外文翻译.doc

帕萨特B5自动变速器原理与检修含CAD图

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:116820790    类型:共享资源    大小:1.07MB    格式:ZIP    上传时间:2021-03-06 上传人:QQ14****9609 IP属地:陕西
30
积分
关 键 词:
帕萨特 B5 自动变速器 原理 检修 CAD
资源描述:
帕萨特B5自动变速器原理与检修含CAD图,帕萨特,B5,自动变速器,原理,检修,CAD
内容简介:
英文原文CastingCasting is a metal smelting meet certain requirements of the liquid and poured into the mold, solidified by cooling, the whole-are scheduled to be dealt with after the shape, size and performance of the casting process. Casting hair due to the near embryo forming, and machining to avoid or reduce a small amount of the purpose of processing costs and to a certain extent, reduce the time. Casting modern machinery manufacturing industry is the basis of one.Casting many different types, according to the customary method of modeling is divided into: ordinary sand casting, including wet sand, dry sand and chemical hardening Sand three categories. special casting, by modeling materials can be divided into natural mineral sand as the main form of special casting material (such as mold, mud-casting, casting workshop shell casting, vacuum casting, it is type casting, ceramic mold casting , etc.) and metal casting for the main special casting material (such as metal-casting, pressure die casting, continuous casting, low-pressure casting, centrifugal casting, etc.) two. Casting Process usually include: mold (the liquid metal into solid casting containers) prepared by casting materials used can be divided into sand, metal, ceramic, clay, graphite type, and so on, by frequency of use can be divided into one-time type, semi-permanent and permanent-type, and the pros and cons of the mould for casting quality is the impact of the main factors; melting and casting metal casting, metal casting (casting alloys) main cast iron, cast steel and non-ferrous foundry alloy castings deal with and testing and treatment, including removal of casting and casting surface core foreign body, with pouring riser, and shovels and grinding burr Prix joints, and other protrusions and heat treatment, surgery, such as anti-rust treatment and rough.Casting process can be divided into three basic parts, namely casting metal preparation, preparation and casting mold processing. Metal Casting is casting for the production of metal castings casting materials, it is a metal elements as the main component, and joined other metal or non-metallic element composition of the alloy and, as customary casting alloys, the main cast iron , cast steel and non-ferrous alloy casting.Metal smelting is not just a simple melting, smelting process also included, pouring the metal into the mold, temperature, chemical composition and purity aspects are in line with expectations. Therefore, in the melting process, we need to conduct quality control checks for the purpose of testing liquid metal to the provisions in order to allow indicators after pouring. Sometimes, in order to meet higher demands, after the release of liquid metal in the furnace, to deal with, such as the desulfurization, vacuum degassing, the refining furnace, such as modification or bred. Melting metal commonly used equipment is Cupola, electric arc furnace, induction furnace, resistance heaters, such as reverberatory furnace.The different methods have different casting mold for content. The application of the most extensive example of sand casting, casting, including modeling material for the preparation and modeling made two core functions. Sand Casting modeling used to create the core of raw materials, such as sand casting, sand binder and other accessories, as well as from the preparation of their sand, the core sand, paint and other materials collectively known as the shape modeling material in accordance with the task of preparing for Casting requirements, the nature of metal, the original choice of suitable sand, binders and accessories, and then by a certain proportion of them into a certain properties of mixed sand and core sand. Mixer equipment is commonly used roller wheel Mixer, and the counter-Mixer leaves trench Mixer. The latter is designed for the hard sand mixed chemical design, continuous mixing, fast.Modeling made casting process is based on core requirements identified in good shape, ready to form the material basis. Casting accuracy, and the entire production process of economic effects depends largely on this procedure. In many modern foundry workshop, modeling core are made to achieve a mechanized or automated. Sand commonly used modeling core equipment made a high, medium and low pressure molding machine, the machine throwing sand, no me-pressure molding machine, radio batteries, cold and hot-box machines.Since casting mold pouring out of the cooling, a gate, riser joints and metal burr Prix, the Sand Casting also adhesion of sand casting, it must be clear processes. Such is the work of the equipment throwing machine, gate riser cutting machines. Sand casting is charged sand liquidation of a poor working conditions processes, in the choice of modeling methods, should be taken into account for loading sand to create convenience for liquidation. Casting for some special requirements, but also the casting post-processing such as heat treatment, plastic surgery, anti-rust treatment, such as roughing.Casting is more economical method of forming the rough, more complex shape parts demonstrated its economy. If the cars engine block and cylinder head, ship propellers, as well as exquisite works of art,. Cutting some of the difficult parts, such as gas turbine parts of the nickel-based alloy casting methods can not not forming.In addition, the casting of parts of the size and weight to a wide range of metal species almost unlimited; parts of a general mechanical properties, it is also a wear-resistant, corrosion-resistant, shock absorption, such as overall performance, other methods such as forging metal forming , rolling, welding, etc.-can do. Therefore, in the machine building industry, casting methods used in the production of rough parts, in terms of quantity and the tonnage is the largest to date. Casting Production of materials often use a variety of metals, coke, wood, plastics, gas and liquid fuels, such as modeling materials. Have the necessary equipment of various metal smelting furnace, with the various Mixer Mixer, a shape made of various core molding machine, machine-made batteries, cleaning sand casting charged with the machine, throwing machine etc. Casting also used for special machinery and equipment, as well as many transportation and material handling equipment. Casting production and the different characteristics of other, mainly wide adaptability, needed materials and equipment, pollution of the environment. Casting Production will produce dust, toxic gases and noise pollution on the environment, compared to other machinery manufacturing processes to become more serious measures are needed to control.Casting product development requirements of the trend is casting a better overall performance, higher accuracy and less cushion and clean the surface. In addition, energy-saving and the requirements of social calls to restore the natural environment is getting higher and higher. To meet these requirements, the new cast alloy will be developed, refining new techniques and equipment will be corresponding. Casting production mechanization degree of automation has been improving at the same time, will be more flexible to production development, to expand the volume and variety of different production adaptability. Conservation of energy and raw materials of new technologies will be giving priority to the development, produce or do not produce less pollution in new technology and equipment will be the first to be taken seriously. Quality control procedures in the detection and nondestructive testing, stress determination, there will be a new development.There is much more to casting than selecting a process and making the appropriate pattern .During the past decade ,research and production experiences have provided scientific principles for better casting techniques .Important considerations are the rate at which a mold cavity is filled ,gate placement ,riser design ,the use of chill blocks, and padding. FILLING THE MOLD CAVITY .the velocity with which the molten metal fills the mold is determined by the cross-sectional area of the gating system and the mold-pouring rate. Too slow a mold-pouring rate means solidification before filling some parts, allowing surface oxidation. Too high a pouring rate caused by too large a gating system causes sand inclusions by erosion ,particularly in green-sand molding ,and turbulence. The minimum cross section in the gating system is called a choke .In the strict sense, the choke is the section in the gating system where the cross-sectional area times the potential linear velocity is at a minimum. When the gate system is choked at the bottom of the sprue ,it is called a nonpressurized system. This system is somewhat less reliable than a pressurized system in which the choke is at the gate. The first metal in the pouring basin and down the sprue usually has some turbulence that carries slag into the runner .To avoid slag in the casting, the runner should extend past the last gate to trap the initial slag. By the time the gate become operative, the liquid level should be high enough so that no slag can enter the casting cavity .The runner should be laid out to minimize turbulence, that is it should be as straight and as smooth as possible. The gate that was shown in Fig.7-3 is made to enter the cavity at the parting line. Gating arrangements may also be made at the top or bottom of the cavity. The parting line gate is the easiest for the pattern maker to make; however, the metal drops into the cavity, which may cause some erosion of the sand and some turbulence of the metal .For nonferrous metals, this drop aggravates the dross and entraps air in the metal. Top-gating is used for simple designs in gray iron, but not for nonferrous alloys, since excessive dross would be formed by the agitation. Bottom-gating provides a smooth flow of metal into the mold. However ,if does have the disadvantage of an unfavorable temperature gradient. It cools as it rises, resulting in cold metal in the riser and hot metal at the gate. Casting For example, there are many ways:Centrifugal CastingLiquid metal will be poured into the mold rotation, the centrifugal force under the filling and solidification of the casting-casting method. Centrifugal casting machine called centrifugal casting machine. According to the rotation axis mold a different direction, centrifugal casting machine is divided into horizontal and vertical tilt of three kinds. Horizontal centrifugal casting machine is mainly used for casting various tubular castings, such as grey cast iron and ductile iron water mains gas pipes, the smallest diameter of 75 mm, 3000 mm Maximum Pouring In addition to the paper machines large diameter copper roller, various carbon steel, steel pipes, as well as internal and external requirements of the different components of the double-material steel roll. Vertical centrifugal casting machine is mainly used for the production of castings and smaller ring-round casting. Centrifugal Casting by the mold, according to casting shape, size and production quantities different, the choice of non-metallic type (such as sand, shell or shell-Investment), the type of metal or metal-deposited within a layer or coating resin sand the mold. Mold is centrifugal casting to a few of the important parameters, we have enough to increase the centrifugal force of the dense metal casting, centrifugal force is not too big so as not to hinder the metal contraction. For those of lead bronze, too much centrifugal force will produce castings components inside and outside intramural segregation. General dozens per minute speed in 1500 to go around. Centrifugal Casting is characterized by centrifugal force in the liquid metal under the filling and solidification, metal Feeding good effect, castings organizations dense, good mechanical properties; casting hollow castings without pouring riser, metal utilization can be increased substantially. Therefore certain shape casting, centrifugal casting is a material-saving, energy-saving, cost-effective techniques, but special attention should be to take effective security measures.Fan Casting mudFoundry Industry in China Ancient metal processing in a prominent position, and have a tremendous impact on society. Today, we are living in often use a model, Casting and succumb vocabulary, from the ancient foundry industry terminology. Ancient Chinese working people in the long-term production practice, and created a Daofan, lost wax casting process of the two major traditions. Casting technology is the first to use Shifan. Because stone is not easy processing, without high temperature, along with making the development of the industry, I have to switch to block mud Fan. Sand Casting in modern times before 3,000 years, mud Fan Casting has been one of the most important casting method. Mud Fan Casting Process: 1. Tooling. According to prototype objects with soil carved into mud-2. Fan up outside. A uniform will be transferred into the soil-mud-flap on the outside in the mud-force, make pressure, the mud-ornamentation on the anti-Indian in the mud-chip. Semi-after films such as soil, in accordance with the objects ears, feet, Pan, at the end of the border areas, Kok or symmetrical objects, divided into several blocks with a knife norm, and then the two dump adjacent to Fan of the triangle forward Stitching Mao, then dry, or baking Weihuo repaired Fan inside tick fill patterns, which has become used by the foundry Fan 3. Fan within the system. Fan of the system will be used by the mud mode, taking advantage of a wet Guaqu TLC, and then dry-roast, made in the Fan. Guaqu Suozhu Bronze is the thickness of the thickness of 4. A Fan. Fan will be inverted in the base, then placed in the block, Fan Fan around. Fan after the closure, a closure of the above-Fan Fan covered with at least leave a pouring hole 5. Casting. Bronze solution will be melted along pouring into the hole, such as copper-cooled, break the norm, the norm out, the bronze will be removed Suozhu, after polishing finishing, an exquisite bronze on the production completed. Modeling complex in the production of bronze, the ancients also used the casting process as a basic principle of law. Or first-body cast, then a norm in the pouring annex (such as Shoutou, columns, etc.); cast in the first or annex (such as tripod ear, feet, etc.) and then pouring time for the casting industry are integrated. Early Shang Dynasty in China there will be a mud Fan casting, to reach its peak during the mid-1980s. Use this method, the ancient craftsmen who created a home as Secretary E-ding, four sheep this side of the statue Kuangshi treasures. Chinas ancient mud Fan Casting another outstanding achievements, the law is stacked cast early emergence and widely used. Kevin is the so-called Permian many months or block paired Fan Fan-composite assembly, by a shared runner for casting, one by dozens or even hundreds of items. My earliest Permian casting is the Warring States period, the coin-knife. This method because of its high productivity, low cost comparison is still widely used.Pressure CastingUnder the high pressure liquid or semi-liquid metal mold filling high-speed, and solidified under pressure into the foundry casting method. Adopted by the pressure of 4 to 500 MPa, metal filling speed of 0.5 to 120 m / sec. 1838 Americans G. Bruce pressure casting the first time in India on the type production, a pressure casting patent next year. 19 in the 1960s, the pressure casting been great development, not only can produce tin-lead alloy die castings and zinc alloy die castings, but also capable of producing aluminum, copper alloys and magnesium alloy die castings. 20 in the 1930s and then to the iron and steel casting pressure on the pilot. Pressure Casting (casting), in essence, is under high pressure, liquid or semi-liquid metal to high-speed casting cavity filling and solidification under pressure molding and casting and access methods. Characteristics of high-pressure die casting and high-speed filling casting of the two major characteristics of the die casting. It commonly used than the pressure-pressure from the thousands to tens of thousands of kPa, and even as high as 2 105kPa. Filling in the speed of about 10 to 50 m / s, sometimes even up to 100 m / s and above.中文译文铸造铸造是将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件的工艺过程。铸造毛胚因近乎成形,而达到免机械加工或少量加工的目的降低了成本并在一定程度上减少了时间铸造是现代机械制造工业的基础工艺之一。 铸造种类很多,按造型方法习惯上分为:普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。铸造工艺可分为三个基本部分,即铸造金属准备、铸型准备和铸件处理。 铸造金属是指铸造生产中用于浇注铸件的金属材料,它是以一种金属元素为主要成分,并加入其他金属或非金属元素而组成的合金,习惯上称为铸造合金,主要有铸铁、铸钢和铸造有色合金。金属熔炼不仅仅是单纯的熔化,还包括冶炼过程,使浇进铸型的金属,在温度、化学成分和纯净度方面都符合预期要求。为此,在熔炼过程中要进行以控制质量为目的的各种检查测试,液态金属在达到各项规定指标后方能允许浇注。有时,为了达到更高要求,金属液在出炉后还要经炉外处理,如脱硫、真空脱气、炉外精炼、孕育或变质处理等。熔炼金属常用的设备有冲天炉、电弧炉、感应炉、电阻炉、反射炉等。不同的铸造方法有不同的铸型准备内容。以应用最广泛的砂型铸造为例,铸型准备包括造型材料准备和造型造芯两大项工作。砂型铸造中用来造型造芯的各种原材料,如铸造砂、型砂粘结剂和其他辅料,以及由它们配制成的型砂、芯砂、涂料等统称为造型材料造型材料准备的任务是按照铸件的要求、金属的性质,选择合适的原砂、粘结剂和辅料,然后按一定的比例把它们混合成具有一定性能的型砂和芯砂。常用的混砂设备有碾轮式混砂机、逆流式混砂机和叶片沟槽式混砂机。后者是专为混合化学自硬砂设计的,连续混合,速度快。造型造芯是根据铸造工艺要求,在确定好造型方法,准备好造型材料的基础上进行的。铸件的精度和全部生产过程的经济效果,主要取决于这道工序。在很多现代化的铸造车间里,造型造芯都实现了机械化或自动化。常用的砂型造型造芯设备有高、中、低压造型机、抛砂机、无箱射压造型机、射芯机、冷和热芯盒机等。铸件自浇注冷却的铸型中取出后,有浇口、冒口及金属毛刺披缝,砂型铸造的铸件还粘附着砂子,因此必须经过清理工序。进行这种工作的设备有抛丸机、浇口冒口切割机等。砂型铸件落砂清理是劳动条件较差的一道工序,所以在选择造型方法时 ,应尽量考虑到为落砂清理创造方便条件。有些铸件因特殊要求,还要经铸件后处理,如热处理、整形、防锈处理、粗加工等。铸造是比较经济的毛坯成形方法,对于形状复杂的零件更能显示出它的经济性。如汽车发动机的缸体和缸盖,船舶螺旋桨以及精致的艺术品等。有些难以切削的零件 ,如燃汽轮机的镍基合金零件不用铸造方法无法成形。另外,铸造的零件尺寸和重量的适应范围很宽,金属种类几乎不受限制;零件在具有一般机械性能的同时,还具有耐磨、耐腐蚀、吸震等综合性能,是其他金属成形方法如锻、轧、焊、冲等所做不到的。因此在机器制造业中用铸造方法生产的毛坯零件,在数量和吨位上迄今仍是最多的。铸造生产经常要用的材料有各种金属、焦炭、木材、塑料、气体和液体燃料、造型材料等。所需设备有冶炼金属用的各种炉子,有混砂用的各种混砂机,有造型造芯用的各种造型机、造芯机,有清理铸件用的落砂机、抛丸机等。还有供特种铸造用的机器和设备以及许多运输和物料处理的设备。铸造生产有与其他工艺不同的特点,主要是适应性广、需用材料和设备多、污染环境。铸造生产会产生粉尘、有害气体和噪声对环境的污染,比起其他机械制造工艺来更为严重,需要采取措施进行控制。铸造产品发展的趋势是要求铸件有更好的综合性能,更高的精度,更少的余量和更光洁的表面。此外,节能的要求和社会对恢复自然环境的呼声也越来越高。为适应这些要求,新的铸造合金将得到开发,冶炼新工艺和新设备将相应出现。铸造生产的机械化自动化程度在不断提高的同时,将更多地向柔性生产方面发展,以扩大对不同批量和多品种生产的适应性。节约能源和原材料的新技术将会得到优先发展,少产生或不产生污染的新工艺新设备将首先受到重视。质量控制技术在各道工序的检测和无损探伤、应力测定方面,将有新的发展。砂型铸造以型砂和芯砂为造型材料制成铸型,液态金属在重力下充填铸型来生产铸件的铸造方法。钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。由于砂型铸造所用的造型材料价廉易得,铸型制造简便,对铸件的单件生产、成批生产和大量生产均能适应,长期以来,一直是铸造生产中的基本工艺。 砂型铸造所用铸型一般由外砂型和型芯组合而成。为了提高铸件的表面质量,常在砂型和型芯表面刷一层涂料。涂料的主要成分是耐火度高、高温化学稳定性好的粉状材料和粘结剂,另外还加有便于施涂的载体(水或其他溶剂)和各种附加物。 砂型 制造砂型的基本原材料是铸造砂和型砂粘结剂。最常用的铸造砂是硅质砂。硅砂的高温性能不能满足使用要求时则使用锆英砂、铬铁矿砂、刚玉砂等特种砂。为使制成的砂型和型芯具有一定的强度,在搬运、合型及浇注液态金属时不致变形或损坏,一般要在铸造中加入型砂粘结剂,将松散的砂粒粘结起来成为型砂。应用最广的型砂粘结剂是粘土,也可采用各种干性油或半干性油、水溶性硅酸盐或磷酸盐和各种合成树脂作型砂粘结剂。砂型铸造中所用的外砂型按型砂所用的粘结剂及其建立强度的方式不同分为粘土湿砂型、粘土干砂型和化学硬化砂型3种。 粘土湿砂型 以粘土和适量的水为型砂的主要粘结剂,制成砂型后直接在湿态下合型和浇注。湿型铸造历史悠久,应用较广。湿型砂的强度取决于粘土和水按一定比例混合而成的粘土浆。型砂一经混好即具有一定的强度,经舂实制成砂型后,即可满足合型和浇注的要求。因此型砂中的粘土量和水分是十分重要的工艺因素。 粘土湿砂型铸造的优点是:粘土的资源丰富、价格便宜。使用过的粘土湿砂经适当的砂处理后,绝大部分均可回收再用。制造铸型的周期短、工效高。混好的型砂可使用的时间长。砂型舂实以后仍可容受少量变形而不致破坏,对拔模和下芯都非常有利。缺点是:混砂时要将粘稠的粘土浆涂布在砂粒表面上,需要使用有搓揉作用的高功率混砂设备,否则不可能得到质量良好的型砂。由于型砂混好后即具有相当高的强度,造型时型砂不易流动,难以舂实,手工造型时既费力又需一定的技巧,用机器造型时则设备复杂而庞大。铸型的刚度不高,铸件的尺寸精度较差。铸件易于产生冲砂、夹砂、气孔等缺陷。 20世纪初铸造业开始采用辗轮式混砂机混砂,使粘土湿型砂的质量大为改善。新型大功率混砂机可使混砂工作达到高效率、高质量。以震实为主的震击压实式造型机的出现,又显著提高了铸型的紧实度和均匀性。随着对铸件尺寸精度和表面质量要求的提高,又出现了以压实为主的高压造型机。用高压造型机制造粘土湿砂型,不但可使铸件尺寸精度提高,表面质量改善,而且使紧实铸型的动作简化、周期缩短,使造型、合型全工序实现高速化和自动化。气体冲击加压的新型造型机,利用粘土浆的触变性,可由瞬时施以0.5兆帕的压力而得到非常紧密的铸型。这些进展是粘土湿砂型铸造能适应现代工业要求的重要条件。因而这种传统的工艺方法一直被用来生产大量优质铸件。 粘土干砂型 制造这种砂型用的型砂湿态水分略高于湿型用的型砂。砂型制好以后,型腔表面要涂以耐火涂料,再置于烘炉中烘干,待其冷却后即可合型和浇注。烘干粘土砂型需很长时间,要耗用大量燃料,而且砂型在烘干过程中易产生变形,使铸件精度受到影响。粘土干砂型一般用于制造铸钢件和较大的铸铁件。自化学硬化砂得到广泛采用后,干砂型已趋于淘汰。 化学硬化砂型 这种砂型所用的型砂称为化学硬化砂。其粘结剂一般都是在硬化剂作用下能发生分子聚合进而成为立体结构的物质,常用的有各种合成树脂和水玻璃。化学硬化基本上有3种方式。 自硬:粘结剂和硬化剂都在混砂时加入。制成砂型或型芯后,粘结剂在硬化剂的作用下发生反应而导致砂型或型芯自行硬化。自硬法主要用于造型,但也用于制造较大的型芯或生产批量不大的型芯。 气雾硬化:混砂时加入粘结剂和其他辅加物,先不加硬化剂。造型或制芯后,吹入气态硬化剂或吹入在气态载体中雾化了的液态硬化剂,使其弥散于砂型或型芯中,导致砂型硬化。气雾硬化法主要用于制芯,有时也用于制造小型砂型。 加热硬化:混砂时加入粘结剂和常温下不起作用的潜硬化剂。制成砂型或型芯后,将其加热,这时潜硬化剂和粘结剂中的某些成分发生反应,生成能使粘结剂硬化的有效硬化剂,从而使砂型或型芯硬化。加热硬化法除用于制造小型薄壳砂型外,主要用于制芯。 化学硬化砂型铸造工艺的特点是:化学硬化砂型的强度比粘土砂型高得多,而且制成砂型后在硬化到具有相当高的强度后脱膜,不需要修型。因而,铸型能较准确地反映模样的尺寸和轮廓形状,在以后的工艺过程中也不易变形。制得的铸件尺寸精度较高。由于所用粘结剂和硬化剂的粘度都不高,很易与砂粒混匀,混砂设备结构轻巧、功率小而生产率高,砂处理工作部分可简化。混好的型砂在硬化之前有很好的流动性,造型时型砂很易舂实,因而不需要庞大而复杂的造型机。用化学硬化砂造型时,可根据生产要求选用模样材料,如木、塑料和金属。化学硬化砂中粘结剂的含量比粘土砂低得多,其中又不存在粉末状辅料,如采用粒度相同的原砂,砂粒之间的间隙要比粘土砂大得多。为避免铸造时金属渗入砂粒之间,砂型或型芯表面应涂以质量优良的涂料。用水玻璃作粘结剂的化学硬化砂成本低、使用中工作环境无气味。但这种铸型浇注金属以后型砂不易溃散;用过的旧砂不能直接回收使用,须经再生处理,而水玻璃砂的再生又比较困难。用树脂作粘结剂的化学硬化砂成本较高,但浇注以后铸件易于和型砂分离,铸件清理的工作量减少,而且用过的大部分砂子可再生回收使用。 型芯 为了保证铸件的质量,砂型铸造中所用的型芯一般为干态型芯。根据型芯所用的粘结剂不同,型芯分为粘土砂芯、油砂芯和树脂
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:帕萨特B5自动变速器原理与检修含CAD图
链接地址:https://www.renrendoc.com/paper/116820790.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!