鉴定意见表.doc

超声深孔钻床设计【含CAD图纸】

收藏

压缩包内文档预览:
预览图 预览图
编号:116487085    类型:共享资源    大小:2.25MB    格式:ZIP    上传时间:2021-03-03 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
超声 钻床 设计 CAD 图纸
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】 ========================================= 喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】 =========================================

内容简介:
湘潭大学兴湘学院毕业论文(设计)任务书论文(设计)题目 超声深孔钻床设计 学 号 2008960909 学生姓 姜维 专 业 机械设计制造及其自动化 指导教师姓名: 李玉平 系主任: 刘柏希 一、主要内容及基本要求对国内外振动钻削工艺与方法进行分析,探讨;对超声震动原理与振动力学进行研究;对超声振动钻削装置进行设计;利用AutoCAD等软件对设计的机床按国标要求绘制2D装配图及主要零部件的2D零件图; 对钻床主轴箱进行设计。基本要求如下 1绘制钻床装配图 1张 2绘制钻床相关零件图 8套 3编写设计说明书 1份 4专业英语翻译 1份 二、 重点研究的问题(1)超声波振动钻床总体方案设计 (2)钻床主轴箱的设计。 (3)主执行机构设计(机构选型)及其结构设计。 三、 进度安排序号各阶段完成的内容起止时间1收集资料第1-2周2工艺分析,方案确定,绘制方案图第3周3钻床结构设计,绘制总装图第4-8周4绘制零件图第9-11周5撰写设计说明书第12周6外文翻译第13周7毕业答辩第14周四、 应收集的资料及主要参考文献(1)曹凤国;超声波加工技术;化工工业出版社 (2)胡敏强,金龙,顾菊平;超声波电机原理与设计 (3)赵淳生;超声电机技术与应用 (4)超范国良, 陈传梁;超声加工概况和未来展望;1994年 (5)成大龙;机械设计手册单行本机械振动/机架设计;北京化学工业出版社 2004年 (6)成大龙;机械设计手册单行本机构设计;北京化学工业出版社2004年 (7)宁伟,许明翔,王耀俊;固体间不同厚度界面层超声反射声学技术;1995年 (8)王亚非, 袁敬闳, 曾宏亮;分层媒质中声波传输规律的研究压电与声光;2000年 (9)吴宗泽 罗圣国主编 机械设计手册高等教育出版社,2012年5月 (10)张雄 焦峰 论文超声加工技术的应用及其发展趋势,2012年6月 湘潭大学兴湘学院毕业设计题 目: 超声深孔钻床设计 专 业: 机械设计制造及其自动化 学 号: 2008960909 姓 名: 姜维 指导教师: 李玉平 完成日期: 2014年5月28日 湘潭大学兴湘学院毕业设计说明书题 目: 超声深孔钻床设计 专 业:机械设计制造及其自动化 学 号: 2008960909 姓 名: 姜维 指导教师: 李玉平 完成日期: 2014年5月28日 湘潭大学兴湘学院 毕业论文(设计)鉴定意见 学号: 2008960909 姓名: 姜维 专业: 机械设计制造及其自动化 毕业论文(设计说明书) 28 页 图 表 9 张论文(设计)题目: 超声深孔钻床设计 内容提要: 该设计是设计一超声深孔钻床,利用超声震动加工深孔。振动切削与普通切削相比,在降低切削力和切削热方面有明显的效果,尤其在难加工材料的加工和精密加工中,振动切削具有普通切削无法比拟的工艺效果。因此,作为精密机械加工和难加工材料加工的一种新技术,振动切削已经逐步渗透到多种机械加工领域,振动钻削就是比较成功的应用实例。 振动钻削,即在钻头(或工件)正常工作进给的同时,对钻头(或工件)施加某种有规律的振动,使钻头在振动中切削,形成脉冲式的切削力波形,使切削用量按某种规律变化,以达到改善切削效能的目的。根据实际加工的需要,适当选择振动参数(频率v,振幅A以及频率v与工件转速n的比例关系),可以控制切屑的大小和形状,得到满意的切屑,避免切屑堵塞。可提高生产效率几倍到十几倍,提高加工精度12级,且加工表面质量也有较大改善。 超声振动深孔加工钻床是利用超声振动系统对钻头施加振动,使钻头在振动中切削,使切削用两按规律变化,从而达到改善切削效能的目的。指导教师评语选题符合培养目标,总体设计方案正确,达到综合训练的目的。该生在毕业设计过程中,学习态度良好,遵守学校的纪律,认真完成老师布置的设计任务,团结同学,待人热情,态度较认真;基本能独立思考解决问题,查阅参考资料。说明书结构较严谨,格式基本正确,文字基本通顺,但图纸中存在少量错误。同意其参加答辩,建议成绩评定为 中 。指导教师: 年 月 日答辩简要情况及评语答辩小组组长: 年 月 日答辩委员会意见答辩委员会主任: 年 月 日基于摩擦传动的高分辨率和大冲程的微量进给机械系统摘要 在摩擦传动原理的基础上,设计了一种通过压电陶瓷结合螺杆轴和气体静压引导的方式驱动的长冲程和高分辨率的微量进给系统。设计用来使加载装置可以灵活的起落。利用有限元方法对柔性连接装置对它的静态特性进行分析。对这种微量进给系统的传输特性进行了详细的分析。关键词: 摩擦传动 压电传动装置 柔性铰链 有限元1.简介光学在航空、航天、国防等领域中已得到广泛应用的行业。然而,生产的大型光学镜面面临着巨大的困难,效率较低、成本较高、增加在工艺设备的要求等。为了获得更高的精度,高微位移分辨率超-先进精密机床有待进一步深入,以补偿加工误差。因此,微量进给机制的设计已成为其关键技术之一。压电陶瓷是一种近年来发展起来的新型的微量进给机制。它所拥有的优势,比如体积小、功率大、分辨率高和高频率响应,恒温,不反弹,无粘性。因此它广泛使用在微量进给机制。如今,摩擦传动机制逐步被获得和使用。2微量进给机制的结构和工作原理微量进给机制是由三个部分组成:摩擦传动装置、滚珠螺杆及静态压力空气轴承引导的方式。采用压电陶瓷微量进给机制阻滞,这些摩擦传动扭曲向上套筒和驱动器滚珠丝杠,从而带动空气轴承引导地实现了微量进给运动。 结构如图1所示。1, 轴承支架,2.活塞,3、活塞缸,4.精压力空气轴承导轨,5.滚珠丝杠,6. 压电陶瓷底座,7.压电陶瓷底座图一:进给机构的结构按照图2所示的进给系统工作原理是,套筒连接着球摩擦传动螺杆、四个模块是放置的两侧对称的轴套。每一块由相应的压电陶瓷用于驱动,这种机制由于是由压电陶瓷驱动,适用于夹持产生夹力。进给机制的运作,压电陶瓷适用于夹持在同一阵营的摩擦传动驱动都工作在特定块整齐,从而使摩擦传动套筒连续的传动。图1:(b)进给系统图片图2:进料机构的运行原理3结合设计的可调机制 拧紧调节机制是一个需要在摩擦传动机构,它必须有足够的 预紧力。典型的方法是钢板弹簧预紧预紧机制,螺旋预紧 机制,气压预紧机制等。该拧紧机制本文设计的 灵活的平行四杆机构。这是由压电陶瓷droved供应预紧力。该 预紧力可以改变控制的压电陶瓷输入电压。 如图3所示,利用有限元软件分析的静态特性。当驱动力的 压电陶瓷是在最大500N的,灵活安排四杆机构刚度,有限元分析 软件,是K =24.15N/m,以及最大应力弹性铰链是= 32.7Mpa。如果没有灵活失真 四杆机构(即当摩擦传动板块跟硬性),输出力的压电 陶瓷将完全转化为预紧通过灵活的四杆机构的力量。4驱动特性分析的机制学习和掌握辐射源驱动特性的机制以便采取适当的措施,以改善整体性能,并提供了设计控制系统设计的基础。4.1驱动力矩当系统启动时,有一个初步的转动惯量作为零件的质量存在问题的结果。为了研究驱动力矩,选择摩擦传动套筒为主体的影响。根据该理论认为,动力学传动装置的能量是一样的火车前和转换后,各部分的转动惯量,转化为摩擦套。正因为如此,我们可以得到转换后的转动惯量。图三:计划的静态特性分析结合的机制P:导程,mR:套筒半径,mMs:滚珠螺杆质量,kgMt:套筒质量,kg通过以上分析,我们得到的等效转动惯量的摩擦的袖子。现在我们选择摩擦的袖子一样对象来讨论这个驱动力矩(动力),是需要装置时开始及其影响因素。下列方程装置时开始工作:J:等效转动惯量,kg。m2R:摩擦套筒半径,m:套筒摩擦角加速度,rad/s2M:驱动力矩,n。mF:驱动力(摩擦片与套筒之间的摩擦力),n当系统启动时,一个适宜的驱动器偏转组应该被应用于摩擦套,以使该套可以有一定的角加速度。该驱动器偏转组所产生的压电输出力陶瓷。由式2我们可以得到的等效转动惯量的系统,半径套的摩擦和驱动器对压电陶瓷(爆发摩擦块之间的摩擦和摩擦套),是影响力机制启动的因素,所以我们应该考虑各因素,以确保机制正常启动。4.2驱动刚性刚性的驱动是其中的重要驱动进给机构的特征之一。现在我们将分析驾驶进给机构的刚度详细的证明。不灵活的进给机构的级联连接刚度的饲料的每一个片段的机制,这种机制有计算公式如下:K:进刀机构总体硬度Ky:压电陶瓷刚度Kf:接触刚度之间的接触摩擦表面的摩擦刚性块体和压电陶瓷套筒Ks:导螺杆轴向刚度Ks:从轴向刚度改变导螺杆的扭转刚度Kn:螺母刚度Kb:轴向载荷Kh:轴承座机轴承架螺母的刚度Kd:螺母连接块轴向刚度这是部分的分析和计算的刚性。4.2.1压电陶瓷刚度本文用压电陶瓷微定位是打印的WTYD0808055陶瓷生产的中国电子科技集团公司先研究所。通过它的刚度测量实验15.15N /m,如图44.2.2接触表面的接触刚度、摩擦块之间的套筒两个物体互相接触将在以前的某些行动切向相对滑移过渡切向外部力量,这被称为预位移。力和位移之间的比例关系,实际上反映了一个刚性的特点。相应的刚性现在是:K:常数N:正压力R:对摩擦半径的理想化的球体表面很明显的,特殊摩擦方程出发,得到了齿轮传动系统、钾是由实验,r是常量,唯一的影响动人的刚性因素常压N .很明显,更大的N、较大的接触刚度K。图4:刚度曲线的压电陶瓷4.2.3 轴向刚度的改变,从扭转刚度的导螺杆传动链方面的需要进行改造时统一计算它的刚性。因此,扭转刚性必须转换成下面的公式轴向刚度:是螺旋上升的铅角,();D是丝杆直径,mm;F是丝杆轴向力,N;M是丝杆输入时刻,Nmm;是在丝杆和螺母之间的摩擦角,();是对丝杠扭转刚度,Nmm/rad;是丝杠扭转,radP是丝杆长度,mm;G是丝杆剪切弹性模量,Mpa;是截面惯性矩,mmL是两个推力轴承的距离,mm 螺母连接的刚性块轴向可以得到的有限元分析。螺母支架的刚度和轴承块是非常大的,可以予以辞退。其他部分可以得到刚性通过查找表和计算。总之,通过演绎着驱动进给机构的刚性方程,我们已经找到了影响因素每一次驾驶驾驶部分,它提供了有关驾驶特性研究的基础上进一步造成刚性。5.进刀机构的实验研究5.1实验系统的基础如图5所示,该实验系统是由送料机构,计算机,压电陶瓷驱动器其电源供应器及电感测微仪。图5:基础的实验系统本文采用一种基于平均控制曲线模型建立开环控制模型。首先,实验曲线测量压电陶瓷控制电压之间的关系和滑动运输距离。利用Matlab软件以适应线,以三次代数多项式拟合线,线拟合误差,是一样的显示在图6,由此我们得到相应的关系表达式的控制电压和距离和因此控制距离的进给机制。图6:适合以三次代数多项式控制电压和距离的关系式公式7所示x是输出的距离,m;u控制电压,V。5.2实验研究系统分辨率如图7,压电陶瓷具有一定的伸长。就在这个时候,距离工作表微0.15m。 然后一步拉伸逐渐在此基础上,保持1.5在每一时刻。采样时间是控寄存器。这分辨率曲线可以获得实践的距离,通过测量微进给机构使用的电感测微仪。图7:距离分辨率曲线的进给机制6结论微进给机构一步用长征、高分辨率的设计,并在此基础上从以下结论分析得出:1.结合机理的基础上,设计了压电陶瓷灵活的铁铰链和分析了它静态特性,采用有限元分析软件;2.分析了起动转矩的微进给机构的等效转动惯量计算;分析了驾驶刚度特性的微进给机构,发现其影响因素;3. 微进给机构可以达到300mm,分辨率小于0.05m少。参考文献1.Seugng-Bok Choi, Sang-Soo Han. Position Control System Using ER Clutch and Piezoactuator. Pro. of SPIE, 2003, 5056: 424431 2Suzuki H, Kodera S, Mabkawa S, et al. Study on Precision Grinding of Micro a Spherical Surface. JSPE, 1998, 64(4):619623.3.Arrasmith S. R, Kozhinova I A, Gregg L L et al. Details of The polishing Spot in Magnetorheological Finishing(MRF).Proceedings of SPIE-the International Society for OpticalEngineering,2001,Vol.3782:92100.4.Atherton P D, Xu Y, McConnell M. New X-Y Stage for Precision Positioning and Scanning. SPIE, 1996, 2865:1520. 5.Liu Yung -Tien, Toshiro Higuchi, Fung Rong-Fong. A Novel Precision Positioning Table Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator. Precision Engineering, 2003, 27:14221 6.Lobontiu N, Goldfarb M, Garcia E. A Piezoelectric Drive Inchworm Locomotion Device. Mechanism and Machine Theory, 2001, 36: 425443. 7.A. A. Elmustafa, Max G. Lagally. Flexural-hinge Guided Motion Nanopositioner Stage for Precision Machining: Finite Element Simulations. Precision Engineering, 2001, 25: 7781 8.Jaehwa Jeong, Young-Man Choi, Jun-Hee Lee. Design and Control of Dual Servo Actuator for Near Field Optical Recording System. Pro. of SPIE, 2005, 6048: 18 9.Kim Jeong-Du, Nam Soo-Ryong. Development of a Micro-depth Control System for an Ultra-precision Lathe Using a Piezoelectric Actuator. International Journal of Machine Tools and Manufacture. Volume:37,Issue:4, April, 1997, pp.495509 10.Li Sheng-yi, Luo Bing, Dai Yi-fan, Peng Li. Design and Experiment of The Ultra Precision Twist-roller Friction Drive. ICAMT99.1999. Micro-feed Mechanism with High-Resolution and Large-Stroke Based on Friction Drive Haitao Liu, Zesheng Lu School of Mechantronics Engineering, Harbin Institute of Technology ABSTRACT Based on friction driving principle, design a long stroke length and high resolution walking micro-feeding device driven by piezoelectric ceramic elements and combined with the screw shaft and aerostatic guide way. The design was made to the adjustable preload device by flexible four-bar linkage. The static properties of flexible linkage device are analyzed with FEM. The transmission characteristics of micro-feeding device are exhaustively analyzed. Keywords: Friction drive, Piezoelectric actuator, Flexure hinge,Finite element 1. INTRODUCTION Aspheric optics has been widely used in industries such as aviation, aerospace, national defense and so on. However, the manufacture of large aspheric optics faces many problems such as great difficulty, low efficiency, high cost, increased requirement on process equipment etc 1, 2. In order to arrive at high precision, the micro displacement resolution of ultra-precision machine must be further advanced, so as to compensating the processing error online. Therefore, the design of micro-feed mechanism has become one of the key technologies 3-7. PZT is the new micro-feed mechanism developed in recent years. It has the advantages such as small volume, large power, high resolution, and high frequency response and so on and phenomena such as no heating, no backlash and mucosity, so its widely used micro controller in micro-feed mechanism. Nowadays, friction gearing mechanism is gradually been acquired and used 8, 9. 2. STRUCTURE AND OPERATING PRINCIPLE OF MICRO-FEED MECHANISM The micro-feed mechanism is made up of three parts: friction gearing, ball screw and static-pressure air-bearing guide way. Micro-feed mechanism uses the piezoelectricity ceramic friction gearing block, which twist up the sleeve and drive the ball screw, so as to bring along the air-bearing guide way to realize the micro-feed movement. The structure is shown as Figure 1. Figure 1: (a) Structure of the feed mechanism As shown in Figure 2, the operating principle of the feed mechanism is that, friction gearing sleeve connects with ball screw, four friction gearing blocks are placed symmetrically at both sides of the sleeve. Each block is droved by the corresponding piezoelectricity ceramic used for feeding and is gripped by the corresponding gripping mechanism, which is droved by the piezoelectricity ceramic used for gripping to produce clamp force. When feeding mechanism works, the E-mail:, Phone: (0451)15904608295, Address: Mailbox 413, Harbin Institute of Technology, Post Code: 150001. 2 1 3 4 5 6 7 1-Bearing bracket 2-Friction gearing block 3 Friction gearing sleeve 4-Static-pressure air-bearing guide way 5- Ball screw 6- Piezoelectricity ceramic base 7-Piezoelectricity ceramic used for feeding 3rd International Symp. on Advanced Optical Manufac. and Testing Tech.: Advanced Optical Manufacturing Technologies, edited by Li Yang, Yaolong Chen, Ernst-Bernhard Kley, Rongbin Li, Proc. of SPIE Vol. 6722, 67222E, (2007) 0277-786X/07/$18 doi: 10.1117/12.783140Proc. of SPIE Vol. 6722 67222E-1 piezoelectricity ceramic used for gripping on the same side drive both the friction gearing blocks to work in certain orderliness, so as that the friction gearing sleeve turn continuously. Figure 1: (b) Picture of the feed mechanism Figure 2: Operating principle of the feeding mechanism 3. DESIGN OF THE ADJUSTABLE PRETIGHTENING MECHANISM An adjustable retightening mechanism is required in the friction gearing mechanism, which must has enough pretightening force. The typical pretightening methods are plate spring pretightening mechanism, helical pretightening mechanism, and air pressure pretightening mechanism and so on. The retightening mechanism designed in this paper is flexible parallel four bars mechanism. Its droved by piezoelectricity ceramic to supply pretightening force. The pretightening force can be changed by controlling the input voltage of piezoelectricity ceramic. As shown in Figure 3, use the finite element software to analysis the static characteristic. When the drive force of piezoelectricity ceramic is 500N in maximum, the rigidity of flexible four bars mechanism, analyzed by finite element software, is K=24.15N/m, and the maximum stress of flexible hinges is =32.7Mpa. If there is no distortion in flexible four bars mechanism (that is when the friction gearing blocks contact rigidly), the output force of piezoelectricity ceramic will completely translates to pretightening force through the flexible four bars mechanism. 4. DRIVE CHARACTERISTIC ANALYSIS OF THE MECHANISM Studying and mastering the drive characteristic of mechanism redounds to adopting the proper measures to improve the whole performance and provides the design basis for designing the control system. 4.1 Drive torque Friction gearing block Friction gearing block Gripping mechanism Gripping mechanism Proc. of SPIE Vol. 6722 67222E-2AN When system starts, there is a problem on initial inertia moment as a result of the existence of parts quality. To research the drive torque, choose the friction gearing sleeve as subject investigated. According to the theory that the kinetic energy of gearing train is same before and after conversion, the rotary inertia of each part is transformed to friction sleeve. Because of that, we can get the rotary inertia after conversion is Figure 3: The static characteristic assay plan of pretightening mechanism 2222TSLD1()()()2222pppJm rmmm=+ (1) Where p is pitch of lead screw, m; r is radius of the friction sleeve, m; mS is quality of the ball screw, kg; mT is quality of the friction sleeve, kg. Through the above analysis, we get the equivalent rotary inertia of friction sleeve. Now we choose the friction sleeve as subject investigated to discuss the drive torque(drive force)that is needed when device starts and its influencing factors. The following equation works when device starts: J MF r= (2) Where J is equivalent rotary inertia, kgm2; is angular acceleration of friction sleeve, rad/s2; r is radius of the friction sleeve, m; M is drive torque, Nm; (b) Node motion nephogram (c) Von-mise stress envelope (a) Structure of the pretightening mechanism Proc. of SPIE Vol. 6722 67222E-3 F is drive force(breakout friction between friction block and friction sleeve), N. When system starts, a condign drive deflecting couple should be applied on the friction sleeve, in order that the sleeve can have certain angular acceleration. The drive deflecting couple is generated by the output force of piezoelectricity ceramic. From equation 2 we can get that the equivalent rotary inertia of system, radius of the friction sleeve and drive force of the piezoelectricity ceramic (breakout friction between friction block and friction sleeve) are the influencing factor of mechanism start, so we should think over the influence of each factor to ensure the normal start of mechanism. Same questions exist when feed mechanism stop moving. 4.2 Driving rigidity The driving rigidity is one of the important driving characteristics of feed mechanism. Now we will analyze the driving rigidity of feed mechanism in detail as following. The rigidity of the feed mechanism is the cascade connection of the each segment rigidity of the feed mechanism, which has the calculated equation as follows: YFSSNBHD111111111KKKKKKKKK=+ (3) Where K is the total rigidity of the feed mechanism; KY is the rigidity of piezoelectricity ceramic; KF is the touching rigidity of surface in contact between friction block and friction sleeve; KS is the axial rigidity of lead screw; KS is the axial rigidity changed from the torsional rigidity of lead screw; KN is the rigidity of nut; KB is the rigidity of axial bearing; KH is rigidity of nut bracket and bearing block; KD is the axial rigidity of nut link block; Here is the analysis and calculation of part rigidity. 4.2.1 Rigidity of the piezoelectricity ceramic The piezoelectricity ceramic in this paper is the ceramic micro positioner typed WTYD0808055 produced by China Electronics Technology Group Corporation No.26 Research Institute. Its rigidity measured through experiment is 15.15N/m, as shown in Figure 4. 4.2.2 Touching rigidity of surface in contact between friction block and friction sleeve Two objects contacting with each other will have certain tangential transition before relative slip in the action of tangential external force, which is called pre-displacement. The proportional relation between force and displacement reflects a rigidity characteristic in fact 10. The corresponding rigidity now is: 1 31 3FKkrN= (4) Where k is const; N is normal pressure; r is the radius of idealized sphere on friction surface. Its clear in the equation that, in special friction gearing system, k is got from experiment, r is const, the only influencing factor of touching rigidity is normal pressure N. Its evident that the larger N is, the larger the touching rigidity K is. Proc. of SPIE Vol. 6722 67222E-4 Figure 4: Rigidity curve of piezoelectricity ceramic 4.2.3 Axial rigidity changed from the torsional rigidity of lead screw The dimension of driving chain needs to be transformed uniformly when calculating its rigidity. Therefore, the torsional rigidity must be transformed into axial rigidity as the following equation: PTGJMKL= (5) ST4tan()KKpd=+ (6) Where is the rising angle of lead screw, (); d is the diameter of lead screw, mm; F is the axial force of lead screw, N; M is the input moment of lead screw, Nmm; is the friction angle between lead screw and nut, (); KT is the torsional rigidity of lead screw, Nmm/rad; is the torsional deformation of lead screw, rad; p is the lead of lead screw, mm; G is the shear modulus of elasticity of lead screw material, Mpa; JP is the inertia moment of cross section, mm4, JP=d4/32; L is the maximum distance from loading point to two thrust bearing, mm. The axial rigidity of nut link block can be gained by the finite element analysis. The rigidity of nut bracket and bearing block is very large, which can be dismissed. The rigidity of other parts can be got by looking up table and calculating. In a word, by deducing the equation of drive rigidity of feed mechanism, we have found the influencing factors of driving rigidity caused by each driving segment, which offers the basis for further study on the driving characteristic. 5. EXPERIMENTAL STUDY OF THE FEED MECHANISM 5.1 Foundation of the experiment system 01234567809.819. 629. 439. 24958. 868. 678. 4N SProc. of SPIE Vol. 6722 67222E-5- -l:0:-V_ As shown in Figure 5, the experiment system is made up of feed mechanism, computer, piezoelectricity ceramic driver and its power supply and the inductance amesdial. Figure 5: Foundation of experiment system This paper uses a control method based on average curve model to set up the open loop control model. Above all, measure the experimental curve of relation between piezoelectricity ceramic control voltage and slide carriage distance. Using the Matlab software to fit the line with cubic algebraic multinomial, and the fitted line and fitted error line are as shown in Figure 6, from which we get the corresponding relational expression of control voltage and distance and therefore control the distance of feed mechanism. Figure 6: Fit with cubic algebraic multinomial Relational expression of control voltage and distance is as shown in equation 7: 73521.8 105.3 100.00440.022xuuu= + (7) Where x is the output distance, m; u is the control voltage, V. 5.2 Experimental study of system resolution As shown in Figure 7, piezoelectricity ceramic has certain elongation. At this time, the distance of micro working table is 0.15m. Then step elongating gradually on this base and keep 1.5s in each moment. The sampling time is 100ms. The resolution curve can be gained by measuring the practice distance of micro feed mechanism using the inductance amesdial. a) Fitted line b) Fitted error line Proc. of SPIE Vol. 6722 67222E-60.5IIIa45 Figure 7: Distance resolution curve of feed mechanism 6. CONCLUSION A step micro feed mechanism with long march and high resolution was designed in this paper, and the following conclusions were concluded: 1. Designed the pretightening mechanism based on t
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:超声深孔钻床设计【含CAD图纸】
链接地址:https://www.renrendoc.com/paper/116487085.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!