




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数的极值与导数(45分钟70分)一、选择题(每小题5分,共40分)1.函数f(x)=x2+2的极小值是()A.1B.2C.5D.不存在【解析】选C.f(x)=2x-,令f(x)=0,解得x=1,当x(0,1)时函数单调递减,当x(1,+)时函数单调递增,因此x=1是函数的极小值点,极小值为f(1)=5.2.(2017凉山模拟)函数f(x)=mlnx-cosx在x=1处取得极值,则m的值为()A.sin1B.-sin1C.cos1D.-cos1【解析】选B.因为f(x)=+sinx,由题意得:f(1)=m+sin1=0,所以m=-sin1.3.函数f(x)=2-x2-x3的极值情况是()A.有
2、极大值,没有极小值B.有极小值,没有极大值C.既无极大值也无极小值D.既有极大值又有极小值【解析】选D.f(x)=-2x-3x2,令f(x)=0有x=0或x=-.当x-时,f(x)0;当-x0;当x0时,f(x)0,b0,且函数f(x)=4x3-ax2-2bx在x=1处有极值,则+的最小值为()A.B.C.D.【解析】选C.因为函数f(x)=4x3-ax2-2bx在x=1处有极值,所以f(1)=12-2a-2b=0,即a+b=6,则+=(a+b)=(当且仅当=且a+b=6,即a=2b=4时取“=”).6.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为()A.(-
3、1,2)B.(-3,6)C.(-,-1)(2,+)D.(-,-3)(6,+)【解析】选D.f(x)=3x2+2ax+(a+6),因为f(x)既有极大值又有极小值,那么=(2a)2-43(a+6)0,解得a6或a0,右侧f(x)0,所以f(x)在(-1,3)上单调递增,又f(-1)=-30,所以f(x)在(-1,3)内与x轴只有一个交点.答案:1个三、解答题(每小题10分,共20分)11.已知函数y=x3+3ax2+3bx+c在x=2处有极值,且其图象在x=1处的切线与直线6x+2y+5=0平行.(1)求函数的单调区间.(2)求函数的极大值与极小值的差.【解析】y=3x2+6ax+3b,因为x=
4、2是函数的极值点,所以12+12a+3b=0,即4+4a+b=0.又图象在x=1处的切线与直线6x+2y+5=0平行,所以y|x=1=3+6a+3b=-3,即2a+b+2=0.由解得a=-1,b=0.此时,y=3x2-6x=3x(x-2).(1)令y0,得x(x-2)0,所以x2;令y0,得x(x-2)0,所以0x0,函数g(x)单调递增.当a0,x时,g(x)0,函数g(x)单调递增,x时,g(x)0时,函数g(x)单调递增区间为,函数g(x)单调递减区间为.(2)由(1)知f(1)=0.当a0,f(x)单调递增,所以x时,f(x)0,f(x)单调递增,所以f(x)在x=1处取得极小值,不合
5、题意.当0a1时,由(1)知f(x)在内单调递增,所以x时,f(x)0,f(x)单调递增,所以f(x)在x=1处取得极小值,不合题意.当a=,=1时,f(x)在内单调递增,在(1,+)内单调递减,所以x时,f(x)0,f(x)单调递减,不合题意.当a,00,f(x)单调递增,当x时,f(x).【补偿训练】已知函数f(x)=x3-bx2+2cx的导函数的图象关于直线x=2对称.(1)求b的值.(2)若函数f(x)无极值,求c的取值范围.【解析】(1)f(x)=3x2-2bx+2c,因为函数f(x)的图象关于直线x=2对称,所以-=2,即b=6.(2)由(1)知,f(x)=x3-6x2+2cx,f
6、(x)=3x2-12x+2c=3(x-2)2+2c-12,当2c-120,即c6时,f(x)0恒成立,此时函数f(x)无极值.【能力挑战题】已知函数f(x)=(c0且c1,kR)恰有一个极大值点和一个极小值点,其中一个是x=-c.(1)求函数f(x)的另一个极值点.(2)求函数f(x)的极大值M和极小值m,并求M-m1时k的取值范围.【解析】(1)f(x)=,由题意知f(-c)=0,即得c2k-2c-ck=0,(*)因为c0,所以k0.由f(x)=0得-kx2-2x+ck=0,由根与系数的关系知另一个极值点为x=1(或x=c-).(2)由(*)式得k=,即c=1+.当c1时,k0;当0c1时,k0时,f(x)在(-,-c)和(1,+)内是减
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高端白酒品牌形象包装设计及印刷一体化合同
- 2025年节能型办公设施定制安装与维护保养合同
- 2025年信息技术员招聘考试高频考点解析与模拟题
- 2025年自然资源保护局公务员面试模拟题集与答案解析
- 2025年物资储备仓库财务岗位面试指南及题库
- 2025年人力资源管理实战案例分析题库及答案解析
- 二零二五版旅游服务合作协议增加补充条款
- 2025版抵押房屋买卖协议书特别针对房屋结构安全检测
- 二零二五年度白灰行业采购合同范本
- 二零二五年行业交流会承办服务协议
- 标准档案盒脊背(格式已设置好)
- 中式烹调师(高级技师考试资料)
- GB/T 21475-2008造船指示灯颜色
- 园林绿化工高级技师知识考试题库(附含答案)
- 安医大生殖医学课件04胚胎的培养
- 可下载打印的公司章程
- 关于推荐评审高级工程师专业技术职务的推荐意见报告
- Q∕GDW 10356-2020 三相智能电能表型式规范
- 教研工作手册
- CINV化疗相关呕吐课件
- 应届毕业生培养计划方案
评论
0/150
提交评论