




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数的基本性质及常用结论一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。定义:(略)定理1:那么上是增函数;上是减函数.定理2:(导数法确定单调区间) 若,那么上是增函数; 上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法2.复合函数的单调性的判定对于函数和,如果函数在区间上具有单调性,当时,且函数在区间上也具有单调性,则复合函数在区间具有单调性。3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数和,若它们的定义域分别为和,且:(1)当和具有相同的增减性时,的增减性与相同,
2、、的增减性不能确定;(2)当和具有相异的增减性时,我们假设为增函数,为减函数,那么:、的增减性不能确定;为增函数。4.奇偶函数的单调性奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反。二、函数的对称性函数的对称性是函数的一个基本性质, 对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能够更简捷的使问题得到解决,对称关系同时还充分体现数学之美。1.函数的图象的对称性(自身):定理1: 函数的图象关于直对称特殊的有:函数的图象关于直线对称。函数的图象关于轴对称(偶函数)。函数是偶函数关于对称。定理2:函数的图象关于点对称特殊的有: 函数的图象关于点对称。
3、 函数的图象关于原点对称(奇函数)。 函数是奇函数关于点 对称。定理3:(性质)若函数y=f (x)的图像有两条对称轴x=a和x=b ,(ab),那么f(x)为周期函数且2|a-b|是它的一个周期。若函数y=f (x)的图像有一个对称中心M(m ,n)和一条铅直对称轴x=a,那么f(x)为周期函数且4|a-m|为它的一个周期。若函数y=f (x)图像同时关于点A (a ,c)和点B (b ,c)成中心对称(ab),则y=f (x)是周期函数,且2| ab|是其一个周期。若一个函数的反函数是它本身,那么它的图像关于直线y=x对称。2.两个函数图象的对称性:函数与函数的图象关于直线(即轴)对称.函
4、数与函数的图象关于直线对称.特殊地: 与函数的图象关于直线对称函数的图象关于直线对称的解析式为函数的图象关于点对称的解析式为函数y = f (x)与ax = f (ay)的图像关于直线x +y = a成轴对称。函数y = f (x)与xa = f (y + a)的图像关于直线xy = a成轴对称。函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。三奇偶函数性质对于两个具有奇偶性的函数和,若它们的定义域分别为和,且:(1)满足定义式子(偶)(奇)(2)在原点有定义的奇函数有(3)当和具有相同的奇偶性时,假设为奇函数,那么:函数、也为奇函数;简单地说:奇函数奇函数
5、=奇函数, 偶函数偶函数=偶函数, 奇函数奇函数=偶函数, 偶函数偶函数=偶函数, 奇函数偶函数=奇函数. 、为偶函数;两个偶函数之和、差、积、商为偶函数(4)当和具有相异的奇偶性时,那么:、的奇偶性不能确定;、为奇函数。(5)常见的奇偶函数(6)任意函数均可表示成一个奇函数与一个偶函数的和。(7)一般的奇函数都具有反函数,且依然是奇函数,偶函数没有反函数(8)图形的对称性 关于轴对称的函数(偶函数)关于原点对称的函数(奇函数)(9)若是偶函数,则必有 若是奇函数,则必有(10)若为偶函数,则必有 若是奇函数,则必有四、函数的周期性函数的周期性反映了函数的重复性,在试题中它的主要用途是将大值化
6、小,负值化正,求值。1.周期性的定义对于函数,如果存在一个非零常数,使得当取定义域内的每一个值时,都有都成立,那么就把函数叫做周期函数,非零常数叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。如果非零常数是函数的周期,那么、()也是函数的周期。2. 函数的周期性的主要结论:结论1:如果(),那么是周期函数,其中一个周期结论2:如果(),那么是周期函数,其中一个周期结论3:如果定义在上的函数有两条对称轴、对称,那么是周期函数,其中一个周期结论4:如果偶函数的图像关于直线()对称,那么是周期函数,其中一个周期结论5:如果奇函数的图像关于直线()对称,那么是周期函数,其中一个周期结论6:如果函数同时关于两点、()成中心对称,那么是周期函数,其中一个周期结论7:如果奇函数关于点()成中心对称,那么是周期函数,其中一个周期结论8:如果函数的图像关于点()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州省毕节市2024-2025学年高三下册第二次模拟(3月)数学试卷
- 多模态命令解析技术-洞察阐释
- 沈阳精益管理发言材料
- 南昌大学招聘笔试真题2024
- 社区社区服务设施使用效率管理基础知识点归纳
- 跨行业合作在推动中国式养老金融中的作用
- 优化艺术教育生态的策略及实施路径
- 第十七章反比例函数复习教学设计
- 高中计算机课跨学科教学教师专业素养提升策略
- 关于网络暴力的实践报告
- 2025届中考地理全真模拟卷 【江苏专用】(含解析)
- 2025年河北省中考乾坤押题卷数学试卷A及答案
- YC/T 620-2024烟草零售客户满意度调查规范
- 人教版历史2024年第二学期期末考试七年级历史试卷(含答案)
- 16J914-1 公用建筑卫生间
- SF1无油轴承尺寸公差表NDC标准
- 人才培养方案编写质量标准
- 火焰探测器红外火焰探测器·紫外火焰探测器
- Genie 2000培训技巧教程LYNX_1111
- 云南省肿瘤医院昆明医科大学第三附属医院护士进修申请表
- 铝合金百叶窗材料报价
评论
0/150
提交评论