二次函数的实际应用(典型例题分类)_第1页
二次函数的实际应用(典型例题分类)_第2页
二次函数的实际应用(典型例题分类)_第3页
二次函数的实际应用(典型例题分类)_第4页
二次函数的实际应用(典型例题分类)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二 次 函 数 与 实 际 问 题1、理论应用 (基本性质的考查:解析式、图象、性质等)2、实际应用 (求最值、最大利润、最大面积等)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积()与路宽(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积()与它与墙平行的边的长(m)之间的函数关系式?当x为多长时,花园面积最大?

2、例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0x13.5)元,那么(1) 销售量可以表示为_;(2) 销售额可以表示为_;(3) 所获利润可以表示为_;(4) 当销售单价是_元时,可以获得最大利润,最大利润是_。变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,

3、每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?其中自变量是_,因变量是_.(2)假设增种棵橙子树,那么果园里共有_棵橙子树,这时平均每棵树结_个橙子.(3)如果橙子的总产量为y个,请你写出x与y之间的关系式_.(4)果园里种_棵橙子树橙子的总产量最多,最多是_。例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。(1)以隧道横断面抛物线的顶点为原点,以抛物线的对称轴为y轴,建立直角坐标系,求该抛物线对应的函数关系式;(2)某卡车空车时能通过此隧道,现装载一集装箱箱宽3m,车与箱共高4.5m,此车能否通过隧道?并说明理由。变式练习3:如图是抛物线型的拱桥,已知水位在

4、AB位置时,水面宽米,水位上升3米就达到警戒水位线CD,这时水面宽米,若洪水到来时,水位以每小时0.25米的速度上升,求水过警戒线后几小时淹到拱桥顶? 变式练习4:如图,某大学的校门是一抛物线形状的水泥建筑物,大门的地面高度为8米,两侧距地面4米高处各有一个挂校名的横匾用的铁环,两铁环的水平距离为6米,则校门的高度为 。(精确到0.1米)例四:一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1x12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的

5、第12个月的水平。 (1)设使用回收净化设备后的1至x月(1x12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元?(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等? (3)求使用回收净化设备后两年的利润总和。变式练习5:一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本)若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入(日净收入每天的销售

6、额套餐成本每天固定支出)求y与x的函数关系式;若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入按此要求,每份套餐的售价应定为多少元?此时日净收入为多少? 例题五:心理学家研究发现,一般情况下,学生的注意力随着教师讲课时间的变化而变化,讲课开始时,学生的注意力初步增强,中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散,经过实验分析可知,学生的注意力y随时间t的变化规律有如下关系(04黄冈)(1)讲课开始后第5分钟与讲课开始第25分钟比较,何时学生的注意力更集中?(2)讲课开始后

7、多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学题,需要讲解24分钟,为了效果较好,要求学生的注意力达到180,那么经过适当安排,老师能否在注意力达到所需的状态下讲解完这道题目?例题六:如图,等腰RtABC的直角边AB,点P、Q分别从A、C两点同时出发,以相等的速度作直线运动,已知点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线相交于点D。(1)设 AP的长为x,PCQ的面积为S,求出S关于x的函数关系式;(2)当AP的长为何值时,SPCQ= SABC 变式练习6:在矩形ABCD中,AB6cm,BC12cm,点P从点A出发,沿AB边向点B以1cm/秒的速度移动,同时,点Q从

8、点B出发沿BC边向点C以2cm/秒的速度移动。如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)运动开始后第几秒时,PBQ的面积等于8cm2(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;t为何值时S最小?求出S的最小值。CDQBPA课后练习:一,利润问题:1某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?二,面积问题:2,如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上(1)设长方形的一边ABx m,那么AD边的长度如何表示?(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?3.如图1,RtPMN中,P90,PMPN,MN8cm,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论