【人教版八年级数学上册同步练习试题及答案全套】13.4+课题学习+最短路径问题自我小测(含答案)新人教版_第1页
【人教版八年级数学上册同步练习试题及答案全套】13.4+课题学习+最短路径问题自我小测(含答案)新人教版_第2页
【人教版八年级数学上册同步练习试题及答案全套】13.4+课题学习+最短路径问题自我小测(含答案)新人教版_第3页
【人教版八年级数学上册同步练习试题及答案全套】13.4+课题学习+最短路径问题自我小测(含答案)新人教版_第4页
【人教版八年级数学上册同步练习试题及答案全套】13.4+课题学习+最短路径问题自我小测(含答案)新人教版_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、13.4 最短路径问题基础巩固1有两棵树位置如图,树脚分别为A,B.地上有一只昆虫沿AB的路径在地面上爬行小树顶D处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C处,问小鸟飞至AB之间何处时,飞行距离最短,在图中画出该点的位置2已知,如图所示,甲、乙、丙三个人做传球游戏,游戏规则如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲若甲站在AOB内的P点,乙站在OA上,丙站在OB上,并且甲、乙、丙三人的传球速度相同问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?3如图所示,P,Q为ABC边上的两个定点,在BC上求作一点R,使PQR的周长最小4七年级(1)班

2、同学做游戏,在活动区域边OP放了一些球(如图),则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?能力提升5公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示)现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由6如图,牧童在A处放牛,其家在B处,A,B到河岸CD的距离分别为AC,BD,且ACBD,若A到河岸CD的中点的距离为500 m.(1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走路程最短?在图中作出该处,并说明理由;(2)最短路程是多少?参考答案1解:如图

3、,作D关于AB的对称点D,连接CD交AB于点E,则点E就是所求的点2解:如图所示,(1)分别作点P关于OA,OB的对称点P1,P2;(2)连接P1P2,与OA,OB分别相交于点M,N.因为乙站在OA上,丙站在OB上,所以乙必须站在OA上的M处,丙必须站在OB上的N处才能使传球所用时间最少3解:(1)作点P关于BC所在直线的对称点P;(2)连接PQ,交BC于点R,则点R就是所求作的点(如图所示)4解:如图,作小明关于活动区域边线OP的对称点A,连接AA交OP于点B,则小明行走的路线是小明BA,即在B处捡球,才能最快拿到球跑到目的地A.5解:如图,作P关于OM的对称点P,作P关于ON的对称点P,连

4、接PP,分别交MO,NO于Q,R,连接PQ,PR,则PQPQ,PRPR,则Q,R就是小桥所在的位置理由:在OM上任取一个异于Q的点Q,在ON上任取一个异于R的点R,连接PQ,PQ,QR,PR,PR,则PQPQ,PRPR,且PQQRRPPQQRRP,所以PQR的周长最小,故Q,R就是我们所求的小桥的位置6解:(1)作法:如图作点A关于CD的对称点A;连接AB交CD于点M.则点M即为所求的点证明:在CD上任取一点M,连接AM,AM,BM,AM,因为直线CD是A,A的对称轴,M,M在CD上,所以AMAM,AMAM,所以AMBMAMBMAB,在AMB中,因为AMBMAB,所以AMBMAMBMAMBM,

5、即AMBM最小(2)由(1)可得ACACBD,所以ACMBDM,即AMBM,CMDM,所以M为CD的中点,且AB2AM,因为AM500 m,所以ABAMBM2AM1 000 m.即最短路程为1 000 m.如何学好初中数学经典介绍浅谈如何学好初中数学 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢,现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基

6、本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以

7、帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的

8、题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我*,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何提高解数学题的能力 任何学问都包括知识和

9、能力两个方面,在数学方面,能力比具体的知识要重要的多。当然,我们也不能过分强调能力,而忽视知识的学习,我们应当在学习一定数量知识的同时,还应该学会一些解决问题的能力。 能力是什么,心理学中是这样定义的:能力是指直接影响人的活动效率,使活动顺利完成的个性心理特征。在数学里,我认为,能力就是解决问题的才智。 一、 怎样才能提高自己的解题能力 首先是模仿。解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。 其次是实践。如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。 再次,要提高自己的解题能力,光靠模仿是不够的,你必须要动脑筋

10、。例如,对于课本的定理的证明,例题的解法、证法能读懂听懂还不够,你必须明白人家是怎样想出那个解题方法的,为什么要那样解题,有没有其它的解题途径,我认为这才是最重要的东西。如果你真正领会了人家的解题思路,那么在此基础上你就有所创新,就能够提高你的解题能力。二、 学习数学应注意培养什么样的能力 1运算能力。 2空间想象能力。 3逻辑思维能力。 4将实际问题抽象为数学问题的能力。 5形数结合互相转化的能力。 6观察、实验、比较、猜想、归纳问题的能力。 7研究、探讨问题的能力和创新能力。 三、 提高数学解题能力的关键是什么?灵活应用数学思想方法是提高解题能力的关键,我们的先辈数学家们,已经为我们创造出

11、了很多的数学思想方法,我们应该很好地体会它,理解它,并且要灵活地应用它。对于初中数学主要是以下四类数学思想(所谓思想就是指导我们实践的理论方法,这里主要指想法或方法):1转化思想。2方程思想。3形数结合思想。4函数思想。5.整体思想6分类讨论思想.7统计思想。只要我们能够深入地理解上述思想方法,并能灵活地应用到具体的解题实践中,就能极大地提高你的解题能力。 提高你的分类讨论能力 分类讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。临近中考,将同学中出现的部分漏解现象进行分析,希望能帮助同学们提高分类讨论

12、的能力。 概念不清,导致漏解 对所学知识概念不清,领会不够深刻,导致答题不完整。 例:已知(a-3)x6,求x的取值范围。 分析:根据不等式的性质“不等式的两边同乘或同除以不为零的负数,不等号的方向要改变”,而此题中(a-3)的符号并未确定,所以要分类讨论(a-3)的正负问题。 例:若y2+(k+2)y+16是完全平方式,求k。 分析:完全平方式中有两种情况:(a?b)2=a2?2ab+b2,而同学们往往容易忽略k+2=-8这一解。 思维固定,导致漏解 在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。 例:若等腰三解形腰上的高等于腰长的一半、求底角。 分析:据题意,

13、由于等腰三解形既不可能是锐角等腰三解形也可能是钝角等腰三角形,所以腰上的高可能在三角形内部,也可能在外部。而同学们受习惯思维影响,大都忽略了高在三角形外的一种可能。 例:若直角三角形三条边分别为3、4、c,求c的值。 分析:此题中的c并不一定是代表斜边,也可能是直角边,而有些同学错误地将其与勾股定理中的c混淆起来,认为c一定是斜边,导致漏解。 例:圆O的半径为5cm,两条互相平行的弦长分别为6cm、8cm,求两条弦之间的距离。 分析:两条弦在圆中的位置关系可能在圆心的同侧或者在圆心的两侧,因此在解答时不能依据自己的习惯进行思考。 中考数学作辅助线规律总结(巧计口诀) 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论