毕业设计(论文)文献翻译.doc

防窜焊接滚轮架:窜动检测及防窜控制系统设计【含CAD图纸】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:116486984    类型:共享资源    大小:1.69MB    格式:ZIP    上传时间:2021-03-03 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
焊接 轮架 检测 控制系统 设计 CAD 图纸
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】 ========================================= 喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】 =========================================

内容简介:
重 庆 理 工 大 学文 献 翻 译二级学院 机械工程学院 班 级 109040205 学生姓名 方敏 学 号 10904020506 防窜焊接滚轮架轴向窜动实验研究摘要:简述焊接滚轮架轴向窜动的基本理论,并同时在焊接滚轮架的实验模型上进行了试验研究。 结果表明, 焊接滚轮架轴向窜动的主要原因在于工件的翻转存在着螺旋夹角, 本文主要分析了螺旋角和工件的圆周速率对窜动的影响。关键词:焊接滚轮架 轴向运动 螺旋角 筒体线速度1.简介 在大厚壁、大型化、高容量、耐磨蚀的锅炉、石油、化工压力容器的焊接生产中,由于焊接滚轮架的制造安装误差以及筒体几何形状的不规则(偏离理想回转体)等原因,筒体在滚轮架上转动时,会不可避免的沿其轴向发生窜动,从而影响环缝的焊接质量。若不进行防窜处理,出现的窜动量大便无法进行焊接。本课题研究提供了当圆形工件焊接时,轴向窜动的机制.设计反窜动焊接滚轮架. 尤其是应用于滚轮架之上。2. 实验2.1.实验描述在图1中试验表明,初步的试验研究了两个因素:螺旋角和工件的线速度-影响轴向窜动的主要因素。 在实验过程, 轴向位移Sa和轴向窜动速度Va测量方法如图1。而进行的方法是将轴向位移传感器安装到的圆筒的一端,与传感器相连的X-Y记录器记录工件的轴向位移,每5s记录一次,平均窜动速度Va在每个角度可以计算出数据。在试验阶段,实验模型是如下:一、调节四滚轮高度在同 一个水平线上,并在矩形的四个顶点,那么滚轮与旋转工件相对平衡,工件在一段很长的时间不窜动,或定期窜动一个很小的范围。2.2实验结果的讨论2.2.1螺旋角的影响(1)例如图2所示。Va的变化检测条件是: vc=35m/h L=422mm , =60 Va是与tan4成正比的,4 是与(16c )相关的,坡度线为3. 06毫米/秒,Va不再正比tan4时, 当4大于6c,轴向窜动是随着4逐渐减小 。 由于只有一个驱动滚轮(roller No.4)的影响, 4可以改变的,而其他的仍然是零,工件作出了协调的运动。当4的比例较小,Va也小。 圆柱体轴向摩擦力,滚轮最大轴向摩擦力,汽缸产生弹性滑针对滚轮, 轴向运动之间各滚轮和工件协调弹性滑动。因此Va是: 理论曲线的斜率k可以按下列公式计算: k=3.06mm/s的实验曲线。因此,在考虑到各方面的实验,两个斜坡上可被认为是大致相等。 当4 比较大, 滚轮与工件之间最大轴向摩擦力大于最大摩擦力, 工件产生的摩擦滑动抵抗滚轮存在的滑动摩擦力,由于窜动的存在,Va不再随着tan4的增加而增加,而是逐渐减小。(2)以下三个实验,工件的不协调轴向窜动随之改变。由同一螺旋角度来衡量的一个主动滚轮及两个,三个主动滚轮 。三曲线之间的Sa和Va研究结果显示如上图,随着滚轮数量的增加,Va逐渐增大。Va 3 Va 2 Va1当驱动滚轮的数量变化时, 度气缸的非兼容轴向运动将会有所改变. 随着同一螺旋角影响下滚轮数量的增加。兼容的分量越来越大,但互不兼容的分量越来越小。换句话说,工件的轴运动将转化为是否兼容的问题。 因此,最大轴向窜动Va由角所决定,四轮有相同的螺旋角时Va为: 2.2.2 筒体线速度的影响 螺旋角从平衡位置+2对4号驱动滚轮的影响。工件将影响轴向窜动(例如下图)所显示va-VC的曲线,后者表明Va是与Vc成正比的, 曲线的斜率大约是0.00708。因为4=+2实在太小, 工件相对每一滚轮没有形成轴向窜动。 因此,轴滚轮和工件之间的相对运动是完全协调的弹性滑动,Va为:Va正比于Vc。理论曲线的斜率k可以按下列方程 K=0.25tan4=0.25tan2=0.00873wherek=0.00708mm/s. 因此,在考虑到各方面的实验,协调的两个斜坡上可被认为是大致相等. 3.结论 (1)因为制造及装配的偏差,工件的中心线与滚轮轴线不平行,没有在同一平面,因此形成螺旋角,存在是发生轴向窜动的主要原因。工件轴线方向重力的分量影响,也是轴向窜动的一个原因。 (2)合理调整轴运动,使不兼容的分量尽可能小和兼容分量尽可能大从而减小轴向窜动。 (3)随着滚轮数量的增加相同角下的轴向窜动将增大,但不兼容的部分减少。随着兼容部分的增加工件的轴向窜动速度将增加,当轴向滑动摩擦发生在滚轮和工件之间时, 轴向窜动将被弹性摩擦和滑动摩擦所协调,但Vc并不与成正比,关系如下:参考文献: (1) Z Wang. 焊接机械设备教材,甘肃兰州工业大学, 张培源(1992)pp85-98 (2)武汉材料技术研究所,南京化工研究所,与华南工学院,水泥生产机械设备, 建筑工业出版社,中国北京,(1981)pp,184-187 (3) J . Halling(ed.), 麦克米伦出版社,(1975)pp. 174-200Experiment and study into the axial drifting of the cylinder of a welding rollerbeAbstract :The basic theory of the axial drifting of the cylinder of a welding roller bed is introduced in the paper,and at the same time experiment and study on the mechanism of the axial drifting of the cylinder have been done on an experimental model of the welding roller bed . It is shown that the main cause of the axial drifting of the cylinder lies in the existence of a spiral angle between the cylinder and the cylinder and the roller.This article mainly analyzes the spiral Angle and circumferential velocitys influence on the channeling motion artifacts. Keywords:welding roller bed axial motion spiral angle Cylinder linear velocity 1 Introduction The Welding and Production in the big Thick-Cliff、The Large-Scale、High-Content、Endure-Ablation of the pressure vessel of the Boiler、Oil、chemical,because of reason of the error of the manufacture-installation and the abnormity of geometry-form of the cylinder(departure ideal gyration object),the cylinder wheel on the roller bed,inevitably it will occur axial drifting,so that affect the welding quality. If not take the anti-floating measure,the welding cannot going because of the large drifting. This topic research when the circular workpiece welding, axial drifting mechanisms. Design the dynamic welding roller frame. Especially applied to the roller frame.2.Experiment 2.1 Descriphm of experment The experimental model is shown in Fig 1. Experiments were done to study two factors: the spiral angle and the cylinders circular linear velocity, which affect the axial drifting of the cylinder. In the experimenting process. the axial displacement Sa and the axial drifting velocity Va of the cylinder were measured by the variation of the two factors described above. The measuring method is shown in Fig. 1, and is carried out by means of bringing an axial displacement sensor into contact with one end of the cylinder. with the sensor being connected to an X-Y recorder to record the cylinders axial displacement every 5s. Linearly regressing the plot Sa-t (t expresses time), the average drifting velocity Va, at every deflecting angle can be calculated. Before experimenting. the experimental model is initialised as follows: first. the height of the four rollers is adusted by means of a level to put the centers of the four rollers in the same horizontal plane, and at the four vertexes of the rectangle. then the rollers are deflected so that the rotating cylinder is at the relative equilibrium position. Then the cylinder does not drift over a long time. or periodically drift over a very small axial range2.2experiment results and discussion 2.2.1 Effect of spiral angle (I) Fig. 6 shows that change of Va with the variation ofThe testing condition is: positive rotalion, Vc=35m/h L=422mm, =60”The Va-tan4 curve shows that Va is directly proportional to tan4 when4 is relatively small (16c ). The slope of the line being 3. 06 mm/s, Va is no longer direclly proportional to tan4 when 4, is greater than 6C The curve is an arched curve. i. e . with the increment of 4,.Va, increases. but with the increment of Va gradually becoming smallet Because only one driven roller (roller No. 4) is deflected, i.e 4 can be changed whilst the others remain zero, the cylinder makes a non-compatible motion. When 4 is relatively small, Va is small also. The axial frictional forces between the cylinder and rollers are less than the maximum axial frictional force, and the cylinder produces an elastic sliding against rollers. Axial motion between each roller and the cylinder is coordinated by elastic sliding. thus Va is:in the theoretical curve, the slope K can be calculated by the following equation: K=3.06mm/s in the experimental curve. Thus, in taking account of the experimental tolerance, the two slopes can be considered to be approximately equal. When 4 is relatively large, the axial frictional forces between the cylinder and the rollers are larger than the maximum axial frictional Force, and cylinder produces frictional sliding against the rollers Because of Ihe existence of sliding frictional resistance. Va is no longer lincarty increased with the increment of tan4 With the increment of tan4 the increment of V a; with gradually become smaller(2) The following three experiments were arranged to study the cylinders non-compatible axial motion further, deflecting positively one roller. two rollers and three rollers by the same spiral angle to measure three curves between Sa and v The experimental results are shown in Fig 7. With the increment in the number of deflected rollers, Va becomes greater. i e Va 3 Va 2 Va1 When the number of driven rollers deflected is varied, the degree of the cylinders non-compatible axial motion will be changed. With the increment of the number of lollers deflected by the same spiral angle. the compatible component becomes greater, but the non-compatible component becomes smaller. In other words, the cylinders axial motion will be transformed from noncompatible motion to compatible motion. Thus, Va becomes greater also, ultimately, being equal to the compatible axial velocity determined by the spiral angle Now. the four rollers have the same spiral anyle . So that Va is: 2.2.2 effect of circular linear velocityDeflecting driven roller No 4 to a spiral angle of +2”from the equilibrium position, the cylinder will suffer axial drifting, Fig. 8 shows the Va-Vc curve, which latter indicates that Va is directly proportional to Vc, the slope of the curve being approximately 0.00708 because 4=+2 is too small, the cylinder does not make frictional sliding against each roller. Thus, the relative axial motion between the roller and the cylinder is completely coordinated by their elastic sliding, so that Va isI. e .Va is directly proportional to Ve For the theoretical Curve the slope K * can be calculated by the following equation K”=0.25tan4= 0.25tan2=0.00873 where K=0.00708mm/s in the experimental curve. Thus, in taking account of the experimental tolerance, the two slopes can be considered to be approximately equal. 3 Conclusions (1).Because of the deviations due to manufacturing and assembling. the cylinders central line and the rollers axis are not parallel. i. e , they are not in the same plane, and there is a spiral angle at thc point of contact between the cylinder and the roller in the circular linear velocity direction. The existence of is the basic reason for the occurrence of axial drifting. The effect of gravity in cylinders axial direction is also one of reasons
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:防窜焊接滚轮架:窜动检测及防窜控制系统设计【含CAD图纸】
链接地址:https://www.renrendoc.com/paper/116486984.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!