《第十三章实数》备课稿_第1页
《第十三章实数》备课稿_第2页
《第十三章实数》备课稿_第3页
《第十三章实数》备课稿_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十三章 实数备课稿河南师大实验中学数学组 张宝兵一、 教学目标1经历无理数发现的过程,了解无理数的概念和意义。2了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根;能用平方运算与立方运算求某些数的平方根与立方根;会用计算器求平方根和立方根,并能探索一些有趣的数学规律。3能用有理数估计一个无理数的大致范围,包括通过估算比较大小,检验计算结果的合理性等等。4、实数与数轴上的点具有一一对应的关系,了解有理数的运算法则与运算律对实数仍然适用。5能对带根号的数进行化简,并能利用化简进行有关实数的简单四则运算。6能运用实数的运算解决简单的实际问题。二、教学重难点重点:了解算术平方根、平

2、方根、立方根的意义,勾股定理及逆定理。难点:算术平方根、平方根、立方根的区别与联系,无理数和实数的概念。三、教学分析本章对概念的处理上,抓住主要概念,注重概念的形成过程,让学生在具体的活动中获得认识,增强理解;对内容的安排上,联系实际情境,导入新知识,注意前后知识间的对比,同时让学生在运用中促进对知识的理解和掌握。本章先通过具体的活动求面积为2的正方形的边长,提出问题:它可能是整数吗?它可能是分数吗?让学生亲身经历这些活动,在讨论中引起认知冲突,感知生活中确实存在不同与有理数的数,产生探求的欲望:它不是有理数,那它是什么数?再让学生进一步借助计算器充分探索,得出它是一个无限不循环小数,从而给出

3、无理数的概念。这与历史上无理数的产生和发展过程是一致的,符合人的认识规律,同时让学生体会到抽象的数学概念在现实世界中有其实际背景。无理数有很多,开方开不尽的数是其中的一种,也是我们计算中经常接触到的。教科书选取了一些生动的素材,引入平方根和立方根的概念和开方运算。由于在实际情境中的开平方运算结果取的都是算术平方根,而且正数有两个平方根与学生长期的经验不符,学生不易接受,因此教科书先引入算术平方根的概念,然后再引入一般的平方根的概念。在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值。教科书安排了一节内容:公园有多宽,介绍估算的方法,包括通过估算比较大小,检验结果的合理性等等,其目

4、的是发展学生的数感。当无理数的概念和表示形式为学生熟知以后,实数概念的引入就水到渠成了。本章最后总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。本章学习的重点是让学生真正理解无理数的引入的意义,了解实数的概念,掌握开方运算,解决与实数有关的实际问题。时四、课时建议 131、平方根 3课时132方根 2课时133实数 2课时回顾与总结 1课时共计8课时四、教学建议1注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念。概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的。概念的形成过程也是思维过程,加强概念形成过程的教学

5、,对提高学生的思维水平是很必要的。如无理数的引入,要让学生亲身经历活动,感受引入的必要性,初步认识无理数是无限不循环小数这一意义。在教学时,教师要鼓励学生动手、动脑、动口,与同伴进行合作,并充分地开展交流。再如,平方根的概念,对正数有两个平方根学生不太容易接受,往往丢掉负的平方根,因为这与他们以前的运算结果唯一的经验不符。对此,在平方根的引入时,教师可多提一些具体的问题。对于抽象的概念,教学时要把握住要求,尽量采用浅显、直观的描述性讲法,通过对后面知识的学习逐步加深对它们的认识。概念的掌握不是一次完成的,有的概念不可能一下子就要求学生达到较深刻的理解,教学时要把握好阶段性,不要超前。例如无理数概念,定义为“无限不循环小数”,在活动中学生能够体会“无限”,但对“不循环”不可能有清楚的认识,只能通过后面的理论分析来补充,这里只要求学生了解无理数的概念和意义,理解无限不循环小数是一类新数即可,教学时不必作另外的补充。再如实数的稠密性即实数与数轴上的点一一对应,不可能要求学生有深刻的理解,只能通过后继的学习逐步完成。2、注意运用类比的方法,使学生清楚新旧知识的区别和联系。类比法是本章的重要方法之一。最主要的就是类比于有理数建立起实数中的相反数和绝对值的概念。当然类比的对象间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论