六自由度液压运动平台的自动控制[三维SW]【含CAD图纸】
收藏
资源目录
压缩包内文档预览:
编号:115887350
类型:共享资源
大小:2.49MB
格式:ZIP
上传时间:2021-02-28
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
三维SW
自由度
液压
运动
平台
自动控制
三维
SW
CAD
图纸
- 资源描述:
-
喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】
=============================================喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】
=============================================
- 内容简介:
-
编号无锡太湖学院毕业设计(论文)相关资料题目: 六自由度液压运动平台的自动控制 信机 系 机械工程及自动化专业学 号: 0923280 学生姓名: 赖坤楠 指导教师: 龚常洪 (职称:副教授) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 六自由度液压运动平台的自动控制 信机 系 机械工程及自动化 专业学 号: 0923280 学生姓名: 赖坤楠 指导教师: 龚常洪 (职称:副教授) (职称: )2012年11月25日课题来源 六自由度平台的研制科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义六自由度运动平台是由六支油缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只油缸的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,)的运动,从而可以模拟出各种空间运动姿态,可广泛应用到各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中。在加工业可制成六轴联动机床、灵巧机器人等。由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。(2)六自由度运动平台的研究状况及其发展前景目前世界上研制大型六自由度平台的国家较多,主要有加拿大、美国、英国、法国、德国、日本、俄罗斯、荷兰等国,大多用于飞机(包括战斗机、运输机和民航客机)模拟飞行训练,在舰船、装甲车辆、自行火炮等方面也有一些应用。近几年来,六自由度平台系统也被应用到工业甚至娱乐场所。随着6-DOF并联机构研究的深入,对于自由度少于六的空间并联机构(称为少自由度机构),也引起许多学者的注意,国外的专家学者们也对其进行了研究改进。而国外也已研制出虚拟轴机床。我国并联机器人出现的较晚,起先出现在引进的6-DOF飞行模拟器上。近几年来我国的一些高等院校和科研院所也相继投入人力物力。在微动器或称作微动机构研究方面,也取得了不小的发展。但在运动模拟器的相关技术方面,与国外还存在较大距离。由于六自由度运动平台的应用广泛,未来还将不断地往数字化和微动作方面改进发展。研究内容(1)了解国内外多自由度运动平台的现状和发展趋势,了解近十几年平台的数字虚拟化发展。(2)查阅六自由度运动平台的相关图形,熟悉其结构,和相关液压伺服系统并能对其进行设计。 (3)掌握相关系统的数学模型的建立和使用。(4)掌握PID控制方式,并了解如何使用以提高系统的运动性能。(5)掌握虚拟样机技术,并能用其对刚体进行运动学和动力学方面的仿真。拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案建立液压控制系统的模型,使用常规的PID控制方式和基于BP神经网络的PID控制方式对其进行模拟仿真,比较优劣;运用虚拟样机技术,对运动平台进行运动学和动力学的模拟仿真。(2)研究方法(1)在常规的PID控制方式下,对运动平台进行仿真研究。(2)在基于BP神经网络的PID控制方式下,对运动平台进行仿真研究。(3)利用三维软件画出六自由度运动平台的实物图,设定参数,使用软件对其进行运动学和动力学的仿真。研究计划及预期成果研究计划:2012年11月12日-2012年12月2日:按照任务书要求查阅论文相关参考资料,完成毕业设计开题报告书。2012年12月3日-2013年3月1日:接受专业实训,完成毕业实习报告。2013年3月4日-2013年3月15日:查阅并翻译与毕业设计相关的英文材料。2013年3月18日-2013年4月12日:确定总体方案,设计运动平台的相关尺寸。2013年4月15日-2013年5月10日:绘制运动平台相关工程图并对平台进行模拟。2013年5月13日-2013年5月25日:毕业论文撰写和修改工作。预期成果: 达到预期的实验结论:与常规的PID控制方式相比,基于BP神经网络的PID控制方式控制的曲线超调量小、调整时间短,稳态误差小。由此说明神经网络对电液伺服这类高阶、非线性、动特性随负载变化很大的系统就很好的实时控制能力。特色或创新之处(1)合理运用计算机进行帮忙,减轻了某些负担,也提高了效率。(2)采用对比的方法来研究问题,思路清晰,简单明了,行之有效。已具备的条件和尚需解决的问题(1)可以轻松的实用软件对平台进行模拟仿真。(2)液压系统的振动和噪声有待进一步降低。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日外文资料Closed-Form Direct Kinematics Solution of a New Parallel MinimanipulatorIn recent years,many researchers have shown a great deal of interest in studying parallel manipulators.Such mechanisms are most suitable for applications in which the requirements for accuracy,rigidity,load-to-weight ratio,and load distribution are more important thanthe need for a large workspace.The famous Stewart platform(Stewart,1965) is probably the first six-degree-of-freedom(six-DOF) parallel mechanism which has been studied in the literature.It consists of a moving platform and a base which are connected by means of six independent limbs.Many researchers have considered the Stewart platform as a robot manipulator(e.g.,Fichter and MacDowell,1980;Hunt,1983;Yang and Lee,1984;Fichter,1986).Other types of six-DOF parallel manipulators have been introduced and studied in literature(e.g.,Kohli et al.,1988;Hudgens and Tesar,1988;Tsai and Tahmasebi,1991a).Waldron and Hunt(1987)demonstrated that kinematic behavior of parallel mechanisms has many inverse characteristics to that of serial mechanisms.For example,direct kinematics of a parallel manipulator is much more difficult than its inverse kinematics;whereas,for a serial manipulator,the opposite is true.Dieudonne et al.(1972)applied Newton-Raphsons method to solve direct kinematics of a motion simulator identical to the Stewart platform.Behi(1988) used a similar technique to numerically solve the direct kinematics problem of a parallel mechanism similar to the Stewart platform.Griffis and Duffy(1989)as well as Nanua et al.(1990)studied direct kinematics of special cases of Stewart platform,in which pairs of spherical joints are concentric on either the platform or both the base and the platform.They were able to reduce the problem to an eighth-degree polynomial in the square of a single variable(total degree of sixteen).However,as mentioned by Griffis and Duffy(1989),pairs of concentric spherical joints may very well present design problems.Lin et al.(1990)solved direct kinematics of anther class of Stewart platforms,in which there are two concentric spherical joints on the base and two more concentric spherical joints on the platform.The latter class of Stewart platforms suffer form lack of symmetry and concentric spherical joints are still needed in their construction.Other researcher have also been able to obtain closed-form solutions for other special forms of the Stewart platform(e.g.,Innocenti and Parenti-Castelli,1990;Parenti-Castelli and Innocenti,1990).It is worth mentioning that,to the best of our knowledge,no one has ye been able to obtain a closed-form direct kinematics solution for the general Stewart platform with six independent limbs.Recently,Raghavan(1991)used a numerical technique known as polynomial continuation to show that there are forty solutions for the direct kinematics of the Stewart platform of general geometry.Murthy and Waldron(1990a,1990b)have been able to relate the direct kinematics of some parallel mechanisms to the inverse kinematics of their serial dual mechanisms.In this paper,closed-form direct kinematic solution for a six-DOF parallel minimanipulator is presented.The minimanipulator is one of the high-stiffness and high-resolution mechanisms introduced by Tsai and Tahmasebi(1991a,1991b)for fine position and force control in a hybrid serial-parallel manipulator system,It will be shown that direct kinematics of the minimanipulator involves solving an eighth-degree polynomial in the square of a single variable.Let subscript i in this section and the rest of this work represent numbers 1, 2, and 3 in a cyclic manner. The minimanipulator contains three inextensible limbs,PiRi. The lower end of each limb is connected to a simplified five-bar linkage driver and can be moved freely on the base plate. The desired minimanipulator motion is obtained by moving the lower ends of its three limbs on its base plate. Two-DOF universal joints connect the limbs to the moving platform. The lower ends of the limbs are connected to the drivers through three more universal joints. Note that one of the axes of the upper universal joint is collinear with the limb, while the other axis of the upper universal joint as well as one of the axes of the lower universal joint are always perpendicular to the limb. This arrangement is kinematically equivalent to a limb with a spherical joint at its lower end and a revolute joint at its upper end. Point Ci is the output point of a driver. At point Di, there is an actuator on each side of the base plate to drive links DiAi and DiBi. The simplified five-bar drivers are completely symmetric. As a result, coordination between actuator rotations can be easily accomplished. Namely,angular displacement of an output point Ci is obtained by equal actuator rotations, and its radial displacement is obtained by equal and opposite actuator rotations.Simplified five-bar linkages and inextensible limbs are used to improve positional resolution and stiffness of the minimanipulator. Since the minimanipulator actuators are base mounted; higher payload capacity, smaller actuator sizes, and lower power dissipation can be obtained. In addition, to achieve even load distribution, the minimanipulator is made completely symmetric.The equivalent limb configuration will be used for analysis, because the spherical-and-revolute limb is easier to analyze than the universal-and-universal limb. The lower ends of the limbs are connected to two-DOF drivers. The upper end of the limbs are connected to the platform through revolute joints. Note that the joint axes at points are parallel to lines.Let us define the fixed base reference frame and the moving platform reference frame in detail. The origin of the base reference frame is placed at the centroid of triangle DiDZD3 .The positive X-axis is parallel to and points in the direction of vector DZD3. The positive Y-axis points from point 0 to point Dl.The Z-axis is defined by the right-hand-rule. Similarly, the origin of the platform reference frame is placed at the centroid of triangle P1PZP3. The positive U-axis is parallel to and points in the direction of vector PZP3. The positive V-axis points from point 0 to point P1. The W-axis is defined by the right-hand-rule. To keep the minimanipulator symmetric, both triangles D1DZD3 and P1PZP3 are made equilateral.In this paper, closed-form solution for direct kinematics of a new three-limbed six-degree-of-freedom minimanipulator is presented. It is shown that the for direct kinematics of the minimanipulator is sixteen. To maximum number of solutions obtain these solutions, only an eighth-degree polynomial in the square of a single variable has to be solved. It is also proved that the sixteen solutions are eight pairs of reflected configurations with respect to the plane passing through the lower ends of the three limbs. The results of a numerical example are verified by an inverse kinematics analysis.This research was supported in part by the NSF Engineering Research Center program, NSFD CDR 8803012. The first author gratefully acknowledges the support of NASA/Goddard Space Flight Center. Such supports do not constitute endorsements of the views expressed in the paper by the supporting agencies.Workspace analysis and optimal design of a 3-leg 6-DOF parallel platform mechanismA new class of six-degree-of-freedom (DOFs) spatial parallel platform mechanism is considered in this paper. The architecture consists of a mobile platform connected to the base by three identical kinematic chains using five-bar linkages. Recent investigations showed that parallel mechanisms with such a topology for the legs can be efficiently statically balanced using only light elastic elements. This paper follows up with a workspace analysis and optimization of the design of that parallel mechanism. More specifically, considering a possible industrial application of the architecture as a positioning and orienting device of heavy loads, an optimization procedure for the maximization of the volume of the three-dimensional (3-D) constant-orientation workspace of the mechanism is first presented. As the mechanism could also have great potential as a motion base for flight simulators, we develop here a discretization method for the computation and graphical representation of a new workspace with coupled translational and rotational DOFs. This workspace can be defined as the 3-D space which can be obtained when generalized coordinates x,y and torsion angle in the tilt-and-torsion angles parametrization are constant. A second procedure is then presented for the maximization of the volume of this second subset of the complete workspace. For both approaches, our purpose is to attempt an optimal design of the mechanism by maximizing the volume of the associated 3-D Cartesian region that is free of critical singularity loci.Determination of the wrench-closure workspace of 6-DOF parallel cable-driven mechanismsA parallel cable-driven mechanism consists essentially of a mobile platform connected in parallel to a base by light weight links such as cables.the control of length of the cables allows the control of the pose of the platform.For instance,a mechanism driven by eight cables is shown in Fig.1.Parallel cable-driven mechanisms have several advantages over conventional rigid-link mechanisms(Barrette and Gosselin,2005,Merlet,2004,Roberts et al.,1998).The mass and inertia of the moving part is reduced and they are less expensive.Moreover,parallel cable-driven mechanisms are easier to build,transport and reconfigure and they have the possibility of working in a very large space.Consequently,parallel cable-driven mechanisms have been used in several applications such as ,for instance,robotic cranes(Dagalakis et al.,1989),high speed manipulation(Kawamura et al.,2000),active suspension devices(Lafourcade,2004)and virtual reality(Merlet,2004).This paper deals with the determination of the workspace of six-DOF parallel cable-driven mechanisms.This workspace may be limited by the total length of each cable,by the interferences between the cables and between the cables and the mobile platform and by the unidirectional nature of the forces applied by the cables on the mobile platform.The limitations due to the total lengths of the cables can be determined by means of algorithms presented in(Gosselin,1990)and in(Merlet,1999).However,the workspace will usually not be limited by the total lengths of the cables since large total lengths can generally be used.For a constant orientation of the mobile platform,the problem of the influence on the workspace of the cables interferences is addressed in(Merlet,2004).The third limitation which is due to the unidirectional nature of the forces applied by the cables on the platform has been studied mainly in the case of planar parallel cable-driven mechanisms in(Barrette and Gosselin,2005,Fattah and Agrawal,2005,Gallina and Rosati,2002,Gouttefade Gosselin,2006,Roberts et al.,1998,Stump and Kumar,2004,Verhoeven and Hiller,2000,Verhoeven,2004,Williams et al.,2003).中文翻译新的封闭式并联迷你机器人的直接运动学正解近年来,许多研究人员已经对并联式迷你机器人表现出了极大的兴趣。这种结构在精度、刚度、载荷重量比和载荷分布方面比那些所占空间更大的更适合。著名的斯图尔特平台(斯图尔特,1965)可能是第一个已经记录在文献中的六自由度(六度)并联机构。它是由六个独立的肢体将一个移动平台和一个地基连接而成。许多研究者认为斯图尔特平台可以当作一个机器人机械臂(例如,菲克特麦克道威尔,1980年,亨特,1983年,杨振宁与李政道,1984年,菲克特,1986)。其他类型的六自由度并联机构已在文献中被引入和研究(例如,Kohli等人,1988;哈金斯和特萨,1988;蔡和塔玛塞比,1991a)。沃尔德伦和狩猎(1987)表明,并联机构的运动学行为有许多逆特性,串行机制。例如,并联机构的直接运动学比它的逆运动学困难得多,而对于串行机械臂,事实正好相反。迪厄多内等人。(1972)应用牛顿-拉夫逊方法解决同一个的运动模拟器的斯图尔特平台运动学正解。后(1988)采用了类似的技术来对一个类似斯图尔特平台的并联机构进行直接运动学数值求解。格里菲斯和Duffy(1989)以及Nanua等人(1990)研究了斯图尔特平台的特殊情况下,在其中对球形接头的基极和平台的平台或同心的正运动学。他们能够减少在一个单变量的平方第八度多项式(共十六度)的问题。然而,由格里菲斯和杜菲所提到的(1989),同心球节点对很可能存在设计问题。林等人(1990)解决了另一类的斯图尔特平台直接运动学问题,其中有两个同心球节点的基础上,和两个同心球节点平台。后一种斯图尔特平台受对称和同心球接头形式缺乏仍需要建设。其他的研究人员也能获得斯图尔特平台的其他特殊形式的封闭形式的解决方案(例如,因诺琴蒂帕伦蒂卡斯泰利,1990;帕伦蒂卡斯泰利和因诺琴蒂,1990)。值得一提的是,据我们所知,还没有人就能够得到一个封闭的形式的有六个独立的肢体的广义斯图尔特平台的直接运动学解决方案。最近,拉加万(1991年)采用了数字技术,被称为多项式延续表明,有40解决方案的直接斯图尔特平台运动学的一般几何。穆尔蒂和沃尔德伦(1990a,1990b)已经能够涉及一些并联机构直接运动学的串行双机制的逆运动学。在本文中,封闭式六自由度并联迷你机器人的直接运动学现在已解决了。该迷你机器人是一种高刚度和高分辨率的机构由仔与塔玛塞比介绍(1991a,1991b)在混合串并联机器人系统优良的位置和力控制,它将会显示的迷你机器人直接运动学解决在一个单一的变量的第八次多项式的平方。这段下标和这项工作的其他代表数字1,2,和3个循环的方式。该迷你机器人包含三个不可伸长的四肢,皮里。每个肢体下端连接一个简化的五杆机构驱动,可在基板上自由移动。迷你机器人所需的运动是由其基板移动的三肢下端得到。两个自由度的万向节连接四肢的运动平台。四肢的下端通过三个万向节连接到驱动程序。请注意,一个上部万向节轴与肢体共线,而上部万向节轴等以及一个较低的万向节轴始终垂直于肢体。这样的安排是运动学等效与在其下端球形接头和旋转在其上端连接一个肢体。点是一个驱动器的输出点。在点二,在底板各边执行驱动链接的转动和迪比。简化的五条司机是完全对称的。作为一个结果,致动器的旋转之间的协调,可以很容易地完成。即,一个输出点的角位移的致动器词等旋转得到的,其径向位移是由大小相等、方向相反的致动器的旋转得到的。简化的迷你机器人的五杆机构和不可伸长的四肢是用来提高位置精度和刚度的。由于迷你机器人的致动器是底座安装;高载荷能力,小尺寸和低功耗的致动
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。