毕业设计说明书.doc

小型高效拉线机结构设计【6张CAD图纸】

收藏

压缩包内文档预览:(预览前20页/共50页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:116951215    类型:共享资源    大小:3.10MB    格式:ZIP    上传时间:2021-03-07 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
小型 高效 拉线 结构设计 CAD 图纸
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:1064457796 或 1304139763】 ===========================================喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:1064457796 或 1304139763】 ===========================================

内容简介:
小型高效拉线机结构设计小型高效拉线机结构设计摘要拉线机是电缆工业制造圆单线的重要设备。它对提高电线产品的质量,降低成本,提高生产率,改善劳动条件以及加强安全生产都有重要的意义。依据带有滑动多次连续拉伸线材时,线材秒休积不变法刘扣正常滑动的技术要求,分析了原牡仲机配模的不足,提出改进意见;根据拉伸模材质改进扣模孔加工精度的提高,提出了低滑动拉伸有色金属及合全线材的加工方法。结合奉单位拉伸机的技术特性,进行了拉伸配模计算。关键词 拉线机,单头拉线机,塔轮AbstractWire-drawing machines are important equipments which are used to make circle single wire in cable work.The machine can increase the quality of electro physics wire manufactured,reduce the safety in production.According to many times with continuous stretching wire slide, wire seconds Hugh product not buckle normal sliding anshi liu, analyzes the technical requirements for the match mold lasalle machine helle insufficient, improvements; According to the improvement of the material tensile modulus buckle model hole machining accuracy, low sliding forward tensile non-ferrous metals and close all wire processing method. In unit with the technical characteristics of the tensile machine with the tensile modulus calculation Keywords wire-drawing machines, single wire-drawing machine,core culler drum目 录摘要IAbstractII目 录III第1章 绪论11.1课题背景11.2主要工作内容1第2章 拉线机总体方案设计22.1总体布局22.1.1 总体方案应满足的基本要求22.1.2运动的分配以及传动形式22.1.3 拉线机的总联系尺寸22.1.4拉线机的主要部件构造22.2 主要技术参数的确定42.2.1拉线机主要参数的确定42.2.2 电动机的确定10第3章 拉线机传动系统设计113.1拉线机传动路线113.2 拉线机传动计算113.2.1 各拉线鼓轮转速计算113.2.2 拉线机出线速度133.2.3 各道拉线鼓轮速比133.3 拉线机传动件设计及计算133.3.1 V型带的选用计算133.3.2 传动的设计计算及校核163.3.3 轴的设计计算及校核193.3.4 关于鼓轮243.3.5 轴承的选择243.3.6 蜗轮蜗杆的选择243.3.7 键的选择24第4章 拉线机的冷却与润滑及264.1 拉伸时冷却与润滑的作用264.1.1 滑动式拉线机冷却润滑装置264.1.2 拉线机冷却润滑液量的计算274.2模架的润滑与冷却274.3 齿轮的润滑274.4 轴系采用脂润滑27第5章 安装维护,保养和使用说明285.1 安装285.2 维护保养285.3 使用说明28结论29致谢30参考文献3146第1章 绪论1.1课题背景圆线材拉伸,一般都在单次或多次圆盘拉伸机上进行。多次连续圆盘拉伸机大体分为带滑动、无滑动积蓄(储存)和无滑动无积蓄带反拉力直线式等。带滑动多次连续拉伸时,线材靠拉伸机塔轮拖动运行,线材与塔轮之问产生滑动。为了避免线材及塔轮表层的摩擦,一般只允许拉伸低于中等强度(B 440MPa)的金属或合金线材,如紫铜、黄铜、低炭钢等(铝、铅除外)。如抗拉强度比较高, 且线径小于15ram合金线材,如青铜、白铜、镍及镍合金、不锈钢等细线亦可采用带滑动拉伸。带滑动多次连续拉伸的特点是:拉仲速度快、生产效率高,操作方便和易于实现自动化,因而在国内外线材拉伸中得到广泛的应用。尤其是铜电线,无论是大拉、中拉、小拉全部采用滑动拉伸。线材拉伸配模至为重要,尤其是带滑动从理论上弄清拉伸减径规律,线材在塔轮上滑动规律,还需弄清线材运行速度与塔轮线速比值关系。此外,还要结合拉伸机特性,拉伸润滑和模孔磨损等情况进行配模。拉伸中,常因配模不当,而使拉伸失利。为此,须对带滑动多次连续拉伸配模进行分析和探讨。国内外已出现低滑动拉伸配模,它可以节省动能消耗,减少线材和塔轮的磨损,延长塔轮寿命,提高线材表面质量, 因而具有良好的综台经济效益。该设计方案采用国内外普遍运用的微滑动或低滑动拉伸配模的滑动式拉伸结构;适用于生产柔性较好,硬度不太高尺寸较小的金属线材;在此基础上可以开发相应机型,以适应市场的不同需要。该设计具有较强的工程性和实用性,对提高学生的实践能力和素质有重要意义。1.2主要工作内容本计算说明书内容包括:拉线机的设计方案的论证,主要参数的确定,传动件的设计以及计算等。主要组成部分如图 1-1所示。图1-1 小型高效拉线机拉线机1-吊放线架 2-主机 3-收排线装置第2章 拉线机总体方案设计2.1总体布局2.1.1 总体方案应满足的基本要求1、 保证拉线鼓轮的相对位置和相对运动,做到主机及收、排线装置的相对布局合理。2、 尽量使用设备简单,加工方便,工艺个结构合理,减少占地面积,投资少。3、 便于操作,便于维修,并保证安全。本设计正是在满足以上三项基本要求的基础上进行总体布局的。2.1.2运动的分配以及传动形式拉线机主电动机至拉线鼓轮的传动是外联系传动,另外收线电动机到拉线鼓轮的传动,以及收线电机至排线器的传动都属于外联系传动;通过机械传动保证鼓轮之间的速比。通过机械和电气传动保证定速轮与收线盘之间运动联系属内联系传动链和电气反馈系统的联系。2.1.3 拉线机的总联系尺寸拉线机的全机外形尺寸,主机和收排线装置的外形尺寸及其相对位置尺寸见拉线机外形图。2.1.4拉线机的主要部件构造 主机齿轮箱齿轮箱分前后两室,前室装配塔轮塔形鼓轮及移动模座,采用塔形鼓轮结构,可使主机传动系统设计简化,移动模座在偏心机构蜗杆机构驱动下可沿塔轮轴线方向移动,在拉线过程中使线材在鼓轮表面移动,可提高拉线鼓轮的寿命。为防止冷却液与齿轮箱润滑液互混,在后室装有传动齿轮及润滑用的液压泵。 收排线装置收排线架主要由收线机构及排线机构组成,收线机构主要由电磁转差离合器及涨闸式收线轴等所组成。收线主力有主机通过尼龙平带穿入电磁转差离合器再经联轴器传至涨闸式收线轴。电磁转差离合器是一种转矩传送装置,它通过电场而将转矩由主动轴传至从动轴,离合器的主动轴与带轮相联,而从动轴通过联轴器与涨闸式收线轴相联。电磁转差离合器主要有两个旋转部分(如图2-1),由电枢和绕有励磁线圈的电磁极等组成,二者之间没有机械联接,而是被一个小的空气隙隔开,它们分别与主动轴及从动轴相联,当主动轴旋转时,励磁线圈中没有励磁电流,从动轴不旋转,接通励磁线圈内电流后,由于历次部分有磁极,因而沿磁极部分发圆周上建立的空间交流磁场,电枢因切割磁力线而产生感应电动势,并感应涡流,涡流同磁通相互作用,便产生磁力矩,在它的作用下,从动轴开始与主动轴同向旋转。在收线中由于线的张力增加,而信号反馈传入转差离合器,使收线盘转速下降,保持拉线中张力恒定。图 2-1 电磁转差离合器1、4-磁极 2-励磁线圈 3-外电枢排线机构由带排线机构及行星轮减速箱等组成,图22为排线机构简图。排线动力由主机通过尼龙平带经过行星齿轮加速箱,又将运动传入排线的平带,带始终按一定方向旋转,当直流电磁铁通电后,通过滑块的作用,交替地夹紧再皮带上侧或下侧,从而使直流电磁铁的滑块作用,交替地夹紧再皮带上侧或下侧,从而使直流电磁铁的滑块作往复运动,直流电磁铁又与排线器导杆连接,这样,排线器可作往复直线运动。图 2-2 带排线机构1、3-带轮 2-行星齿轮箱 4-平带 5-直流电磁铁 6-导杆 7-排线器2.2 主要技术参数的确定2.2.1拉线机主要参数的确定据设计任务书,已知定速轮直径200mm,拉伸最多道数 k=17,进线头数为单数。配模计算(1) 确定拉伸道次:k=17(2) 确定滑动系数 in根据资料1,取平均滑动系数 I=1.05选取 ik =i17 =1.015滑动系数公比 q = ( i / ik )2/k-2 (2-94)1得 q = ( 1.05/1.015)2/17-2 = 1.005由1中公式(2-93) In = Ikq(k-n)求各滑动系数如表2-1,拉线机滑动系数i2i3i4i5i6i7i8i9i17q15i17q14inq13inq12inq11inq10inq9inq81.0941.0881.0831.0781.0721.0671.0621.056i10i11i12i13i14i15i16i17i17q7i17q6i17q5i17q4i17q3i17q2i17q1i17q01.0511.0461.0411.0351.031.0251.021.015类比同类型小拉线机,选取中间拉线鼓轮的速比为1、20最后两鼓轮速比r17=1.15。由公式r= r2r3r4 rnrk (2-83)1得总速比r= r2r3r4 rnr17=1.201.15=17.72(3) 确定伸长系数 n由公式 n = inrn (1-14)1求伸长系数,如表 2-2。(4) 确定拉伸模具模孔直径 dn由公式 dn-1 = dnn 1/2 (1-24)1求伸长系数,如表 2-3。(5) 确定拉线鼓轮上线材速度 vn由公式 vn = vk(Sk/ Sn) (1-26)1求伸长系数,如表 2-4。其中Sn 拉伸前线材截面积,Sk 为拉伸后线材截面积。表 2-2 伸长系数23456789i2r2i3r3i4r4i5r5i6r6i7r7i8r8i9r91.3131.3061.301.2941.2861.2801.2741.2671011121314151617i10r10i11r11i12r12i13r13i14r14i15r15i16r16i17r171.2611.2551.2491.2421.2361.2301.2241.167(6) 确定拉线鼓轮圆周速度vn 由公式 vn = vk/( rn+1rn+2rk) (2-12)1求得 见表2-5表2-3 模孔直径d1d2d3d4d5d6d221/2d331/2d441/2d551/2d661/2d771/22.5552.2301.9511.7111.5641.3260.7680.6700.5860.5140.4520.399d7d8d9d10d11d12d881/2d991/2d10101/2d11111/2d12121/2d13131/21.1721.0380.9220.8210.7330.6560.3530.3130.2780.2480.2210.198d13d14d15d16d17d14141/2d15151/2d16161/2d17171/2d170.5890.5300.4780.4320.4000.1780.1600.1440.1300.120 注:第一行为d17 = 0.4mm时线材速度; 第二行为d17 = 0.12mm时线材速度。(7) 线材的滑动率 Rn 由公式Rn= 100%,(n=1,2,k-1) (2-84)1见表 2-6(8) 排线节距排线节距按公式:=1 (6-11)10式中-排线节距(mm)-行星齿轮减速箱的速比-电磁滑差离合器速比,-主动带轮直径(mm),mm-从动带轮直径(mm),mm-主动齿轮齿数,表2-4 线材速度 单位 m/s1234560.7350.9651.2611.6402.1222.7300.7320.9621.2581.6352.1142.7147891011123.4954.4555.6477.1218.93411.3863.4674.4105.5907.0248.84511.019131415161713.83617.08821.08825.7203013.63516.87520.83325.56230注:第一行为d17=0.4mm 时线材的速度、 第二行为d17=0.12mm 时线材的速度。表 2-5 拉线鼓轮的圆周速度 单位m/sv1v2v3v4v5v61.6932.0322.4382.9263.5114.213v7v8v9v10v11v125.0566.0677.2808.73610.48412.581v13v14v15v16v17v1715.0918.11621.1733030 -从动齿轮齿数,-带排线器带轮直径(mm),mm。则mm验算拉伸道数本设计为不等伸长系数,用公式 (6-12)9因而本设计中选用的符合要求。表 2-6 滑动率表R1R2R3R4R5R656.76%52.66%48.44%44.12%39.79%35.58%R7R8R9R10R11R1231.43%27.31%23.21%19.60%15.63%12.42%R13R14R15R163.68%6.85%4.17%2.01%定拉线机塔轮直径及塔轮轴转速范围。由任务书知,定速轮直径mm。塔轮最大直径与定速轮直径相同,其余各鼓轮按速比1.20逐级递减。mmmm据以上确定的各拉线鼓轮的直径,以及给顶的出现速度范围计算计算各塔轮轴的转速范围出线速度范围:1525(30) 定速轮直径:由公式 (2-9)1 得 定速轮转速范围: 第、鼓轮轴转速相同: 表2-7 200/17 拉线机鼓轮轴转速 单位转速定轴转速579.65579.652492.382492.382866.24259.82259.821246.191246.191433.12本机无变速箱,只依靠电机的无级调节实现转速要求。2.2.2 电动机的确定功率采用类比法 (2-12)9电磁调速电动机型号: 因此,出线速度可无级调节,调速范围在 之间。第3章 拉线机传动系统设计3.1拉线机传动路线拉线机传动系统图,如图3-1所示图 3-1 小型高效拉线机/17拉线机传动系统图1-V带 2、3-平带 4-电磁离合器 5-电磁铁主电动机采用电磁调速电动机,因此出线速度可以无级调节,调速范围在 1530 m/s之间。由主电动机,经过带传动,转动轴,在轴分两条传动路线。一条传动路线是:当齿轮副25/45啮合时,转动轴,同时第二鼓轮旋转,当齿轮副45/49及49/45啮合时,转动轴、第一鼓轮旋转;另一条传动路线:当齿轮副55/23啮合时,转动轴,同时第三鼓轮旋转,当齿轮副45/49及49/45啮合时,转动轴、,第四鼓轮旋转。收线装置的收线盘的转动,由主机通过尼龙平带,转动轴,将运动传入电磁滑差离合器,以面带动收线盘旋转。排线的动力,由主机通过尼龙平带,经行星齿轮箱,传动带排线器,以达到均匀往复的排线。传动路线:主传动路线如图 3-2,收线装置传动路线如图 3-3。3.2 拉线机传动计算3.2.1 各拉线鼓轮转速计算按1中公式 (2-10) 图 3-2 主传动路线图图 3-3 收线装置传动路线第一鼓轮 第二鼓轮 第三鼓轮 第四鼓轮 定速轮 满足设计任务中鼓轮转速范围的要求。3.2.2 拉线机出线速度按1中公式(2-121) 计算 满足设计任务中的最高出线速度 303.2.3 各道拉线鼓轮速比按1中公式(2-121) 计算 第二至第八拉线鼓轮速比第九拉线鼓轮速比 第十至第十六拉线鼓轮速比第十七拉线鼓轮速比 3.3 拉线机传动件设计及计算3.3.1 V型带的选用计算传动要求:传动的名义功率为 电极轴转速为 ,又有定速轮转速要求及传动联系,求出轴转速 。计算功率 由1表 13-8 ,查得因为 选取普通V型带型号据 ,由图13-15 确定选取c型带小带轮基准直径及大带轮基准直径,由表(13-9) 取 ,由1中式(13-9)得取 验算 则 验算带速 v 在525 范围内,带速合适。v带内周长和中心距初选 符合 由1式(13-2) 得带长: 由1表 13-2 选取 再由1中式 (13-16) 计算实际中心距小带轮包角 满足要求。v带根数z由9式 (13-15) 得 查9表 13-4 得 查9表 13-5 得 查9表 13-6 得 因为 查9表 得 ,查9表 得 采用棉帘布强力层普通V带,取 因为 根作用在带轮上的力Q由9式 (13-17) 得单根V带的预拉力由9表 13-1 得 ,则 作用在轴上的拉力 带轮的机构设计带轮选用HT150的辅板式结构,具体参数的确定参照6表 13-103.3.2 传动的设计计算及校核为使齿轮在传动中具有一定的承载能力,且传动平稳,采用斜齿轮。根据各轴的转动要求 初定:25,以第V轴上小齿轮(23齿)为例设计确定法面模书和螺旋角 选择材料及确定许用应力因要求结构紧凑,故采用硬齿面结合:大,小齿轮均采用,渗碳淬火,HRC56由 (图 11-10d) ( 4表11-5 )则 由 (图 11-7d) (4表11-5),则 按齿轮弯曲强度设计计算齿轮按7级精度制造,取载荷系数 (表11-3),齿宽系数,小齿轮上的转矩 初选螺旋角齿数取,由2图11-9得齿数系数因,故得代入式(11-15)计算: 取中心距 确定螺旋角 齿宽取整 验算齿面接触强度将各参数带入5式 (11-12) 得: =2.4 所以安全。 验算圆周速度选用7级精度合适因斜齿轮的正确啮合条件是:法面模数相等,螺旋角相等,压力角相等,所以各齿轮的法面模数,螺旋角:=4,=各齿轮均采用12Cr渗碳淬火1+Rc=56齿轮分度因直径,见表3-1表3-1 各齿数分度圆直径Z23253945495562d97.308105.769165.0190.385207.308232.692262.308各齿轮在各轴上的位置详见传动系统图 3-1。3.3.3 轴的设计计算及校核 轴的设计计算根据公式(14-2) 计算轴径式中-许用扭转剪应力见表14-2 -轴的传递功率 -轴的转速 是常数,可查表14-2在本设计中c=110当剖面上有键槽时,应增大轴径,以考虑键槽对轴的强度的削弱。一般应有一个键槽时,轴径增大3%左右;有两个键槽时,应增大7%左右,然后圆整标准值。 轴:考虑到轴上有键槽及其他因素,选轴最小轴径 轴:取 轴:取经过计算,为使加工安装方便,也便于各零件间的转换,将各鼓轮轴及轴轴径定位,其余各传动轴的轴径为,详见表3-2表 3-2 传动系统各轴初选直径轴轴轴轴轴轴轴轴轴 轴的材料据表14-2选取轴的材料为,热处理方式为调质,硬度为210230 轴的校核外载荷及支反力的作用位置在轴上已经确定,这是按弯曲扭合成强度校核,选取受载荷大的典型V轴校核。V轴的受力分析见图 3-4已知 水平面的支反力 (图 3-4 b) 垂直面内的支反力 (见图 3-4 c) 绘水平面内的弯矩图 (图 3-4 d)图 3-4 轴的受力分析 绘垂直面的弯矩图 (图 3-4 e) 合成弯矩图 (图 3-4 f) 扭矩图 (图 3-4 g) 求危险截面的当量弯矩由图 3-4 可知,处为最危险截面,其当量弯矩为:轴的扭切应力是脉动循环变应力,取折合系数 代入:用当量弯矩法校核危险截面: 安全!3.3.4 关于鼓轮从目前国内外单头小型拉线机的使用情况看,单头拉线一般都是滑动式的,其鼓轮形状有串列式等径轮的,也有塔轮形式的。等径轮在前一阶段出现的高速拉线机上起到了很大的作用。因为等径轮与线材直径比值较大,所以线材在鼓轮的弯曲半径较大,线材不会因为弯曲裂口而产生断线,但是等径轮有结构尺寸较大、传动系统复杂以及占地面积大等缺点。而塔轮形式则与其不同,由于塔轮是在同一传动轴上串列各个不同直径的鼓轮,所以结构尺寸较小,传动系统简单。综合上述情况,根据本机生产规范以及国内外同类产品鼓轮结构,选用整体式塔轮结构。塔轮材料为Cr12,因Cr12在渗碳淬火后有较高的硬度和耐磨性,耐腐蚀性,而且抛光后,光洁度相当高。塔轮鼓轮其形状为塔轮形状,拉线鼓轮为整体结构,当鼓轮磨损而不能使用时,其鼓轮不能修复,只有更换新的拉线鼓轮。组合式塔形鼓轮,鼓轮劝套在鼓轮体上,并用两侧压板隔紧。组合式鼓轮在因轮圈磨损而不能正常拉线时,可以更换鼓轮圈,减少停机时间,并使设备维护费降低,有利于提高线材的表面质量,其缺点是制造工艺复杂。轮圈材料用0.8mm厚的T8、T10 冷扎簧钢带包在鼓轮体上,鼓轮体采用45号钢。有些轮圈材料用Cr12,经淬火后回火硬度HRc6065,表面镀硬铬抛光。这种结构用在中型及大型拉线机上。3.3.5 轴承的选择经计算,本机所选用的轴承间表 3-33.3.6 蜗轮蜗杆的选择按设计需要计算,蜗杆以蜗杆的形式存在,蜗杆头数Z=1,模数ms = 2.5,蜗轮齿数 Z=47, 模数m = 2。53.3.7 键的选择键选用普通平键A型,公称尺寸由所在的轴径决定见资料2中表 7-4其他连接件从略。表 3-3 轴承一览表序号安装装置数量类型型号规格(dDB)1拉线机17单列向心推力球轴承2094585192拉线机12084080183拉线机22031740124拉线机2100102685拉线机1101122886拉线机2单列向心短圆柱滚子轴承122094585197收排线架2含油轴承2532508收排线架2单列向心球轴承1771969收排线架21011228810收排线架2117851302211收排线架21011228812收排线架220525521513行星齿轮箱41011228814行星齿轮箱11021528815行星齿轮箱410317351016行星齿轮箱310735621417行星齿轮箱220840681518放线架120215351119放线立柱21021532920张力装置110112288第4章 拉线机的冷却与润滑及在金属线材拉伸过程中,由于线材和拉线模壁发生摩擦产生大量的热,使被拉伸金属线材有可能与拉线模孔壁产生黏结现象,从而破坏拉伸过程,造成拉伸力急剧增加,严重时会使线材拉断。为此,必须在被拉金属线材与模孔间注入冷却润滑液。主要作用:延长模具及拉伸鼓轮寿命。4.1 拉伸时冷却与润滑的作用在被拉金属线材与模孔之间,保持一层润滑膜,避免模具与金属线材直接接触,减少摩擦,使金属沿受力方向均变形,减少能量消耗与拉伸道数,延长模具及拉线鼓轮寿命。使用适当的冷却润滑油,可以使变形产生的热量迅速发散,降低金属线材与模孔的温度,防止线材温度过高氧化变色,降低被拉金属与模孔之间的摩擦系数,提高拉线速度和消除黏结现象。在金属拉伸过程中,不断产生细微的金属微尘,冷却润滑液不断冲洗模孔,起消除金属微尘的作用。常用的润滑剂有固态润滑剂,半固态润滑剂,液态矿物润滑油,动植物油,乳化液润滑剂等。4.1.1 滑动式拉线机冷却润滑装置喷射式 用管子将带有压力(2-3)105 Pa 的冷却润滑油,直接喷射到拉线机鼓轮的线材上和模座内,大部分热量在冷却液排除时被带走,所以目前在高速拉线机上都采用喷射式冷却。模架的润滑:在喷射冷却的拉线机上,冷却润滑液从模具架底槽流道输入,在穿模时可以将喷射管关闭,这样可以保证工作场地的清洁,改变了以往在穿模时由于冷却液飞溅而影响操作环境整洁的情况。浸入式(水箱式)冷却,将拉线鼓轮与模座全部浸在冷却液中,使线材和鼓轮充分冷却,在停车穿线时,需将冷却液快速放出。设计这种冷却装置时,必须设计夹层,以防冷却润滑液流入主机变速箱内,使变速箱的润滑油变质。这种方法的不足之处使:由于鼓轮液浸在冷却液中,起表面容易被腐蚀,同时整个鼓轮也在冷却中旋转,发生摩擦而损失功率。另外,摩擦加速了冷却润滑液的发热,从而降低了它的冷却润滑作用。此外冷却液存在机器内,热量不易很快发散,虽然有回水管,但整个设备还是温度较高。4.1.2 拉线机冷却润滑液量的计算滑动式拉线机的冷却润滑液的计算通常拉线润滑液的温度在40-50度之间较为合适,要合理的设计冷却设备,需首先确定拉线机所需的最大冷却润滑液量。这是冷却管设计的依据。冷却液量随不同的设备而定,它与拉线机的功率有一定的比例。拉线机冷却润滑液量为每千瓦输出功率,在每分钟6L比较合适。冷却液箱的容积在设计时应取量大的冷却用量的8-10倍。所以冷却用量及冷却润滑油箱的容积应该按下计算: Vm=PWp (6-34)8式中 Vm 拉线机每分钟冷却润滑液用量(L);P -拉线机实际功率(KW);Wp 拉线机每千瓦功率所需要的冷却液用量,取Wp = 6L/KW冷却液润滑箱的容积:v = (8-10) Vm4.2模架的润滑与冷却在喷射冷却的拉线机上,其模具架冷却润滑液从模具底模流道输入,在穿模时可将喷射管关闭,这样可保证工作场地清洁。4.3 齿轮的润滑本机为闭式齿轮传动,由于 而采用喷油润滑,润滑液为20号机油,用油泵将润滑液直接喷到啮合区。4.4 轴系采用脂润滑第5章 安装维护,保养和使用说明5.1 安装根据机器外形图和装配图进行安装,校正水平,灌注混凝土清理,机器各部按润滑规定加注新油,即可空运转试车。5.2 维护保养设备使用前后者用过两个月后(每天两班),所有运动部件都采用煤油清洗,然后注入新油;齿轮箱内油面指示器应保持清洁,并注意油箱内油液面的正常位置。轴系温度超过60度或产生噪音时,应及时检查进行修理或更换。5.3 使用说明使用前,根据配模表选用拉线模系列。设备使用时,先将成盘金属线置于放线位置,并将放线架置于其上,在拉出线头拔尖后,依次穿入拉线模内,根据传动系统图放入模架。在每个拉线鼓轮上缠绕一周半左右,线从最后一道拉线模拉出后,经定速轮,分线导轮,摆杆张力轮,排线轮,最后饶到收线盘上,检查无误即可拉线。拉线速度可通过调整电位器由低速向高速方向调整,达到某一给定速度,第二次开车时,不必再次调整。脚踏开关可做点动穿模操作,就绪后则按启动按扭即拉线,此时脚踏开关已自动转换成紧急停车开关。设由断线自动停机装置。满盘停车后,手动送开涨闸式收线轴,使线盘在轴行松开,然后取下线盘即可。结论历时三个多月的毕业设计已经接近尾声了,在设计的过程中,通过对整个过程的研究设计分析,确定小型高效拉线机拉线机的CAD设计。通过本次设计培养了我综合运用科学知识的能力,利用所学知识解决时间问题的能力,明白了怎样查阅文献资料和使用工具手册,通过计算机绘图,提高了计算机绘图的能力和速度。此次设计是我真正工作前的一次真实演练,为今后更好的学习、工作奠定了坚实的基础。我们的这次毕业设计是分小组进行的,这让我们懂的了如何与合作伙伴们分配设计任务,如何协调各自的任务,培养了我们的团队合作精神,为我们的以后的工作积累了一些宝贵的经验,这些知识是必须亲生经历后才能体会到的,所以这次的毕业设计不仅是使我们的专业知识得到丰富和提炼,也锻炼了我们的其他方面的能力。这次毕业设计虽然是我们在大学学习的最后一站,但它却决不是可有可无的,这次毕业设计不管是对以后的工作还是继续的学习都是非常重要的。由于设计者水平及实践经验所限,错误和不足之处再所难免,敬请老师和同学们批评指正。致谢这次毕业设计是对自己四年多来所学知识的一次综合性的检查,通过设计,锻炼了多动脑、多动手、多方面考虑问题的能力,收益很多,对以后的实际工作有很大帮助作用。在设计过程中,由于资料的缺乏,自己水平和经验有限,遇到了许多困难。我要特别感谢我的指导老师孙全颖老师,在孙老师严格要求和指导帮助下,我才能顺利的完成此次设计任务,并学到许多知识。这次毕业设计是具有实际意义的训练,感谢学校,机械动力工程学院给我们的锻炼机会,感谢机械学院以及其他老师四年来给予我的教导帮助。参考文献1 张云廉.电线电缆机械设备. 机械工业出版社,1992:13136 2 蔡春源.新编机械设计手册. 辽宁科学技术出版社,1993:23833 杨可桢,程光蕴.机械设计基础. 高等教育出版社,1989:651194 手册编写组.机械设计师手册. 机械工业出版社,1989:45875 赵九江,张少实,王春香.材料力学. 哈尔滨工业大学出版社,2002:661676 大连理工大学工程画教研室.机械制图. 高等教育出版社,2002:642347 孙玉芹,孟兆新.互换性与测量技术基础. 科学出版社.2004:591018 邱宣怀.机械设计(第四版). 高等教育出版社,2002:723239 刘仁.电线电缆. 高等教育出版社.1994:5417310 郑文纬,吴克坚.机械原理. 高等教育出版社,1996:10226511 Great Britain. Bearings, Gears, Gearing & Driving Elements. The Stationary Office Books (Agencies),2001:23724412 Ivan Law.Gears and Gear Cutting. Argus Books,1998:4547附 录GEARSGears transmit power and motion between moving pasts. Positive transmission of power is accomplished by projections or teeth on the circumference of the gear . There is no slippage as with friction and belt drives , a feature most machinery requires ,because exact speed ratios are essential .Friction drives are used in industry ,where high speeds and light loads are required and where loads subject to impact are transmitted.When the teeth are built up on the circumference of two rolling disks in contact, recesses must be Provided between the teeth are developed is known as the pitch circle .It is an imaginary circle with the same diameter as a disk that would cause the same relative motion as the gear. All gear design calculations are based on the diameter of the pitch circle. A portion of a gear is shown in Figure 22.13.Gear NomenclatureThe system of gearing used in the United States is known as the involutes system, because the profile of a gear tooth is principally an involutes curve. An involutes is a curve generated on the circle, the normal of which are all tangent to this circle. The method of generating involutes is shown in Figure 22.14. Assume that a string having a pencil on its end is wrapped around a cylinder. The curve described by pencil as the string is unwound is an involutes, and the cylinder on which it is wound is known as the base circle. The portion of the gear tooth from the base at point a in the figure to the outside diameter at point c is an involutes curve and is the portion that contacts other teeth. From point b topoint the profile of the base circle on which the involutes is described is inside the pitch circle and is dependent on the angle of thrust of the dear teeth. The relationship existing between the diameter of the pitch circle, D, is Db = Dcos where Db = diameter of base circle =Angle of thrust between gear tooth.The two common systems have their thrust angles or lines of action at 141/ and .Figure 22.13 Nomencla ture for Involute spur gearOther angles are possible, but with larger angles the radial force component tending to force the gears apart becomes greater. If a common tangent is drawn to the pitch circles of two meshing gears. The base circle on which the involutes are drawn are tangent to the line of action. Most gears transmitting power use the 200, full-deep, involutes tooth form. These gears have the same tooth proportion as the 141/20 fulldepth involutes but are stronger at their base because of greater thickness. The 200, fine pitch involutes gears are-similar to the regular 200 involutes and are made in sizes ranging from 20 to 200 diametral pitch. These gears are used primarily for transmitting motion rather the power. The 200 stub tooth gear has smaller tooth depth than the 200. Full depth gear and is consequently stronger. Involutes gears fulfill all laws of gearing and have the advantage over some other curves in that the contact action is affected by slight variation of gear center distance.Figure 22.14 Mothod of genera an Involute tooth surfaceThe nomenclature of a gear tooth is illustrated in Figure 22.13. the principal definitions and tooth parts for standard 141/20 and 200 involutes gears are discussed here.The addendum of a tooth is the radial distance from the pitch circle to the outside diameter of addendum circle. Numerically, it is equal to 1 divided by the diametral pitch P.The addendum is the radial distance from the pitch circle to the root or addendum circle. It is equal to the addendum plus the tooth clearance.Tooth thickness is the thickness of the tooth measure on the pitch circle. For cut gears the tooth thickness and tooth space are equal. Cast gears are provided with some backlash, the difference between the tooth thickness and tooth space measured on the pitch circle.The face of a gear tooth is that surface lying between the pitch circle and the addendum circle.The flank of a gear tooth is that surface lying between the pitch circle and the root circle.Clearance is a small distance provided so that the top of a meshing tooth will not touch the bottom land of the other gear as it passes the line of centers.Table 22.2gives the proportions of standard 141/200 involutes gears expressed in term of diametral pitch P and number of teeth N.Table 22.2 American Gear Manufactures Association Standard for Involute GearingPitch of Gears The circuit pitch p is the distance from a point on one tooth to the corresponding point on an adjacent tooth, and is measured on the pitch circle. Expressed as an equation.Metrical gearing is based on the module(mod) instead of the diametral pitch p, as in the English system. The basic metric module formula is mod =D/N=amount of pitch diameter per tooth =millimeters per tooth measured on the pitch diameter. Also, mod=1/p is expressed in millimeters. Also, mod p=25.4. P = D/N where D = diameter of the pitch circle N = number of teethThe diametral pitch p, often referred to as the pitch of a gear is the ratio of the number of teeth to the pitch diameter. It may be expressed by the following equation: P = N/DUpon multiplying these two equations the following relationship between circular and diametral pitch results.Hence,knowing the value of either pitch we may obtail the other by dividing into .Gears and gear cutters are standardized according to diametral pitch. This pitch can be expressed in even figures or fractions. Circular pitch, being an actual distance, it is expressed in inches and fractions of an inch. A 6-inth gear (6diametral pitch) is one that has 6teeth per inch of pitch diameter . If the pitch diameter is 3 inch, the number of teeth is 3 x 6 or 18.The outside diameter of the gear is equal to the pitch diameter plus twice the addendum distance or 3 in.+2 x 1/6,which is 3.333in.Any involutes gear of a given diametral pitch will mesh properly with a gear of any other size of the same diametral pitch. However, in cutting gears of various diameters a slight difference in the cutter is necessary to allow for the change in curvature of the involutes as the diameter increases. The extreme case would be a rack tooth ,which would have a straight line as the theoretical tooth profile. For practical reasons the number of teeth in an involutes gear should not be less than 12.Gear speedThe speeds in rooms ,s and S, of two meshing gears vary inversely with both the pitch diameter and the number of teeth .This may be expressed as follows:Figure 22.15 Nomenclature for meshing gear and pinons/S = D/d =T/twhere Dand d represent pitch diameter as included as indicated in Figure 22.15.T and t represent number of teeth on the gear and pinion.Center distance : L = (D+d)/2The speed ratio for a worm gear set depends on the number of teeth on the gear and the lead of the worm. For a single=threaded worm the ratio is Rpm worm/rpm gear = T/tKinds of gearsThe gears most commonly used are those that transmission power between two parallel shafts. Such gears having their tooth elements parallel to the ratating shafts are known as spur gears, the smaller of the two being known as a pinion (Figure 22.15).If the elements of the teeth are twisted or helical,as known in figure 22.16B,they are known as helical gears. These gears amay be for connecting shafts that are at an angle in the same or different planes. Helical gears are smooth acting because there is always more than one tooth in contact. Some power is lost because of end thrust, and provision must be made to compensate for this thrust in the bearings. The herringbone gear is equivalent to two helical gears, one having right-hand and the other a left-hand helix.Figre 22.17 All elements of straight bevel converge at the one opex of the gearsUsually, when two shafts are in the same plane but at an angle with one another, a bevel gear is used. Such a gear is similar in appearance to the frustum of a cone having all the elements of the teeth intersecting at a point, as shown in Figure 22.17. Bevel gears are made with either straight or spiral teeth. When the shafts are at right angles and the two bevel gears are the same size, they are known as miter gears (figure 22.16A). Hypoid gears, an interesting modification of bevel gears shown as Figure 22.16F, have their shaft at right angles by they do not intersect as do the shaft for bevel gears. Correct teeth for these gears are difficult to construct, although a generating process has been developed that produces satisfactory teeth. Zero gears (Figure 22.16D)have curved teeth but have a zero helical angle. They are produced on machines that cut spiral bevels and hypoids. Worm gearing is used where a large speed reduction is desired. The small driving gear is called a worm and the driving gear is called a worm and the driven gear a wheel. The worm resembles a large screw and is set in close to the wheel circumference, the teeth of the wheel being curving to conform to the diameter of the worm. The shafts for such gears are at right angles but not in the same plane. These gears are similar to helical gears in their application, but differ considerably in appearance and method of manufacture. A worm gear set is shown in Figure 22.16C.Rack gears, which are straight and have no curvature, represent a gear of infinite radius and are used in feeding mechanisms and for reciprocating. They may have either straight or helical teeth. If the rack is bent in the form of a circle, it becomes a bevel gear having a cone apex angle of 180known as crown gear. the teeth all converge at the center of the disk and mesh properly with a bevel gear of the same pitch. A gear with internal teeth, known as an annular gear, can be cut to mesh with either a spur or bevel gear, depending on whether the shafts are parallel or intersecting.Methods of Making GearsMost gears are produced by some machining process. Accurate machine work is essential for high-speed, long-wearing, quite-operating gears. Die and investment casting of gears has proved satisfactory, but the materials are limited to low-temperature-melting metals and alloys. Consequently, these gears do not have the wearing qualities of heat-treated steel gears. Stamping though reasonably accurate, can be used only in making thin gears from sheet metal.Commercial methods employed in producing gears are summarized as follows:A: Casting 1.sand casting 2.Die casting 3.Precision and investment castingB: StampingC: Machining 1.Formed-tooth process a. From cutter in milling machine b. From cutter in broaching machine c. From cutter in shaper 2.Template process 3.Cutter generating process a. cutter gear b. Hobbing c. Rotary cutter d. Reciprocating cutters simulating a rackD: Power metallurgyE: Extruding F: Rolling G: GrindingH: Plastic moldingForm Tooth ProcessA formed milling cutter, as shown in Figure22.18,is commonly used for cutting a spur gear. Such a cutter used on a milling machine is formed according to the shape of the tooth space to de removed. Theoretically, there should be a different-shape cutter for each size gear of a given pitch as there is a slight change in the curvature of the involutes. However, one cutter can be used for several gears having different numbers of teeth without much sacrifice in their operation. Each pitch cutter is made in eight slightly varying shapes to compensate for this change.They vary from no.1, which is used to cut gears from 135 teeth to a rack, to no.8, which cuts gears having 12 or 13 teeth. The eight standard involutes cutters are listed in Table 22.3.Setup of a milling machine to cut spur gears are illustrated in Figure 22.18. A discussion of this process is given the chapter on milling is an accurate process for cutting spur, helical, and worm gears. Although sometimes used for bevel gears, the process is not accurate because of the gradual change in tooth thickness. When used for bevel gears at least two cuts are necessary for each tooth space. The usual practice is to take one center cut of proper depth and about equal to the space at the small end of the tooth. Two shaving cuts are then on each side of the tooth space to give the tooth its proper shape.Figure 22.18 Setup for cutting a spir gear on a milling machineTable 22.3 Standard Involute cuttersNo.1135 teeth to a rackNo.255 to 134 teethNo.335 to 54 teethNo.426 to 34 teethNo.521 to 25 teethNo.617 to 20 teethNo.714 to 16 teethNo.812 to 13 teethThe formed-tooth principle may also be utilized in a broaching machine by making the broaching tool conform to the teeth space. Small internal gears can be completely cut in one pass by having a round broaching tool made with the same number of cutters as the gear has teeth. Broaching tool is limited to large-scale production because of the cost of cutters.齿轮运动部件之间的能量和运动由齿轮来传递。主运动的能量由齿轮四周的凸台或齿相啮合来传递。由于摩擦和带传动,齿轮之间的传递无滑移。因为传递需要准确的速度,摩擦传动被广泛应用于工业,如高速,轻载以及载荷连续的地方。为了保持两个相啮合的齿轮以及消除干涉,两个相啮合齿轮之间应该留有一点的间隙。向上延伸就是众所周知的节圆。节圆是个假想的圆,载以此为半径的圆上可以实现齿轮相啮合。因此所有的齿轮的设计计算建立载节圆之上的。齿轮的部分如图 2.2.13所示。齿轮专业术语由于齿轮的轮廓为渐开线,所以载美国齿轮系统称之为渐开线系统。渐开线是一条产生于圆且所有的曲线垂直圆的曲线。渐开线的产生方法如图22.14 所示。假设一个旋转的铅笔的一端饶在一个圆柱上,随着铅笔的旋转,未被破坏的曲线即为渐开线,而被破坏的为基圆。从如图所示的基圆上的a点到外圆上的c点为渐开线曲线的一部分,在这部分上齿轮相啮合。从b点到a点以及到根圆的倒角部分为一段射线。渐开线的基圆在节圆的内部,同时基圆的位置决定了齿轮的压力角。节圆和基圆直径之间有如下关系:Db = Dcos(Db为基圆的直径,为齿轮的压力角)。现在广泛运用的两个压力角(或作用线)为140/2和20,其他的角度也是可能的,但是跟随角度的变大。如果对于两个相啮合的节圆的线相切,压力角(或作用线)以140/2为好,这时在基圆上所有的渐开线与作用线相切。大多数传递动力的齿轮使用压力角为20,全切深的渐开线齿轮。20渐开线齿轮和140/2的渐开线齿轮具有相同的齿部分,但由于20的基圆上有较厚的齿,因而强度更高。如同标准的20齿轮一样,20精切节圆渐
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:小型高效拉线机结构设计【6张CAD图纸】
链接地址:https://www.renrendoc.com/paper/116951215.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!