送器和控制模件异常,使调门出现大幅度晃动直至故障全关,过程中引起1轴承振动高高保护动作跳机。更换1高压调门阀位控制卡和阀位变送器后,机组启动并网,恢复正常运行。(2)冗余输入信号未分模件配置,当模件故障时引起机组跳闸如有一台600MW机组运行中汽机跳闸,随即高低压旁路快开,磨煤机B和D相继跳闸,锅炉因“炉膛压力低低”MFT。当时因系统负荷紧张,根据SOE及DEH内部故障记录,初步判断的跳闸原因而强制汽机应力保护后恢复机组运行。二日后机组再次跳闸,全面查找分析后,确认2次机组跳闸原因均系DEH系统三路“安全油压力低”信号共用一模件,当该模件异常时导致汽轮机跳闸,更换故障模件后机组并网恢复运行。另一台200MW机组运行中,汽包水位高值,值相继报警后MFT保护动作停炉。查看CRT上汽包水位,2点显示300MM,另1点与电接点水位计显示都正常。进一步检查显示300MM的2点汽包水位信号共用的模件故障,更换模件后系统恢复正常。针对此类故障,事后热工所采取的主要反事故措施,是在检修中有针对性地对冗余的输入信号的布置进行检查,尽可能地进行分模件处理。(3)一块I/O模件损坏,引起其它I/O模件及对应的主模件故障如有台机组“CCS控制模件故障“及“一次风压高低”报警的同时,CRT上所有磨煤机出口温度、电流、给煤机煤量反馈显示和总煤量百分比、氧量反馈,燃料主控BTU输出消失,F磨跳闸(首出信号为“一次风量低”)。4分钟后CRT上磨煤机其它相关参数也失去且状态变白色,运行人员手动MFT(当时负荷410MW)。经检查电子室制粉系统过程控制站(PCU01柜MOD4)的电源电压及处理模件底板正常,二块MFP模件死机且相关的一块CSI模件(模位153,有关F磨CCS参数)故障报警,拔出检查发现其5VDC逻辑电源输入回路、第4输出通道、连接MFP的I/O扩展总线电路有元件烧坏(由于输出通道至BCS(24VDC),因此不存在外电串入损坏元件的可能)。经复位二块死机的MFP模件,更换故障的CSI模件后系统恢复正常。根据软报警记录和检查分析,故障原因是CSI模件先故障,在该模件故障过程中引起电压波动或I/O扩展总线故障,导致其它I/O模件无法与主模件MFP03通讯而故障,信号保持原值,最24终导致主模件MFP03故障(所带AF磨煤机CCS参数),CRT上相关的监视参数全部失去且呈白色。22主控制器故障案例分析由于重要系统的主控制器冗余配置,大大减少了主控制器“异常”引发机组跳闸的次数。主控制器“异常”多数为软故障,通过复位或初始化能恢复其正常工作,但也有少数引起机组跳闸,多发生在双机切换不成功时,如(1)有台机组运行人员发现电接点水位计显示下降,调整给泵转速无效,而CRT上汽包水位保持不变。当电接点水位计分别下降至甲300MM,乙250MM,并继续下降且汽包水位低信号未发,MFT未动作情况下,值长令手动停炉停机,此时CRT上调节给水调整门无效,就地关闭调整门;停运给泵无效,汽包水位急剧上升,开启事故放水门,甲、丙给泵开关室就地分闸,油泵不能投运。故障原因是给水操作站运行DPU死机,备用DPU不能自启动引起。事后热工对给泵、引风、送风进行了分站控制,并增设故障软手操。(2)有台机组运行中空预器甲、乙挡板突然关闭,炉膛压力高MFT动作停炉;经查原因是风烟系统I/O站DPU发生异常,工作机向备份机自动切换不成功引起。事后电厂人员将空预器烟气挡板甲1、乙1和甲2、乙2两组控制指令分离,分别接至不同的控制站进行控制,防止类似故障再次发生。23DAS系统异常案例分析DAS系统是构成自动和保护系统的基础,但由于受到自身及接地系统的可靠性、现场磁场干扰和安装调试质量的影响,DAS信号值瞬间较大幅度变化而导致保护系统误动,甚至机组误跳闸故障在我省也有多次发生,比较典型的这类故障有(1)模拟量信号漂移为了消除DCS系统抗无线电干扰能力差的缺陷,有的DCS厂家对所有的模拟量输入通道加装了隔离器,但由此带来部分热电偶和热电阻通道易电荷积累,引起信号无规律的漂移,当漂移越限时则导致保护系统误动作。我省曾有三台机组发生此类情况(二次引起送风机一侧马达线圈温度信号向上漂移跳闸送风机,联跳引风机对应侧),但往往只要松一下端子板接线(或拆下接线与地碰一下)再重新接上,信号就恢复了正常。开始热工人员认为是端子柜接地不好或者I/O屏蔽接线不好引起,但处理后问题依旧。厂家多次派专家到现场处理也未能解决问题。后在机组检修期间对系统的接地进行了彻底改造,拆除原来连接到电缆桥架的AC、DC接地电缆;柜内的所有备用电缆全部通过导线接地;UPS至DCS电源间增加1台20KVA的隔离变压器,专门用于系统供电,且隔离变压器的输出端N线与接地线相连,接地线直接连接机柜作为系统的接地。同时紧固每个端子的接线;更换部份模件并将模件的软件版本升级等。使漂移现象基本消除。(2)DCS故障诊断功能设置不全或未设置。信号线接触不良、断线、受干扰,使信号值瞬间变化超过设定值或超量程的情况,现场难以避免,通过DCS模拟量信号变化速率保护功能的正确设置,可以避免或减少这类故障引起的保护系统误动。但实际应用中往往由于此功能未设置或设置不全,使此类故障屡次发生。如一次风机B跳闸引起机组RB动作,首出信号为轴承温度高。经查原因是由于测温热电阻引线是细的多股线,而信号电缆是较25粗的单股线,两线采用绞接方式,在震动或外力影响下连接处松动引起轴承温度中有点信号从正常值突变至无穷大引起(事后对连接处进行锡焊处理)。类似的故障有民工打扫现场时造成送风机轴承温度热电阻接线松动引起送风机跳闸;轴承温度热电阻本身损坏引起一次风机跳闸;因现场干扰造成推力瓦温瞬间从99突升至117,1秒钟左右回到99,由于相邻第八点已达85,满足推力瓦温度任一点105同时相邻点达85跳机条件而导致机组跳闸等等。预防此类故障的办法,除机组检修时紧固电缆和电缆接线,并采用手松拉接线方式确认无接线松动外,是完善DCS的故障诊断功能,对参与保护连锁的模拟量信号,增加信号变化速率保护功能尤显重要(一当信号变化速率超过设定值,自动将该信号退出相应保护并报警。当信号低于设定值时,自动或手动恢复该信号的保护连锁功能)。(3)DCS故障诊断功能设置错误我省有台机组因为电气直流接地,保安1A段工作进线开关因跳闸,引起挂在该段上的汽泵A的工作油泵A连跳,油泵B连锁启动过程中由于油压下降而跳汽泵A,汽泵B升速的同时电泵连锁启动成功。但由于运行操作速度过度,电泵出口流量超过量程,超量程保护连锁开再循环门,使得电泵实际出水小,B泵转速上升到5760转时突然下降1000转左右(事后查明是抽汽逆止阀问题),最终导致汽包水位低低保护动作停炉。此次故障是信号超量程保护设置不合理引起。一般来说,DAS的模拟量信号超量程、变化速率大等保护动作后,应自动撤出相应保护,待信号正常后再自动或手动恢复保护投运。24软件故障案例分析分散控制系统软件原因引起的故障,多数发生在投运不久的新软件上,运行的老系统发生的概率相对较少,但一当发生,此类故障原因的查找比较困难,需要对控制系统软件有较全面的了解和掌握,才能通过分析、试验,判断可能的故障原因,因此通常都需要厂家人员到现场一起进行。这类故障的典型案例有三种(1)软件不成熟引起系统故障此类故障多发生在新系统软件上,如有台机组80额定负荷时,除DEH画面外所有DCS的CRT画面均死机(包括两台服务器),参数显示为零,无法操作,但投入的自动系统运行正常。当时采取的措施是运行人员就地监视水位,保持负荷稳定运行,热工人员赶到现场进行系统重启等紧急处理,经过30分钟的处理系统恢复正常运行。故障原因经与厂家人员一起分析后,确认为DCS上层网络崩溃导致死机,其过程是服务器向操作员站发送数据时网络阻塞,引起服务器与各操作员站的连接中断,造成操作员站读不到数据而不停地超时等待,导致操作员站图形切换的速度十分缓慢(网络任务未死)。针对管理网络数据阻塞情况,厂家修改程序考机测试后进行了更换。另一台机组曾同时出现4台主控单元“白灯”现象,现场检查其中2台是因为A机备份网停止发送,1台是A机备份网不能接收,1台是A机备份网收、发数据变慢(比正常的站慢几倍)。这类故障的原因是主控工作机的网络发送出现中断丢失,导致工作机发往备份机的数据全部丢失,而双机的诊断是由工作机向备份机发诊断申请,由备份机响应诊断请求,工作机获得备份机的工作状态,上报给服务器。由于工作机的发送数据丢失,所以工作机发不出申请,也就收不到备份机的响应数据,认为备份机故障。临时的解决26方法是当长时间没有正确发送数据后,重新初始化硬件和软件,使硬件和软件从一个初始的状态开始运行,最终通过更新现场控制站网络诊断程序予以解决。(2)通信阻塞引发故障使用TELEPERMME系统的有台机组,负荷300MW时,运行人员发现煤量突减,汽机调门速关且CRT上所有火检、油枪、燃油系统均无信号显示。热工人员检查发现机组EHF系统一柜内的I/OBUS接口模件ZT报警灯红闪,操作员站与EHF系统失去偶合,当试着从工作站耦合机进入OS250PC软件包调用EHF系统时,提示不能访问该系统。通过查阅DCS手册以及与SIEMENS专家间的电话分析讨论,判断故障原因最大的可能是在三层CPU切换时,系统处理信息过多造成中央CPU与近程总线之间的通信阻塞引起。根据商量的处理方案于当晚11点多在线处理,分别按三层中央柜的同步模件的SYNC键,对三层CPU进行软件复位先按CPU1的SYNC键,相应的红灯亮后再按CPU2的SYNC键。第二层的同步红灯亮后再按CPU3的同步模件的SYNC键,按3秒后所有的SYNC的同步红灯都熄灭,系统恢复正常。(3)软件安装或操作不当引起有两台30万机组均使用CONDUCTORNT50作为其操作员站,每套机组配置3个SERVER和3个CLIENT,三个CLIENT分别配置为大屏、值长站和操作员站,机组投运后大屏和操作员站多次死机。经对全部操作员站的SERVER和CLIENT进行全面诊断和多次分析后,发现死机的原因是1一台SERVER因趋势数据文件错误引起它和挂在它上的CLIENT在当调用趋势画面时画面响应特别缓慢(俗称死机)。在删除该趋势数据文件后恢复正常。2一台SERVER因文件类型打印设备出错引起该SERVER的内存全部耗尽,引起它和挂在它上的CLIENT的任何操作均特别缓慢,这可通过任务管理器看到DEVEXE进程消耗掉大量内存。该问题通过删除文件类型打印设备和重新组态后恢复正常。3两台大屏和工程师室的CLIENT因声音程序没有正确安装,当有报警时会引起进程CHANGEEXE调用后不能自动退出,大量的CHANGEEXE堆积消耗直至耗尽内存,当内存耗尽后,其操作极其缓慢(俗称死机)。重新安装声音程序后恢复正常。此外操作员站在运行中出现的死机现象还有二种一种是鼠标能正常工作,但控制指令发不出,全部或部分控制画面不会刷新或无法切换到另外的控制画面。这种现象往往是由于CRT上控制画面打开过多,操作过于频繁引起,处理方法为用鼠标打开VMS系统下拉式菜单,RESET应用程序,10分钟后系统一般就能恢复正常。另一种是全部控制画面都不会刷新,键盘和鼠标均不能正常工作。这种现象往往是由操作员站的VMS操作系统故障引起。此时关掉OIS电源,检查各部分连接情况后再重新上电。如果不能正常启动,则需要重装VMS操作系统;如果故障诊断为硬件故障,则需更换相应的硬件。(4)总线通讯故障有台机组的DEH系统在准备做安全通道试验时,发现通道选择按钮无法进入,且系统自动从“高级”切到“基本级”运行,热控人员检查发现GSE柜内的所有输入/输出卡CSEA/CSEL的故障灯亮,经复归GSE柜的REG卡后,CSEA/CSEL的故障灯灭,但系统在重启“高级”时,维护屏不能进入到正常的操作画面呈死机状态。根据报警信息分析,故障原因是系统存在总线通讯故障及节点故障引起。由于阿尔斯通DEH系统无27冗余配置,当时无法处理,后在机组调停时,通过对基本级上的REG卡复位,系统恢复了正常。(5)软件组态错误引起有台机组进行1中压调门试验时,强制关闭中间变量IV1RCO信号,引起14中压调门关闭,负荷从198MW降到34MW,再热器压力从204MP升到40MPA,再热器安全门动作。故障原因是厂家的DEH组态,未按运行方式进行,流量变量本应分别赋给IV1RCOIV4RCO,实际组态是先赋给IV1RCO,再通过IV1RCO分别赋给IV2RCOIV4RCO。因此当强制IV1RCO0时,所有调门都关闭,修改组态文件后故障消除。25电源系统故障案例分析DCS的电源系统,通常采用11冗余方式(一路由机组的大UPS供电,另一路由电厂的保安电源供电),任何一路电源的故障不会影响相应过程控制单元内模件及现场I/O模件的正常工作。但在实际运行中,子系统及过程控制单元柜内电源系统出现的故障仍为数不少,其典型主要有(1)电源模件故障电源模件有电源监视模件、系统电源模件和现场电源模件3种。现场电源模件通常在端子板上配有熔丝作为保护,因此故障率较低。而前二种模件的故障情况相对较多1)系统电源模件主要提供各不同等级的直流系统电压和I/O模件电压。该模件因现场信号瞬间接地导致电源过流而引起损坏的因素较大。因此故障主要检查和处理相应现场I/O信号的接地问题,更换损坏模件。如有台机组负荷520MW正常运行时MFT,首出原因“汽机跳闸“。CRT画面显示二台循泵跳闸,备用盘上循泵出口阀86信号报警。5分钟后运行巡检人员就地告知循泵A、B实际在运行,开关室循泵电流指示大幅晃动且A大于B。进一步检查机组PLC诊断画面,发现控制循泵A、B的二路冗余通讯均显示“出错”。43分钟后巡检人员发现出口阀开度小就地紧急停运循泵A、B。事后查明A、B两路冗余通讯中断失去的原因,是为通讯卡提供电源支持的电源模件故障而使该系统失电,中断了与PLC主机的通讯,导致运行循泵A、B状态失去,凝汽器保护动作,机组MFT。更换电源模件后通讯恢复正常。事故后热工制定的主要反事故措施,是将两台循泵的电流信号由PLC改至DCS的CRT显示,消除通信失去时循泵运行状态无法判断的缺陷;增加运行泵跳闸关其出口阀硬逻辑(一台泵运行,一台泵跳闸且其出口阀开度30度,延时15秒跳运行泵硬逻辑;一台泵运行,一台泵跳闸且其出口阀开度0度,逆转速动作延时30秒跳运行泵硬逻辑);修改凝汽器保护实现方式。2)电源监视模件故障引起电源监视模件插在冗余电源的中间,用于监视整个控制站电源系统的各种状态,当系统供电电压低于规定值时,它具有切断电源的功能,以免损坏模件。另外它还提供报警输出触点,用于接入硬报警系统。在实际使用中,电源监视模件因监视机箱温度的228个热敏电阻可靠性差和模件与机架之间接触不良等原因而故障率较高。此外其低电压切断电源的功能也会导致机组误跳闸,如有台机组满负荷运行,BTG盘出现“CCS控制模件故障”报警,运行人员发现部分CCS操作框显示白色,部分参数失去,且对应过程控制站的所有模件显示白色,6S后机组MFT,首出原因为“引风机跳闸”。约2分钟后CRT画面显示恢复正常。当时检查系统未发现任何异常(模件无任何故障痕迹,过程控制站的通讯

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论