湖北省鄂州市2019年中考数学真题试题(含解析_第1页
湖北省鄂州市2019年中考数学真题试题(含解析_第2页
湖北省鄂州市2019年中考数学真题试题(含解析_第3页
湖北省鄂州市2019年中考数学真题试题(含解析_第4页
湖北省鄂州市2019年中考数学真题试题(含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2019年湖北省鄂州市中考数学试卷一、选择题(本大题共 10小题,共30.0分)1. -2019的绝对值是()A. 2019B.C. 一D.一2. 下列运算正确的是()A. B.C.D.3. 据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学记数法可表示为()A.B.C.D.4. 如图是由7个小正方体组合成的几何体,则其左视图为X( )125. 如图,一块直角三角尺的一个顶点落在直尺的一边 上,若/ = 5。,则/ 1的度数为()A. 5B. 55C. 5D. 56. 已知一组数据为7, 2, 5, x, 8,它们的平均数是5,则这组数据的方差为 ()A. 3B

2、. 5C. 5D. 67. 关于x的一元二次方程x2-4x+mr0的两实数根分别为 X1、X2,且X1+3x2=5,则m的值为()8.A.B. 5在同一平面直角坐标系中,函数c. D. 0y=-x+k与y= (k为常数,且kz )的图象大致是9.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1 .下列结论:abcv 0;223a+c0;3( a+c) -bv0:a+bwm(am+b)( m为实数).其中结论正确的 个数为()10.11.A. 1个D. 4个如图,在平面直角坐标系中, 点A、A ArA在x轴上,B、B、BeB在直线y=x上,若A1 (1, 0),且厶ABAAABA+

3、1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为$、S、SeS.贝U Sn可表示为()A.、填空题(本大题共因式分解:4ax2-4 ax+a=D.12. 若关于x、y的二元一次方程组55的解满足x+yw,则m的取值范围是 13. 一个圆锥的底面半径 r=5,高h=10,则这个圆锥的侧面积是 .14. 在平面直角坐标系中,点P (xo, yo)到直线Ax+By+C=o的距离公式为:d= ,则点P( 3,-3 )到直线y=-x+5的距离为 15. 如图,已知线段A宙4,0是AB的中点,直线I经过点O/ = , P点是直线I上一点,当厶APE为直角三角形时,则BF=16. 如图,在平面

4、直角坐标系中,已知C (3,4),以点C为圆心的圆与y轴相切.点AOB三、解答题(本大题共 8小题,共72.0 分)17. 先化简,再从-1、2、3、4中选一个合适的数作为x的值代入求值.18.如图,矩形 ABCDK A住8,AD=6,点O是对角线 BD的 中点,过点 O的直线分别交 AB CD边于点E、F.(1) 求证:四边形 DEBf是平行四边形;(2) 当DE=DF时,求EF的长.A B在x轴上,且OA=OB点P为O C上的动点,/ APB 。,贝U AB长度的最大 值为.19.某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五 类电视节目的喜爱情况, 随机选取该校部分学生进行调查, 要

5、求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别ABCDE类型新闻体育动画娱乐戏曲人数112040m4请你根据以上信息,回答下列问题:(1) 统计表中m的值为,统计图中n的值为, A类对应扇形的圆心角为度;(2) 该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;(3) 样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.20. 已知关于x的方程x2-2x+2k-1=0有实数根.(1) 求k的取值范围;(2) 设方程的两根分别是 X1、X2,且-+-=

6、X1?X2,试求k的值.21. 为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度 AB他站在距离教学楼底部 E处6 米远的地面C处,测得宣传牌的底部 B的仰角为 , 同时测得教学楼窗户 D处的仰角为 ( A B、D E在同一直线上)然后,小明沿坡度i=1: 1.5的斜坡从C走到F处,此时DF正好与地面 CE平行.(1) 求点F到直线CE的距离(结果保留根号);(2) 若小明在F处又测得宣传牌顶部 A的仰角为5。,求宣传牌的高度 AB(结果精确到0.1米, .)22.22.如图,PA是OO的切线,切点为 A, AC是O O的直径,

7、连接 OP交O O于E.过A点 作ABL PO于点D,交O O于B,连接BC PB(1) 求证:PB是O O的切线;(2) 求证:E为APAB的内心;(3) 若 cos / PAB:二,BC=1,求 PO的长.23.23.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为 每条40元,当售价为每条80元时,每月可销售100条为了吸引更多顾客,该网 店采取降价措施据市场调查反映:销售单价每降1元,则每月可多销售 5条设每条裤子的售价为x元(x为正整数),每月的销售量为 y条.(1) 直接写出y与x的函数关系式;(2) 设该网店每月获得的利润为w元,当销售单价降低多少元时,每

8、月获得的利 润最大,最大利润是多少?(3) 该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24.24.如图,已知抛物线 y=-x2+bx+c与x轴交于A、B两点,AB=4,交y轴于点C,对称 轴是直线x=1.(1) 求抛物线的解析式及点 C的坐标;(2) 连接BC E是线段OC上一点,E关于直线x=1的对称点F正好落在BC上, 求点F的坐标;(3) 动点M从点O出发,以每秒2个单位长度的速度向点 B运动,过M作x轴的垂线交抛物线于点 N,交线段BC于点Q设运动时间为t (t 0)秒.

9、 若 AOCfA BMN相似,请直接写出t的值; 、BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.答案和解析1. 【答案】A【解析】解:-2019的绝对值是:2019.故选:A.直接利用绝对值的定义进而得出答案. 此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2. 【答案】B【解析】解:A、原式=a5,不符合题意;B、原式=a4,符合题意;C、原式=9a2,不符合题意;D、原式=a2-2a+1,不符合题意,故选:B.各项计算得到结果,即可作出判断.此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3. 【答案】B【解析】解:将1031万用科学记数法可表示为 .

10、x 7.故选:B.用科学记数法表示较大的数时,一般形式为ax n,其中 w|a| v 10, n为整数,据此判断即可.此题考查科学记数法的表示方法.科学记数法的表示形式为 ax n的形式,其中 w|a|v 10, n为整数,表示时关键要正确确定a的值以及n的值.4. 【答案】A【解析】解:从左面看易得其左视图为:故选:A.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左主视图中. 本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5. 【答案】B作 EF/ AB/ CD,/ 2=Z AEF= 5,Z 仁/FEC/ AEC= ,/ = - 5 =55故选:B.根据平行线的性质

11、和直角的定义解答即可.此题考查平行线的性质,关键是根据平行线的性质得出/2=Z AEF= 5,Z仁/ FEC6. 【答案】C【解析】解:一组数据 7, 2, 5, X, 8的平均数是5, 5=(7+2+5+X+8),5二 x=5X5 -7-2-5-8=3,2 2 2 2 2 2 s= (7-5)+(2-5)+ (5-5)+ (3-5)+(8-5) =52,故选:C.先由平均数是5计算x的值,再根据方差的计算公式,直接计算可得.本题考查的是算术平均数和方差的计算,掌握方差的计算公式:一般地设n个数据,xi,X2,Xn的平均数为,则方差S= ( Xi-)2+( X2-)+( Xn-),是解题的关键

12、.7. 【答案】A【解析】解:T Xi+X2=4, xi+3x2=xi+x2+2x2=4+2x2=5,I X2=,I22I把 X2=代入 x -4x+m=0 得:( ) - x +m=0o22解得:m=,4故选:A.根据一元二次方程根与系数的关系得到x计X2=4,代入代数式计算即可.本题考查的是一元二次方程根与系数的关系,掌握一元二次方程 ax2+bx+c=0 ()的a厂根与系数的关系为:X1+X2=- , X1?X2=是解题的关键.(1“8. 【答案】C【解析】解:t函数y=-x+k与y= - (k为常数,且),T当k 0时,y=-x+k经过第一、二、四象限,y= 经过第一、三象限,故选项

13、A、BT错误,k当kv 0时,y=-x+k经过第二、三、四象限,y= 经过第二、四象限,故选项 C正确,r选项D错误,故选:C.根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用一次 函数和反比例函数的性质解答.9. 【答案】D【解析】解:抛物线开口向上, a 0,抛物线的对称轴在 y轴右侧, bv0抛物线与y轴交于负半轴, c 0, abc v 0,正确; 当 x=-1 时,y0,二 a-b+c 0,6/= , b=-2a ,把b=-2a代入a-b+c 0中得3a+c 0,所以正确;

14、 当 x=1 时,y v 0,. a+b+cv 0, a+cv -b ,/ a0, c0, -b 0, ( a+c) 2v( -b ) 2,即(a+c) 2-b2v 0,所以正确; 抛物线的对称轴为直线x=1 , x=1时,函数的最小值为 a+b+c, a+b+cw am +mb+c,即a+b0,对称轴在y轴右侧,得到a与b异号,又抛物线与 y轴正半轴相交,得到c 0,可得出abcv 0,选项正确; 把b=-2a代入a-b+c 0中得3a+c 0,所以正确; 由x=1时对应的函数值v 0,可得出a+b+cv 0,得到a+cv-b,由a0, c 0, -b 0,得到()a+c) 2-b2v 0,

15、选项正确; 由对称轴为直线 x=1,即x=1时,y有最小值,可得结论,即可得到正确.本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a0时,抛物线向上开口;当 av 0时,抛物线向下开口; 一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时, 对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与 y轴交于(0, c).抛物 线与x轴交点个数由判别式确定:=b2-4ac 0时,抛物线与x轴有2个交点; =b2-4ac=0时,抛物线与x轴有1个交点; =b2-4ac v 0时,抛物线与x轴没有交点.10. 【答案】D【解析

16、】解: AiBA、A ABA ABA+i都是等边三角形, AiBi/ A2B/ A3B3 / AnBn, B1A2 / BM/ B3A4 / BnAn+1, A B1A2、几臥厶 AnBnAn+1 都是等边三角形,直线 y= x 与 x 轴的成角/ BQA= ,Z OAB= ,:J / OBA= , OA=A B1,A1 ( 1, 0), AiB1=1,同理/ OBA2=。,/ OBAn= ,n-1 B2A2=OA=2, B3Ab=4,,BA=2 ,易得/ OBA=。,/ OBAn+1= , BlB2= g - , B2B3 = 2:f,BnBn+1=2;,厂 s= X x: =, S2= x

17、 x: =2 ,Sn= x n-1 x n ; =.; 故选:D.直线y= x与x轴的成角/ BQA= ,可得/ 0BA2=,/ 0叭= ,3/ OBAz=。,/ OBAn+i= ;根据等腰三角形的性质可知AiBi=1, 映=0人=2,BAs=4,,BA=2n-1 ;根据勾股定理可得 BR=帀,B2B=2的,BB+i=2用,再由 面积公式即可求解;本题考查一次函数的图象及性质,等边三角形和直角三角形的性质;能够判断阴影三角 形是直角三角形,并求出每边长是解题的关键.211. 【答案】a (2x-1 )【解析】 解:原式=a (4x2-4x+1 ) =a (2x-1 ) 2,故答案为:a (2x

18、-1 ) 2原式提取a,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12. 【答案】me -2【解析】3亠遊一冷:, + 得 2x+2y=4m+8则 x+y=2m+4,根据题意得m+ e ,解得me -2 .故答案是:me -2 .首先解关于x和y的方程组,利用 m表示出x+y,代入x+ye 即可得到关于 m的不等 式,求得m的范围.本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把 m当作已知数表示出x+y的值,再得到关于 m的不等式.13.【答案】5 5【解析】解:圆锥的底面半径 r=5,高h=10.圆锥的母线长

19、为用=5 .,圆锥的侧面积为n X5 , X 5=麗 ,故答案为:逓爲.利用勾股定理易得圆锥的母线长,进而利用圆锥的侧面积=n X底面半径X母线长,把相应数值代入即可求解.本题考查圆锥侧面积公式的运用,注意运用圆锥的高,母线长,底面半径组成直角三角形这个知识点.14.【答案】一y=-【解析】 解: 2x+3y-5=025点P (3, -3 )到直线y=- x+ 的距离为:故答案为:.I .根据题目中的距离公式即可求解.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.15【答案】或 或【解析】解: A0=0B=2当 BP=2时,/ APB= ,当/ PAB=

20、。时,/ AOP= , AP=OA?tai A0P=2 , BP=.,-=2,当/ PBA=。时,/ AOP= , BP=OB?tai 1=2:,故答案为:2或2,或2-.分/ APB=。、/ PAB=。、/ PBA=。三种情况,根据直 角三角形的性质、勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分2 2 2别是a, b,斜边长为c,那么a+b=c.16. 【答案】16【解析】解:连接OC并延长,交O C上一点P,以O为圆心,以OP为半径作O O,交x轴于A、B,此时AB的长度最大,C ( 3, 4), OC=5,以点C为圆心的圆与y轴相切. O C的半径为3, OP=

21、OA=OB=8/ AB是直径, / APB= , AB长度的最大值为16, 故答案为16.连接OC并延长,交O C上一点P,以O为圆心,以OP为半径作O O,交x轴于A B, 此时AB的长度最大,根据勾股定理和题意求得OP=8则AB的最大长度为16.本题考查了切线的性质,坐标和图形的性质,圆周角定理,找到OP的最大值是解题的关键.17. 【答案】解:原式=-=x+2X-丰,X-丰, X工 且x丰 , 当x=-1时, 原式=-1+2=1 .先化简分式,然后将 x的值代入计算即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.18. 【答案】(1)证明:四边形 ABCD是矩形,

22、AB/ CD/ DFO/ BEO又因为/ DOFZ BOE ODTOB DO3A BOE( ASA , DF=BE又因为DF/ BE,四边形BEDF是平行四边形;(2)解:T DE=DF,四边形BEDF是平行四边形四边形BEDF是菱形, DE=BE EF丄 BD, OE=OF设 AE=x ,贝V DE=BE=8-x在Rt ADE中 ,根据勾股定理,有 AE+AD=DE x2+62= ( 8-x) 2 ,解之得:x=,5 DE=8=在Rt ABD中 ,根据勾股定理,有 AB+AD=BD BD=, O!=- BD=5 ,在Rt DO曲,根据勾股定理,有 dE -oD=oE,5 EF=2O匡一.【解

23、析】(1) 根据矩形的性质得到 AB/ CD由平行线的性质得到/DFO=/ BEO根据全等三角 形的性质得到 DF=BE于是得到四边形 BEDF是平行四边形;(2) 推出四边形 BEDF是菱形,得至U DE=BE EF丄 BD, OE=OF 设 AE=x,贝U DE=BE=8-x 根据勾股定理即可得到结论.本题考查了矩形的性质,平行四边形的判定和性质,全等三角形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.19. 【答案】252539.6【解析】解:(1):样本容量为十%=,251J m=100-( 11+20+40+4)=25 , n%=X %= 5% , A 类对应扇形的圆心角为

24、冃kx.nfo一 ?故答案为:25、25、39.6 .(2) 5 X =300 (人)L(H)答:该校最喜爱体育节目的人数约有300人;(3)画树状图如下:共有12种情况,所选2名同学中有男生的有6种结果,所以所选2名同学中有男生的概率为2(1) 先根据B类别人数及其百分比求出总人数,再由各类别人数之和等于总人数求出m,继而由百分比概念得出n的值,用 。乘以A类别人数所占比例即可得;(2) 利用样本估计总体思想求解可得.本题考查了扇形统计图,条形统计图,树状图等知识点,能正确画出树状图是解此题的 关键.20. 【答案】(1)解:原方程有实数根,2 2 b-4 ac ( -2) -4 (2k-1

25、 ) kw(2)v xi, X2是方程的两根,根据一元二次方程根与系数的关系,得:X1+X2 =2, xi ?X2 =2k-1 22-2 (2k-1 )(2k-1 )解之,得:经检验,都符合原分式方程的根又/ -+=X1?X2,21解答本题的关键是根据根的判别 k,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.本题主要考查了根的判别式以及根与系数关系的知识, 式的意义求出k的取值范围,此题难度不大.21.【答案】 解:(1)过点F作FGL EC于 G依题意知 FG/ DE DF/ GE / FGE四边形DEF侥矩形; FG=DE在 Rt CDE中DE=CE?tan / DCE

26、=X tan o =2(米);点F到地面的距离为2 一米;(2)v 斜坡 CF i=1: 1.5 . Rt CFG中 C(=1.5FG=2 _x .5= - FD=E(=3 _+6.在 Rt BCE中,BE=CE?tan / BCE x tan 0 =6 -. ABAD+DE BE=3 一+6+2 _-6 _=6-.(米)答:宣传牌的高度约为 4.3米.【解析】(1) 过点F作FG丄EC于G,依题意知FG/ DE DF/ GE / FGE= ;得到四边形 DEFG是矩形;根据矩形的性质得到FG=DE解直角三角形即可得到结论;(2) 解直角三角形即可得到结论.本题考查的是解直角三角形的应用-仰角

27、俯角问题,正确标注仰角和俯角、熟记锐角三角函数的定义是解题的关键.22. 【答案】(1)证明:连结0B/ AC为O O的直径,/ ABC ,/ ABL PQ PQ/ BC / AQPZ C,Z PQBZ QBCQB=QC / QBC/ C, / AQP/PQB在厶 AOPm BQF中,/ /, AOP BOP( SAS , / OBP/ OAP PA为O O的切线, / OAP , / OBP , PB是O O的切线;(2) 证明:连结AE PA为O O的切线, / PAE/ OAE ,/ ADL ED / EAD/ AED: ,/ OE=OA / OAE/ AED / PAE/ DAE 即 EA平分/ PAD/ PA PD为O O的切线, PD平分/ APB EPAB的内心;(3) 解:T/ PAB/ BA(= , / C+/BA(= / PAB/ C,/ cos / C=cos / PAE=一,在 Rt ABC中, cos / 0=-=一, AO , A(=, PAg ABC , PO= = 一=5.【解析】(1) 连结OB,根据圆周角定理得到/ ABC= ,证明 AOP BOP得到/ OBP=/ OAP 根据切线的判定定理证明;(2) 连结AE,根据切线的性质定理得到/PAE+/ OAE= ,证明EA平分/ P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论