齿轮箱-A3.PDF

快走丝电火花线切割机床设计[三维UG][24张CAD图纸+PDF图]

收藏

资源目录
跳过导航链接。
快走丝电火花线切割机床设计三维UG24张CAD图纸PDF图.zip
快走丝电火花线切割机床设计[三维UG][24张CAD图纸]
齿轮箱-A3.PDF---(点击预览)
齿轮箱-A3.dwg---(点击预览)
运丝装配顺--A0.PDF---(点击预览)
运丝装配顺--A0.dwg---(点击预览)
运丝装配-A0.PDF---(点击预览)
运丝装配-A0.dwg---(点击预览)
运丝底座-A1.PDF---(点击预览)
运丝底座-A1.dwg---(点击预览)
运丝传动组件.PDF---(点击预览)
运丝传动组件.dwg---(点击预览)
运丝主轴1-1-A3.PDF---(点击预览)
运丝主轴1-1-A3.dwg---(点击预览)
运丝丝筒组合-A3.PDF---(点击预览)
运丝丝筒组合-A3.dwg---(点击预览)
运丝丝筒1-2-A3.PDF---(点击预览)
运丝丝筒1-2-A3.dwg---(点击预览)
运丝丝杠.PDF---(点击预览)
运丝丝杠.dwg---(点击预览)
线架装配图.PDF---(点击预览)
线架装配图.dwg---(点击预览)
立柱.PDF---(点击预览)
立柱.dwg---(点击预览)
毕设论文.doc---(点击预览)
摘要目录.doc---(点击预览)
总装图.PDF---(点击预览)
总装图.dwg---(点击预览)
快走丝电火花线切割机床设计.doc---(点击预览)
工作台驱动组合.PDF---(点击预览)
工作台驱动组合.dwg---(点击预览)
工作台装配图-A0.PDF---(点击预览)
工作台装配图-A0.dwg---(点击预览)
小齿轮-A4.PDF---(点击预览)
小齿轮-A4.dwg---(点击预览)
导电组件.PDF---(点击预览)
导电组件.dwg---(点击预览)
大齿轮-A3.PDF---(点击预览)
大齿轮-A3.dwg---(点击预览)
双边导轮.PDF---(点击预览)
双边导轮.dwg---(点击预览)
升降丝杆.PDF---(点击预览)
升降丝杆.dwg---(点击预览)
中拖板-A1.PDF---(点击预览)
中拖板-A1.dwg---(点击预览)
丝杠.PDF---(点击预览)
丝杠.dwg---(点击预览)
下线架-A0.PDF---(点击预览)
下线架-A0.dwg---(点击预览)
上线架2-1-A1.PDF---(点击预览)
上线架2-1-A1.dwg---(点击预览)
上拖板-A1.PDF---(点击预览)
上拖板-A1.dwg---(点击预览)
0三维图 (5).png---(点击预览)
0三维图 (4).png---(点击预览)
0三维图 (3).png---(点击预览)
0三维图 (2).png---(点击预览)
0三维图 (1).png---(点击预览)
3D三维源文件打包.zip
外文翻译
压缩包内文档预览:
预览图
编号:118716501    类型:共享资源    大小:33.21MB    格式:ZIP    上传时间:2021-03-24 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
三维UG 24张CAD图纸+PDF图 快走 电火花 切割 机床 设计 三维 UG 24 CAD 图纸 PDF
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】

内容简介:
沈阳理工大学学士学位论文摘 要高速走丝电火花线切割机床是我国的发明创造,其结构简单、性价比高,己经成为我国制造业中不可或缺的加工手段。电火花线切割加工具有无切削力,工件材料硬度对可加工性影响不大等优点,因此能适合各种特殊性能的材料和各种复杂表面及微细、精密、薄壁以及低刚性零件,电火花线切割技术在脆硬材料的切削及加工领域中已经广泛应用。随着制造技术的提升,要求电火花线切割机床具有高精度、高效率。所以研究具有高附加值、应用性很强的CNC控制系统的电火花线切割机床,提高产品的市场竞争力势在必行。本文针对快走丝电火花线切割机床的设计进行了详细描述。通过对使用性能,工作原理的分析和了解,将其分成三个主要部分。先选取标准件和校核主要部件,再利用UG三维软件进行综合实体设计,CAD做最后的出图修改,完成快走丝电火花线切割机床的设计。关键词:电火花线切割;硬脆材料;机床设计;结构AbstractAfter lots of investigation of the internal and external methods on modeling of wire EDM process, the dissertation presents an attempt at modeling. WEDM has advantages of no cutting force and little effect on process ability, which caused by the workpiece materials hardness. Electric discharge wire-cutting technology has been used widely in the field of Tooling and Machining of Hard and brittle materials. As improving of manufacturing technology, high precession and efficiency of WEDM is needed. Therefore, study on the WEDM of high added value and strong applied CNC control system to improve the market competitiveness is imperative. In the focus of the high speed wire-cutting machine, the article have a detailed description for its design. Through the analysis and understanding of its performance and work principle, made it into three main sections. And select the standard parts and check the main components, then use UG three-dimensional software to comprehensive the physical design and CAD drawing software to final changes made to complete the design to the high speed wire-cutting machine.Key words: Electric discharge wire-cutting; Hard and brittle materials; Machine design; Structure目 录1绪论11.1电火花线切割技术的发展11.1.1 国外切割设备发展过程及现状11.1.2 我国切割设备的现状51.2 线切割加工技术的发展方向及意义71.2.1 基于PC的数控系统的开发71.2.2 人工智能(AI)技术的运用81.2.3 机床设计的改善91.2.4 多次切割工艺的应用101.2.5 结论和展望112电火花线切割技术内容及研究122.1电火花线切割加工原理122.1.1 电火花线切割正常加工必须具备的条件122.1.2 电火花线切割加工的特点132.1.3 电火花线切割的应用范围132.2电火花线切割加工机床的特点142.2.1电火花线切割加工机床的分类142.2.2 电火花线切割加工机床的基本组成143UG软件介绍163.1UG的主要技术特点163.1.1 集成的产品开发环境163.1.2 全局相关性163.1.3 并行协同工作173.1.4 满足客户需要的开放式环境173.2UG的主要应用模块173.2.1 Gateway(基本环境)183.2.2 Modeling(建模)183.2.3 Shape Sdutio(工业产品造型)183.2.4 Drafting(制图)183.2.5 Manufacturing(加工)183.2.6 Structures(结构分析)193.2.7 Moldflow Part Adviser(注塑模分析)193.2.8 Motion(运动分析)193.2.9 Sheet Metal(钣金设计)193.2.10 Routing (管道)203.2.11 Wire Harness(布线)203.2.12 Assemblies(装配)203.2.13 Knowledge Fusion(知识融接)203.3UG与Pro/e的比较204快走丝电火花线切割机床设计的方案确定245快走丝电火花线切割机的设计285.1快走丝电火花线切割机的结构285.2传动机构:295.2.1 储丝筒305.2.2 联轴器305.3导丝机构:305.3.1 导丝架305.3.2 导轮部件结构315.3.3 导轮运动组合件的结构325.4XY工作台326电火花线切割机床的主要参数计算336.1确定储丝筒基本尺寸336.2主电动机的选择336.2.1 选择要点336.2.2有关计算:346.3电动机联轴器的选择356.3.1 常用联轴器特点356.3.2 有关计算356.4丝杠的选择和计算366.4.1 确定丝杠的相关参数366.4.2 相关计算366.4.3 确定丝杠副代号386.5同步带及同步带轮的选择及计算386.5.1 选定同步带386.5.2 选定同步带轮396.6工作台的设计406.6.1 工作台选材406.6.2 相关计算406.7步进电机的选择416.7.1 与丝杠联接的电动机确定416.7.2 有关计算426.8工作台导轨的选择457工艺方案的经济分析497.1标准件费用497.2材料费517.3工资527.4总成本估算538结 论549参考文献5510致谢57附录A 英文原文58附录B 中文翻译74881 绪论1.1 电火花线切割技术的发展电火花线切割加工(wire cut Electrical Discharge Machining,简称WEDM)是线电极电火花加工的简称,是电火花加工的一种,有时又称线切割,属电加工范畴,是由前苏联拉扎林科夫妇研究开关触点受火花放电腐蚀损坏的现象和原因时,发现电火花的瞬时高温可以使局部的金属熔化、氧化而被腐蚀掉,从而开创和发明了电火花加工方法。线切割机也于1960年发明于前苏联,我国是第一个用于工业生产的国家。被切割的工件作为工件电极,钼丝作为工具电极,脉冲电源发出一连串的脉冲电压,加到工件电极和工具电极上。钼丝与工件之间施加足够的具有一定绝缘性能的工作液.当钼丝与工件的距离小到一定程度时,在脉冲电压的作用下,工作液被击穿,在钼丝与工件之间形成瞬间放电通道,产生瞬时高温,使金属局部熔化甚至汽化而被蚀除下来。若工作台带动工件不断进给,就能切割出所需要的形状。由于贮丝筒带动钼丝交替作正、反向的高速移动,所以钼丝基本上不被蚀除,可使用较长的时间。它主要用于加工各种形状复杂和精密细小的工件,例如冲裁模的凸模、凹模、凸凹模、固定板、卸料板等,成形刀具、样板、电火花成型加工用的金属电极,各种微细孔槽、窄缝、任意曲线等,具有加工余量小、加工精度高、生产周期短、制造成本低等突出优点,已在生产中获得广泛的应用,目前国内外的电火花线切割机床已占电加工机床总数的60以上。1960年,苏联首先研制出靠模线切割机床。中国于1961年也研制出类似的机床。早期的线切割机床采用电气靠模控制切割轨迹。当时由于切割速度低,制造靠模比较困难,仅用于在电子工业中加工其他加工方法难以解决的窄缝等。1966年,中国研制成功采用乳化液和快速走丝机构的高速走丝线切割机床,并相继采用了数字控制和光电跟踪控制技术。此后,随着脉冲电源和数字控制技术的不断发展以及多次切割工艺的应用,大大提高了切割速度和加工精度。1.1.1 国外切割设备发展过程及现状国外切割设备在脉冲电源、机械系统、断丝机理、加工控制等方面均有先进体现及发展。1、脉冲电源 电火花线切割加工时,一般采用水作工作液,放电时的电解腐蚀影响大,特别是对于硬质合金的加工,电解作用会使工件表面形成一层电解变质层,使硬度下降,模具寿命缩短。为克服电解变质层的影响,国外厂商推出无电解电源,日本Sodick公司的BS电源、日本Mitsubishi公司的AE电源、FANUC公司的AC电源、及Seibu公司的EP电源和Charmilles公司的SI电源等都是无电解电源。 其加工原理是在不产生放电的加工时间内(脉冲间 隔)施加一反极性电压,加工时仍采用以往的正极性加工,这样可以使漏电流控制到最低限度。采用无电解电源后,生产效率约比传统的电源降低30%,最大的生产效率约为260270mm2/min,加 工表面粗糙度达Ra0.10.2m。目前的无电解电源可以进行从粗加工到精加工的整个加工过程,但单独使用此电源所能达到的表面粗糙度略低于微精加工电路所达到的最佳指标,其优点在于消除了电解变质层,减少裂纹,提高表面硬度,大大提高了工件寿命,减少精修次数。此外,无电解电源在加工铝、黄铜、钛合金等材料时,工件的氧化情况也有很大的改善。电火花线切割加工件的表面缺陷,不仅指电解变质层,而且还包括热变质层、微裂纹镀覆层及铁锈等方面。为了改善工件的表面质量,Charmilles公司的对策是在等能量的原则下,将 脉宽变窄拉高,使放电能量集中,让材料以汽化方式蚀除。这样配备了MF微精加工电路的SI电源保证了表面完整性。用过去的电源加工时,变 质层为45 m,用SI电源及细丝加工时,变质层为1m以下。据介绍,日本Mitsubishi公司的EA电源加工后的表面也不产生微裂纹,可以获 得与磨削加工几乎一样的表面。与脉冲电源密切相关的还有电源参数的控制问题,它不仅涉及到电源技术,同时还涉及到自动控制领域。有关脉冲电源参数的控制将在控制系统部分叙述。2、机械系统 为提高加工精度和改善控制性能,电火花线 切割机床的机械部分也得到改进,有的已将电火花线切割加工技术提高到一个新的境界。 日本Sodick公司创造性地在电火花线切割机床的伺服系统上使用直线马达驱动,使精加工脉冲的利用率大幅度提高。直线运动的导向也采用了与直线电机高响应速度相适应的滚动导轨,这些措施的综合使用,实现了机床的精密控制和长期的精度保持性。 瑞士的CHARMILLES公司的超精密电火花线切割机床ROBOFIL-2030SI在机械系统上有自己的新意:该机采用新的走丝系统,电机丝在皮带运丝机构中作横向摆动,大大减少了皮带磨损出沟问题,使丝张力和走丝速度更加稳定,而且皮带的使用寿命至少有1000h。最近又推出了双走丝系统线切割机。 此外,自动穿丝技术方面也有重大进展。穿丝前除了进行加热、拉细、变硬的准备处理外,在保护套管下端还设有一细脖子,当电极丝经上述处理后,因为此处散热较慢,会过热拉断,形成自然的尖锥,从而不再需剪切机构,也不会有剪切毛刺,影响穿丝的成功率。用0.1mm的电极丝,可穿过 Tc = 3.25 Nm许用转速n = 6600 r/min n0 = 1400 r/min轴孔直径 dmin = 9 mm ,dmax = 14 mm若取储丝筒外伸段轴径为14mm,则联轴器d1 = d电 =14mm,d2 = 14mm,所以TL1型弹性套柱销联轴器满足要求。 6.4 丝杠的选择和计算6.4.1 确定丝杠的相关参数作为传动滑动丝杠的进一步延伸发展, 滚珠丝杠由于其高效率、温升少、高精度、高速度、高刚性、可逆性、长寿命、低能耗、同步性、高灵敏度、无间隙、维护简单等优点而在当代数控机床进给伺服机构中得到广泛应用, 为了满足数控机床高进给速度、高定位精度、高平稳性和快速响应的要求, 必须合理选择滚珠丝杠副, 并进行必要的校核计算。滚珠丝杠的选择包括其精度选择、尺寸规格(包括导程与公程直径) 、支承方式等几个方面的内容。滚珠丝杠副的承载能力用额定动载荷或额定静载荷来表示, 在加工中心的设计中一般按额定动载荷来确定滚珠丝杠副的尺寸规格, 对细长而又承受压缩载荷的滚珠丝杠作压杆稳定性核算; 对转速高, 支承距离大的滚珠丝杠副作临界转速校核; 对精度要求高的滚珠丝杠作刚度校核; 对数控机床, 需核算其转动惯量; 对全闭环系统, 需核算其谐振频率。确定其相关参数:工作台尺寸:320500mm2工作台行程:250320mm2工作台最大承重:120kg最大切割厚度:300mm机床加工精度:0.02mm 切削力:27.5N工作时间:使用5年,每天工作8小时(15000小时)最快进给速度:2m/min 工进速度:10mm/min-2m/min6.4.2 相关计算现拟定:加工进给速度1m/min-2m/min,则丝杠导程Ph为:Ph= = = 8mm (6.10)1.滚珠丝杠副的载荷及转速计算最小载荷Fmin:Fmin=(3200+2000)0.1=520N (6.11)最大载荷Fmax:Fmax=(3200+300+2000)0.1=550N (6.12)滚珠丝杠副的当量转速nm及当量载荷Fm:nm=(nmax+nmin)/2=(1000+)/2=500.125r/min (6.13)Fm=(2Fmax+Fmin)/2=(2520+550)/2=785N (6.14)确定预期额定动载荷:按预期工作时间Lh(小时)计算,Cam= (Fm fw)/100fafc (6.15)= = 5305.03N 按最大负载Fmax计算,Cam=feFmax=4.5520=2340N (6.16)取以上两种结果的最大值,则Cam=5305.03N确定允许的最小螺纹底径估计丝杠允许的最大轴向变形量:m(1/31/4)重复定为精度m(1/41/5)定为精度m最大轴向变量已知重复定为精度为10m,定为精度为25m,其中得出结构:m=3m , m=6m,取两种结果的最小值m=3m。2.估算最小螺纹底径:丝杠不要求预拉伸,取一端固定,一端的支撑形式: (6.17)其中:L丝杠螺杆长度F0静摩擦力L=(1.11.2)L+(1014)Ph=1.2320+108=464mm (6.18)F0=0W1=0.23200=640N (6.19)带入式(6.13)中得:d2m=24.54mm6.4.3 确定丝杠副代号本设计选择内循环浮动式法兰,直筒双螺母型垫片预紧形式,由计算出的Ph、Cam、d2m选择FSIC 公称导程:8mm 丝杠外径:25mm 钢球直径:3.969mm 循环圈数:4 动负荷 :1630kN 静负荷 :3650kN 刚度 :346.5 同步带及同步带轮的选择及计算6.5.1 选定同步带初始参数:传动功率: P = 0.37 kw 主动轴转速:n1 = 1400 r/min 从动轴转速:n2 = 300 r/min 传动比: i=4.6设计功率: Pd =KAP (6.20) 其中: KA载荷修正系数1.6 Pd = 1.60.37=0.6kw由此选定带型为L型,节距pb=5.086.5.2 选定同步带轮确定带轮齿数:小带轮:查表zmin = 12 取z1 = 16大带轮:z2 = iz1 = z1 = 73.6 (6.21)取z2 = 74 确定带轮的节圆直径:小带轮:d1 = = 26mm (6.22)选取标准值d1=25.87mm 大带轮:d2 = = 116mm (6.23)选取标准值d2=119.72mm 计算带速v= = =1.35m/s (6.24)初定轴间距:0.7(d1+d2) a0 2(d1+d2) 99.4mm a0 290mm (6.25) 取a0 = 160mm确定带长及其齿数: L0 = 2a0+(d1+d2)+(d2-d1)2/4a0 = 561mm (6.26)选取标准值L0 =560mm 节线上的齿数z=60确定额定功率及带宽:基本额定功率: P0 = (Ta-mv2)v/1000 (6.27)带宽:bs=bs01.14 (6.28)其中:bs0带的基准宽度TS带宽为bs0的带的许用工作拉力m 带宽为bs0的带的质量Kz啮合齿数系数P0 = 1kwbs0 =31mm 选取标准值25.4mm6.6 工作台的设计XY工作台系统总体框图如图6.1所示:图6.1 XY工作台系统总体框图6.6.1 工作台选材由机械设计手册查得HT200,中等强度,基体组织为珠光体+铁素体(20%),铸造性能好,工艺简单,铸造应力小,不用人工时效;有一定的机械强度及良好的减震性。其应用范围广泛:如(1)一般机械制造中的铸件有支柱,底座,罩壳,齿轮箱,刀架,刀架座,曾用机床床身及其形状复杂,对强度要求不高,不容许有甚大变形有不能进行人工时效处理的零件,(2)滑板,工作台等与较高强度铸铁床身(如HT200)相互、摩擦的零件,(3)薄壁(质量不大)零件,工作压力不大的管子配件以及劈厚30mm的耐磨轴套等,(4)在纯碱或染料介质中工作的化工零件,(5)圆周速度612m/s的带轮以及其他符合所列条件的零件。6.6.2 相关计算工作台的体积(含支架):V=ABH=45060050=13500000 mm3=13500 cm3 (6.29)工作台质量(含支架):m=V=7.213500=97200g=97.2kg (6.30)则最下面丝杠所承受的总质量:m总= 2m1+m工件=297.2+120=314.4kg (6.31)考虑到其他因素,将总质量扩展到320kg,则m总=320kg6.7 步进电机的选择6.7.1 与丝杠联接的电动机确定由于工作台的结构简单紧凑、体积较小,所以在本设计中,预选步进电机作为丝杠运转的驱动。步进电机分为:磁阻式步进电机、感应子式永磁步进电机、永磁式步进电机、电磁式步进电机。下面将进一步介绍各种步进电机的特点。磁阻式步进电机:是一种将电脉冲信号转换成角位移的执行元件,定转子磁路均由软磁材料制成,只有控制绕组,基于磁导变化而产生转矩,其性能特点是步距角小,启动和运行频率较高,断电时无定位转矩,消耗功率较大。感应子式永磁步进电机:转子为感应子式结构形式,也称混合式,兼顾永磁式和磁阻式两类电机有点,它具有步距角小,有较高的启动和运行频率的特点。需要正负脉冲供电,消耗功率较小,有定位转矩。永磁式步进电机:凡在结构上采用永久磁钢的步进电动机,起特点是控制功率小,电磁阻尼大,步距角大,启动频率低,需要正、负脉冲供电,优点为转矩。电磁式步进电机:无需一般步进电动机所需的专用电源,施加直流电即可工作,控制简便,应用于检测系统中。根据以上各种电动机的特点,在本次设计中,将采用永磁感应式步进电机。步进电机是一种能将数字输入脉冲转换成旋转或直线增量运动的电磁执行元件。每输入一个脉冲电机转轴步进一个步距角增量。电机总的回转角与输入脉冲数成正比例,相应的转速取决于输入脉冲频率。步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。步进电机惯量低、定位精度高、无累积误差、控制简单等特点。广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。其次,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。6.7.2 有关计算一. 确定脉冲当量脉冲当量根据系统精度来确定,如取得太大,无法满足系统精度要求;如取得太小,或者机械系统难以实现,或者对其精度和动态特性能提出更高的要求,使得经济性降低。,对于开环系统一般为0.0050.01mm。本次设计的工作台的精度为0.02mm,因此根据经验公式得脉冲当量。=0.04=0.0125mm .又是用联轴器连接电机主轴和丝杠,所以传动比i=1。根据公式得步距角=360i/p=0.9。二. 确定系统的转动惯量:1 丝杠的转动惯量的计算:J1 = = = 1.0110-5kg (6.32)其中,是丝杠密度(kg/ ),取7.8 kg/ ;d是丝杠的等效直径(m),取0.013m;l是丝杠的长度0.464m。2 沿直线轴移动物体惯量的计算: 工作台、工件等折算到电动机轴上的转动惯量,可由下述公式达到:2.6 2t-4 ()b3 J2 =()2M10-6 =()2320=0.067kg (6.33)其中:M工作台(包括工件)的质量,kgV工作台快进速度,mm/minn丝杠转速,r/min则折算到电机上的总转动惯量J总=J1+J2=0.067 kg (6.34)3. 空载启动时,电动机轴上的惯性转矩:TJ=J总 (6.35)=0.067=0.28Nm 其中,t为电机加速时间:t =0.1s伺服传动链的总效率为=0.99Vmax 为工作台快进速度,Vmax=2m/min丝杠工作时间的轴向压力:Fm=m总g=3209.80.004=12.54N (6.36)其中,g=9.8m/s2导轨摩擦系数0.004电动机轴上的当量摩擦转矩:T= Fm = 12.54=0.4Nm (6.37)设滚动丝杠螺母副的预紧力为最大轴向载荷的1/3,则因预紧力而引起的、折算到电动机轴上的附加摩擦转矩为:T0 = (1-02)= (1-0.92)=2.5210-3 Nm (6.38)0滚珠丝杠螺母副未预紧时的传动效率0.9工作台上的最大轴向载荷这算到电动机轴上的负载转矩为:Tw= Fm=0.04Nm (6.39)在最大外载荷下工作室,电动机轴上的总负载转矩:Tl= Tw+ T0+ T=0.04+0.4+2.5210-3=0.44Nm (6.40)根据公式:Ts= (6.41)计算正常运转时所需步进电动机的最大静转矩:Tsl= =0.881.47Nm 则空载启动时电动机轴上的最大静转矩为:Tq= TJ+ T+ T0=1.46+0.4+2.5210-3=1.86Nm (6.42)根据Tq与选取启动时所需步进电动机的最大静转矩Ts的关系求得Ts:Ts= = 2.15Nm (6.43)选择电动机的型号为:110BYG3501步距角:0.6度相数:3静转矩:12Nm转动惯量:11kgcm2=0.1110-2kgm24惯量匹配验算及电动机最大运行频率的确定:电机轴上的总当量负载转动惯量J总和电机轴自身转动惯量T的比值应控制在一定范围内,既不应太大,也不应太小。如果太大,则伺服系统的动态特性主要取决于负载特性,由于工作条件(如工作台位置)的变化而引起的负载质量,刚度,阻尼等的变化,将导致系统动态特性也随之产生较大的变化,使伺服系统综合性能变差,或给控制系统设计造成困难。如果该比值太小,说明电动机选或传动系统设计不太合理,经济性较差。为了系统惯量达到较合理的匹配,一般应将该比值控制在下式所规定的范围内: 1 (6.44) = =0.611 说明惯量匹配合理。步进电动机在运行的输出转矩随运行频率增加而下降,因而应根据所计算出的负载转矩Tl,按电动机运行矩频特性曲线来确定最大运行频率,并要求实使用的运行频率低于这一允许的最大运行频率。110BYG3501步进电动机,当Tl=0.11Nm时,电机的运行频率f10000HZ,而根据V=60f算得实际使用的运行频率为f=4800 HZ,而ff,所以满足要求。6.8 工作台导轨的选择一、为了提高机床的精度和性能,首选直线导轨,直线导轨的优点: (1) 定位精度高,重现性佳直线导轨平滑的滚动运动方式,摩擦系数特别小,尤其静摩擦力与动摩擦力的差距很小,即使在微量进给时也不会有空转打滑的现象,解析能力与重现性最佳,因此可以实现 m级的定位精度。(2) 低摩擦阻力,可长时间维持精度直线导轨的滚动摩擦阻力可减小至滑动导轨摩擦阻力的1/201/40,尤其润滑结构简单,润滑容易,润滑效果优良,摩擦接触面的磨耗最低,因此可以长时间维持行走精度。(3) 可承受四方向的高负荷能力几何力学结构的最佳化设计,可同时承受径向、反径向与横方向的负荷,并保持其行走精度,同时可轻易地藉由施于预压与增加滑块数量,就可以提高其刚性与负荷能力。由施于预压与增加滑块数量,就可以提高其刚性与负荷能力。(4) 适合高速化之应用摩擦阻力小的特性,对设备的驱动马力需求低,节省能源效果大,尤其运动磨耗小,温升效应低,可同时实现机械小型化与高速化的需求。(5) 组装容易并具互换之特性直线导轨的安装只要在铣削或研磨加工的安装面上,以一定的组装步骤,即能重现直线导轨的加工精密度,可降低传统铲花加工的时间与成本。并且其可互换之特性,可以将滑块任意配装在同型号的导轨上,同时又保持相同的顺畅度与精密度,机台组装最容易,维修保养最简便。图6.2 SME系列直线导轨图6.2 SME系列直线导轨的性能以及适用二、型号SME-E直线导轨的性能如图6.2、6.3。可看出适合用于电火花线切割机床。根据机床参数、机床机构以上确定的零件,如上拖板、中拖板,确定选用SME 30 EA,其规格及结构尺寸如下图6.3、6.4。图6.3 SME系列直线导轨规格及外形尺寸图6.4 SME系列直线导轨规格及外形尺寸7 工艺方案的经济分析制定机床设计方式时,在保证机床功能的前提下,会出现几种不同的方案。不同的方案在生产效率和设备投资方面各有不同。进行经济分析就是为了在给定的生产条件下选择最经济合理的方案。经济分析包括对不同机床结构设计方案的设计成本和对技术经济指标进行分析,其中机床结构设计方案的设计成本分析包括标准件的选用以及加工件的加工成本比较分析、可变费用和不变费用。本次研究机床设计与传统机床在结构上改变不大,可参照已有线切割机床进行分析。本课题中的技术经济分析主要涉及加工成本、销售价格的估算以及销售市场的预测,为该产品未来的开发后进入市场做必要的分析预测。7.1 标准件费用本课题设计的电火花线切割机床中所使用的标准件主要有内六角圆柱头螺钉、六角头螺栓、六角螺母、圆螺母、平垫圈、弹簧垫圈、轴承等,根据设计生产需要,对所使用的标准件的费用作总结分析,为电火花线切割机床整体的技术经济分析提供参考,具体费用估算见表7.1。表7.1标准件费用名称型号数量单价/元总价/元备注内六角圆柱头螺钉M620400.624GB/T 70.12000M63541.04M850800.972M104061.810.8六角头螺栓M850120.33.6GB/T 5789-2000M108040.52六角螺母M880.252GB/T 5789-2000M1040.451.8六角薄螺母M1641.56GB/T 6172.1-2000圆螺母M881.08GB/T 812-1998圆锥销435616GB/T119.1-200063510110弹簧垫圈M8 80.10.8GB/T 93-1987M10 40.10.4平垫圈M8800.18GB/T 97.1-2002M10200.24M1220.20.4M1620.20.4大平垫圈M840.20.8GB/T 97.1-2002轴用弹性挡圈M610.20.2GB/T 894.1-1986深沟球轴承6203610.060GB/T 276-1994轴承D2465.030轴承6064520角接触球轴承7004C410.040GB/T292-1994720441040费用总计/元355.2除了以上标准件以外,还有一些零件虽然不是标准件,但是需要外购得到或者定做,例如:同步带轮、同步带、导轨、手轮、齿轮等,具体费用见表7.2。表7.2外购件费用名称型号数量单价总价备注同步带轮40XL22040.0苏州中腾同步带轮有限公司同步带05012020.0导轨SME 30 EA4100400丝杠320006000河北丝杠厂 单边导轮2100200.0厂家订做双边导轮2100200.0厂家订做步进电机90BF00648003200常州宝马三相交流电机YS7124112001200.0费用总计/元11260.0除了表中所列的标准件和定做件费用外,其他零件的费用估算为2000.0元,由表7.1和表7.2可以得出,电火花线切割机床中标准件和需要外购的成品件总费用C1约为: C1 15000.0元7.2 材料费本课题设计的电火花线切割机中所使用的非标准件和非外购的零件、部件,需要通过加工制造得到,主要有运丝机构底座、托板板、封板、电机座、附加支架、轴端盖、工作台上、中拖板、床身、横板等等,其中需要使用的材料及费用见表7.3。表7.3材料费材料名称数量单价总价/元60mm60mm方钢15m35元/m52530mm30mm方钢65m20元/m13001mm钢板5m250/mm225025mm钢板3m2150/mm245030mm钢板10m2200/mm2200040mm钢板3m2300/mm290085mm棒料0.5m160/m8020mm以下轴2m16/m32铸铁5公斤10元/公斤50总计/元5587.0除了表7.3中的各项材料以外,还有其他使用较少的材料,不再单独表示,结合表7.3中的材料费用,估算全部材料费用C2为:C2 7000.0元7.3 工资根据电火花线切割机床的整体结构,依照各部件的功能和特点划分加工工作段,铸造为一个工作段,机床床身底座和运丝底座等大型支撑座归为一个工作段,工作台托板的加工为一个工作段,各种小型支撑座装置的加工为一个工作段,设置一个总装工作段,负责机床的整体装配,最后设置一个调试检测工作段,负者检测装配完成后的机床是否可以正常运行工作,加工精度是否符合设计要求。各工作段具体工人分配及工资情况见表7.4。表7.4工人工资工作段工人数工资/(元/小时)单人工作量/小时总工资/元铸造1010161600.0各种支撑座510321600.0工作台21012240.0总装31016480.0调试检测11016160.0其他工人工资410321280.0工资总和/元5360.0除了以上表中所列工人工资外,还有其他一些工作岗位的工人工资不做具体的表示,只做统一估算,因此,结合表中数据,估算总体工人工资C3为:C3 8000.0元7.4 总成本估算计算成本时,除了标准件费用、材料费、工人工资以外,还要考虑到:研发成本、厂房成本、机床使用成本、水电成本、管理成本、运输成本、工人福利、利润空间等等因素,因此,总成本的估算是一个综合性的数据计算,参考一般企业的生产成本状况,结合本课题所做的电火花线切割机床,将研发成本、厂房成本、机床使用成本、水电成本、管理成本、运输成本、工人福利等成本记为费用C4,则C4 10000.0元根据以上估算结果,可以对细长管管内孔磁力抛光机的生产成本做最终的估算,总成本C= C1 +C2 +C3+ C4,则C= C1 +C2 +C3+ C4=15000+7000+8000+10000=40000.0 (7.1)8 结 论电火花线切割在硬脆材料加工中应用广泛,在国内外也逐渐成为研究焦点。使其趋向于高速切割,精密切割,变频调速和振动切割的发展。本次课程设计,我对电火花线切割加工和电火花机床都有进一步了解。对电火花线切割机床的工作原理和工作性能也进行了深入的分析和研究,大致分为传动机构,立柱和导丝架,XY工作台三部分。设计过程中,用CAD简单的绘制出各部分的原理图,并对标准件进行选取和校核,UG三维建模做出实体绘制并装配,最后导出2D图。经过综合分析,经济实用,机械性能好,在硬脆材料的高速切削及精密切削中可推广使用。9 参考文献1 周锐,李剑峰,等电火花电极丝的研究现状与进展J现代制造工程2004,(6):1121152 张辽远,赵延艳电镀电火花电极丝的制造工艺及使用性能分析,工具技术,2009,43卷1期:72753 Hardin Craig W,Qu Jun,Shih Albert JFixed abrasive diamond wire saw slicing of single crystal SiC waferscProceedings of the ASME Manufacturing Engineering Division,20036534 W PengerDiamond wire saw contribution to New Berlin interchange. IDR, 2000,60(1):44465 毕善斌,陈玉全硬脆材料线切割机床的研究.机械设计与制造,1994,(4):27316 机械手册编委会机械设计手册(1)机械工业出版社20048,4-344-517 Diamond wire sawing solves speed and safety problem in demolition of urban Building Anon. Concrete Openings, 1993,2 (3):678 Meng J F,Li J F,Ge P Q,et a1Research on endless wire saw cutting of A12 O3/TiC ceramicsJKey Eng Mater,2006,315316:5719 Anker ADiamond profiling saw for machining glass and natural stoneJIDR,1999,59(4):28729010 Ishikawa K,Suwabe H,Kayama K,et a1Study on rrmchining characteristics of wire tool with electrodeposited diamond grainsJTrans of Japan Society of Mechanical Engineers,1994,60:18-1511 高泽远,姚玉泉,李林贵编机械设计(修订版)沈阳,东北工学院出版社, 199212 黄世清,王世佐主编计算机辅助机械设计零件设计上海,上海交通大学出版社,199113 卢左潮,黎桂英主编计算机辅助机械设计武汉,华中理工大学出版社,199114 蔡春源主编机械零件设计手册(第三版)北京,冶金工业出版社,199415 余俊,全永新,余梦生,张英会主编弹簧北京,机械工业出版社,198216 陈冬元,王点勇,喻子建主编机械设计习题与解题分析沈阳,东北大学出版社,199417 国家标准,V带传动额定功率计算,GB11355-8918 国家标准,带传动,GB11544-8919葛培琪固结磨料金刚石锯丝制造技术J金刚石与磨料磨具工2006,6:1220 张辽远现代加工技术机械工业出版社2002.8,102021 Clark W I,Albert J Shih,Richard I LemasterFixed abrasive diamond wire machining-part II:experiment design and resultsJInt J Machine Tools Manufacture,2003,433322 Chiba Y,Tani Y,Enomoto T,et a1Development of a highspeedmanufacturing method for electroplated diamond wiretoolsJCIRP Annals-Manufacturing Technology,2003,52(1) 28l10 致谢非常感谢张辽远老师。大学的最后学习阶段从最初的定题,到资料收集,到选件,到制图,导图,到写作、修改,到论文定稿,他我耐心的指导和无私的帮助。为了我们的毕业设计,老师倾注了大量的心血,他无私奉献的敬业精神令人钦佩,在此我向他表示我诚挚的谢意。同时,感谢所有任课老师和所有同学在这四年来给自己的指导和帮助,是他们教会了我专业知识,教会了我如何学习,教会了我如何做人。正是由于他们,我才能在各方面取得显著的进步,在此向他们表示我由衷的谢意,并祝所有的老师培养出越来越多的优秀人才,桃李满天下!感谢各位同学,与他们的交流使我受益颇多。最后要感谢我的家人以及我的朋友们对我的理解、支持、鼓励和帮助,正是因为有了他们,我所做的一切才更有意义;也正是因为有了他们,我才有了追求进步的勇气和信心。 通过这一阶段的努力,我的单线电火花线切割机床的设计任务得以顺利完成了,这意味着大学生活即将结束。在大学阶段,我在学习上和思想上都受益非浅,这除了自身的努力外,与各位老师、同学和朋友的关心、支持和鼓励是分不开的。时间的仓促及自身专业水平的不足,整篇论文肯定存在尚未发现的缺点和错误。恳请阅读此篇论文的老师、同学,多予指正,不胜感激。 附录A 英文原文A mechanical structure-based design method and its implementation on a fly-cutting machine tool designYingchun Liang & Wanqun Chen & Yazhou Sun &Xichun Luo & Lihua Lu & Haitao LiuAbstract:The mechanical structure has a main influence of the machining performance and the servo performance. In this study, a mechanical structure-based design method is presented to design and optimize an ultra-precision fly-cutting machine tool. This method takes full account of the influence of mechanical components on the machining performance and servo performance at the design stage. The effect of the components structure on the roughness of machined surface is discussed, and an optimized structural form of the aerostatic spindle is given. The influence of the mechanical structure on the control system and electronic drives is discussed, and an integrated dynamic design model is built and used to optimize the hydrostatic slide. Furthermore, the impact of mechanical system dynamic performance of the machine tool on the processing topography is analyzed by the finite element model of the machine tool. This method provides a theoretical basis for the design and optimization of mechanical components and machine tools stiffness loop.Keywords:Mechanical structure;Design method;Integrated design;Machine dynamicsIntroduction:Increasing demands for optical devices in modern industries, such as digital cameras, high-energy solid-state lasers, and extra-large telescopes, has made it necessary to develop precision machine tool for optical parts machining 14. The machine tool development mainly contains the mechanical components design, the electronic drives system selection, and control system design 5, 6. The mechanical components design are always mainly from the mechanical point of view, the components are designed very robust to overcome the deformation. However, little attention has been paid to the influence of mechanical components structure on the machining performance. Furthermore, traditional methods for mechatronics design are often based on a sequential approach, where the mechanical structure is designed first, and then fitted with off-the-shelf electric motors, drive electronics, and sensors. Finally, a control system is designed and optimized for the already existing mechanical system 7, 8. Such a design method, that does not consider aspects from a control point of view during the design of the mechanical system, is unlikely to result in a system with optimal control performance. Moreover, to separately design and optimize each of the mechanical components will generally not result in a system that is optimal from a weight, dynamic response, or cost perspective. In addition, the dynamic loop stiffness of mechanical system is always designed as high as possible to improve the results of the machined surface, sometimes it helps and other times it makes things worse. If the designers choose the dynamic loop stiffness at random, or at least without considering its effect on the processing topography, it will lead a bad machining result, especially to the large optical parts machining.In this paper, a mechanical structure-based design method is proposed as shown in Fig. 1. At the design stage, the influence of mechanical components structure on the machining performance is fully considered, which helps the designer to choose the design parameters. To reach the optimal design of an integrated mechatronic system, the mechanical system, the control system, and electronic drives system are treated as a whole, considering aspects from all involved engineering domains concurrently, and therefore enables global optimization.Fig. 1 The outline of the mechanical structure-based design methodAt last, the mechanical system dynamic performance of the machine tool on the processing topography is analyzed from the finite element model of the machine tool. The proposed design method is implemented on a fly-cutting machining tool design. 2 Implementation of the mechanical structure based design method on a fly-cutting machine tool 2.1 Structural design of spindle considering its influence on the surface topography Spindle is the key element of the ultra-precision machine tool. Many effects have been paid to the influence of its static and dynamic performance on the machining results 9, 10. However, little attention has been focuses on the influence of the designed spindle structure on the surface topography of the workpiece. An et al. 11 pointed out that there was a relationship between tilting motions of spindle and medium-frequency waviness errors of workpiece surface in fly-cutting machining. Furthermore, the 3D locus of the diamond-cutting tool is given as following:Where, R denotes the radius of cutting tool locus, z denotes angular velocity component, denotes the initial angle, f denotes the feed rate of machine table, KT denotes angular stiffness of spindles, denotes the precession angular velocity, M denotes torque generated by the unbalance mass, R denotes the distance between the tool tip with the spindle centroid, C denotes the axial inertia tensor, and A the radial inertia tensor. Equation (1) shows that the periods and amplitudes of waviness are mainly affected by C and A. In this design, to reduce the effect of the medium-frequency waviness and the simulation surface of the medium-frequency waviness, the structure of the spindle designed as shown in Fig. 2 has the same axial and radial inertia tensor, which makes the tool tip displacement in Z direction to be reduced as:Equation (2) shows that the angular stiffness of spindle KT also has an important influence of the tool tip displacement in the Z direction. A larger angular stiffness of the spindle can reduce the tool tip displacement effectively. To improve the angular stiffness, the aerostatic bearing with a large support surface is adopted and the film gap is optimized as shown in Fig. 3. It shows that the bearing stiffness in each direction primarily increases and then decreases as film gap increases. The maximum stiffness in axial, radial, and angular are all obtained at 15 m, 2,188 N/m, 640 N/m, and 1167.5 Nm/arcsec, respectively. Therefore, the 15 m is selected as the bearing film gap. Figure 4 shows the simulation results based on Eq. (1), which shows the roughness at less than 3 nm. The simulation conditions are as follows, the depth of cut is 5 m, tool nose radius is 5mm, the feed rate is 10 m/s, and the angular stiffness of the spindle is 1,167.5 Nm/arcsec, respectively.2.2 Integrated dynamic design and optimization of the hydrostatic slideThe performance of the slide directly affects the profile accuracy. To satisfy the targeting specification with a flatness of less than 3 m in 415415 mm2, a slide with good static, dynamic, and servo performance is needed. In this study, the integrated design of a hydrostatic slide system is presented. A design methodology that influences the mechanical and electronic systems of the electric driver, which enables global optimization, has been developed. Furthermore, the control performance of the hydrostatic slide system is evaluated and optimized, such that the physical system design and the controller design are integrated.Fig. 2 The structure of the spindleFig. 3 The relationship between stiffness and film gapThe semi-closed type is used to improve the stiffness of the slide and reduce the difficulty of assembly. In addition, the linear motor is adopted to enhance the transmission accuracy and structure compactness. The direction of the driving force must be aligned to the centroid of the slider to reduce the kinematic error during installation of the linear motor on the slide. As shown in Fig. 5a, the hydrostatic slide is composed of a carriage, guide, oil supply system, linear motor, and linear encoder whose resolution is 5 nm. Figure 5b shows the force analysis of the carriage driven by the linear motor; the motion equation can be calculated as:Where, kf is the motor thrust coefficient; i is q axis current in the linear motor (A); m is the weight of moving parts (kilograms); B is the viscosity of the oil in hydrostatic slide (newton seconds per square meter); FL is interference force (newtons). After Laplace transform, the corresponding transfer function can be formulated as:The scheme of transfer function of the linear feeding system is established as shown in Fig. 6 and simulation analysis is carried out by Simulink. The difference between the traditional method and the integrated method for hydrostatic slide design is determined. Figure 7 shows the step response under interference force of 1 N and the step response of the position loop at the same gain coefficient, respectively, designed by the traditional method. Fig. 4 The surface roughness of simulation It can be seen that the stiffness of the linear feed system can meet the requirement (about 166 N/m), but the system shocking has a larger overshoot with a longer rise time (40ms), and this problem has not been resolved by debugging the control parameters. This is because the rise time and the maximum overshoot are a pair of contradictory indicators in a traditional control system; thus, when the overshoot decreases, the rise time will increase. However, in the integrated design method, optimizing the mechanical systems provides great convenience to the control process and improves the slide performance. It can decrease the maximum overshoot while increasing the rise time. The weight of the carriage has a larger influence on the dynamic performance, and reducing it without changing the electrical equipment does not only increase the acceleration but also improve the response ability. Thus, decreasing the weight of the carriage in the initial stage of the design will benefit the servo performance and reduce the trouble of the control staff. In addition to the gravity of the carriage and workpiece, the carriage also bears the electromagnetic attraction between stator and rotor (about 0.2 MPa). The deformation of the carriage is shown in Fig. 8a. If the carriage is not rigid enough, it will reduce the gap between the stator and rotor, damaging the linear motor. Therefore, an appropriate structure should be used to meet the strength and stiffness requirements rather than reducing the weight randomly in the design of the carriage.Figure 8b shows the structural parameters of the carriage, where a, b, c, and d account for stiffness and bearing as described by hydrostatic theory, so these four parameters remain unchanged in the optimization process. e, f , g, h, and i account for the design variables, while the vertical deformation is less than 20m as the state variable and the lightest weight as the optimal objective (the density of the carriage is unchanged so that the lightest weight is equivalent to the minimum volume). The optimization model can be calculated as. Fig. 5 Hydrostatic slide: as tructure of the hydrostatic slide and b force analyses of the worktableFig. 6 Block diagram of the linear feeding systemFig. 7 The response of the slide: a the step response under interference force and b the step response of the positionFig. 8 Optimization of the carriage structure: a deformation of the carriage, b carriage structure, c optimization iteration curveFig. 9 The FEM of mechanical structureFigure 8c shows that the weight of the carriage being reduced from 436 to 225 kg after optimization. Figure 7 shows that the system stiffness has a slight increase after optimization. At the same time, the amplitude of the transient process and the oscillation frequency are reduced. After optimization, the rise time decreases from 40ms to 20ms, and the maximum overshoot reduces from 18 % to zero. It demonstrates that the dynamic quality is highly improved. 2.3 Dynamics modeling and analysis of machine tool To predict the influence of mechanical system dynamic performance on the processing topography, the finite element model (FEM) of the whole machine tool is established. The joint characteristics of the machine tool, such as the bolt joint and the bearing connection have great impact on the dynamic performance 12, 13. Therefore, the modeling approach of the junction directly determines the accuracy of the whole model of the machine tool. In this study, the Conta173 and Targe170 are applied to the contact components. The spring elements are used for the noncontact components, such as the aerostatic spindle and hydrostatic slide. The Prets179 elements are used to simulate the bolt joint which can exert the preload by the node K. The FEM of the whole machine is shown in Fig. 9.After establishing the FEM of the whole machine tool, harmonic response analysis is carried out in X, Y, and Z directions. The harmonic response analysis is able to give the response of the machine tool in different frequency excitation. The cutting force F0 of 1 N is assumed and the frequency range from 0 to 600 Hz with 2 Hz intervals is chosen to give an adequate response curve.Figure 10 provides the harmonic response of relative displacement between cutting tool and workpiece in three directions. The maximum dynamic compliance in X direction about 0.078 m/N occurs at 200 Hz, which corresponds to a dynamic loop stiffness of 12.8 N/m. The maximum dynamic compliance in Y direction at 0.018 m/N occurs at 234 Hz, which corresponds to a dynamic loop stiffness of 55.6 N/m. The dynamics of this machine tool in sensitive direction (Z direction) are dominated by a structure resonance at 255 Hz; the dynamic loop stiffness is 35.7 N/m. The relevant modal parameters are determined by the frequency response function in Fig. 10a. The static stiffness is 500MN/m, and the damping factor is 3 %. 2.4 Performance prediction and the dynamic loop stiffness optimization of the machine toolFly-cutting is a typical intermittent machining technique. The intermittent cutting force has an important influence on the surface texture. In this particular example, the size of the workpiece is 415415 mm2, and cutting occurs during 48.8 to 131.2. Figure 11 shows a sample cutting force over two revolutions of the fly-cutting. The cutting force is inputted to the machine tool system as the input signal, the output is the displacement of the cutting tool. The predicted surface texture can be obtained by transforming output signal from time domain to the spatial domain as shown in Fig. 11. According to the machining requirements of the potassium dihydrogen phosphate crystal, the maximum amplitude of the vertical stripes should be less than 15 nm, and the period greater than 33 mm 14, 15. Considering the two indicators above, the appropriate range of the stiffness for dominant resonant frequency is given from 125 to 800 N/m. It provides a theoretical basis for the stiffness loop design of the mechanical system. The stiffness is 500 N/m is designed for the mechanical structure system and the prediction surface is given in Fig. 11.Fig. 10 Harmonic response of the machine tool: a Z, b X and c Y directionsFig. 11 The mechanical system dynamic performance of the machine tool on the processing topographyThis stiffness can be achieved by optimization the contact stiffness between the contact components such as changing the value of contact area and preload. 3 Preliminary machining test The ultra-precision fly-cutting machine tool is built in Fig. 12 according to the analysis above. The low-speed feed experiment under the control instructions 10 m/s and 500ms sampling period is conducted to verify the stability of the low-speed performance of the hydrostatic slide system as shown in Fig. 13. It can be seen that feed speed of the slide undulates within a range of 0.1 m/s, and actual position coincides well with feed system command position. It shows that low-speed stability of the control system is excellent. Furthermore, the machining test is carried out on this machine tool. The machining parameters such as spindle speed and feed and tool nose radius are consistent with the simulation parameters. The experimental results are examined by a 3D rough surface tester, Wyko RST-plus (Veeco Metrology Group, Santa Barbara, CA, USA), which has a 500-mm vertical measurement range and 3-nm vertical resolution. The measurement result with only tip, tilt, and piston removed are shown in Fig. 14. Figure 14a shows the vertical stripes in the cutting direction, with amplitude at 10 nm and period at 58 mm. Figure 14b shows the roughness of the machined surface, and the roughness values is 2.8 nm. The test results agree well with the simulation result which demonstrates the feasibility of the proposed design method.4 Conclusions1. The mechanical structure-based design method is presented and implemented on a fly-cutting machine tool design; the theoretical basis is provided for the mechanical structure system design. The following major conclusions are drawn.The effect of the components structure on the roughness of machined surface is discussed; an optimized structural form of the spindle is designed which can reduce the roughness of the workpiece.Fig. 12 Ultraprecision fly-cutting machine toolFig. 13 The speed and displacement curves of the slide under 10 m/sFig. 14 The 3D topography of the workpiece: a the measuring vertical stripes of the workpiece and b surface roughness of machined surface2. An integrated dynamic model considering the influence of the mechanical structure on the control system and electronic drives is built and used to optimize the slide of the machine tool. Collaborative optimization of rise time and maximum overshoot are achieved; the rise time from 40 ms decreases to 20 ms while the maximum overshoot reduces from 18 % to zero.3. The influence of the mechanical structure system on the surface topography is analyzed. The relationship between the machine dynamic characteristics and surface topography was established at the design stage. The appropriate range of the stiffness (125800 N/m) for dominant resonant frequency is given, which provides a benchmark and guiding significance for the design of the machine tool. AcknowledgmentsThe authors gratefully acknowledge financial support from the National Science Fund for Distinguished Young Scholars of China (grant number 50925521), The Sino-UK Higher Education Research Partnership for PhD Studies program, and China Scholarship Council (CSC).References1 Wybranski B (2004) Micro production technologies .mstNews 2:43452 Comley P, Morantz P, Shore P, Tonnellier X (2011) Grinding meter scale mirror segments for the E-ELT ground based telescope. Ann CIRP 60(1):3793823 Shore P, Morantz P, Luo X, Tonnellier X, Collins R, Roberts A, Miller R and Read R (2005) Large optix ultra-precision grinding/ measuring system. In: Proceedings of SPIE-The International Society for Optical Engineering, Q, pp. 184 LuoXC, ChengK,DaveW, FrankW(2005)Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. J Mater Process Technol 167(23):5155285 Cheng K (2009) Machining dynamicsfundamentals. Appl Pract 10:2833206 Huo DH, Cheng K, Wardle F (2010) Design of a five-axis ultraprecision micro-milling machine-UltraMill. Part 1: holistic design approach, design considerations and specifications. Int J Adv Manuf Technol 47(912):8678777 Chen CY, Cheng CC (2005) Integrated design for a mechatronic feed drive system of machine tools. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA8 Kono D, Lorenzer T, Weikert S, Wegener K (2010) Evaluation of modeling approaches formachine tool design. Precis Eng 34(3):399 4079 Zhang SJ, To S, Cheung CF, Wang HT (2012) Dynamic characteristics of an aerostatic bearing spindle and its influence on surface topography in ultra-precision diamond turning. Int J Mach Tool Manuf 62(11):11210 Hatem K, Marc B, Philippe R (2005) Improving waviness in ultra precision turning by optimizing the dynamic behavior of a spindle with magnetic bearings. Int J Mach Tool Manuf 45(78):84184811 An CH, Zhang Y, Xu Q, Zhang FH (2010) Modeling of dynamic characteristic of the aerostatic bearing spindle in an ultra-precision fly cutting machine. Int J Mach Tool Manuf 50(4):37438512 Yigit AS, Ulsoy AG (2002) Dynamic stiffness evaluation for reconfigurable machine tools including weakly non-linear joint characteristics. Proc Inst Mech Eng Part B: J Eng Manuf 216(1): 8710113 Lee SW, Mayor R, Ni J (2006) Dynamic analysis of a mesoscale machine tool. J Manuf Sci Eng 128(1):19420314 Liang YC, Chen WQ, Sun YZ, Chen GD, Wang T, Sun Y (2012) Dynamic design approach of an ultra-precision machine tool used for optical parts machining. Proc Inst Mech Eng Part B: J Eng Manuf 226(11):1930193615 Liang YC, Chen WQ, Bai QS, Sun YZ, Chen GD, Zhang Q, Sun Y (2013) Design and dynamic optimization of an ultraprecision diamond fly cutting machine tool for large KDP crystal machining, Int J Adv Manuf Technol, DOI 10.1007/s00170-013-5020-z Fig. 14 The 3D topography of the workpiece: a the measuring vertical stripes of the workpiece and b surface roughness of machined surface附录B 中文翻译一种基于结构的机械设计方法及其在高速切削机床设计上的应用Yingchun Liang & Wanqun Chen & Yazhou Sun &Xichun Luo & Lihua Lu & Haitao Liu摘要:机械结构对加工性能和伺服性能有着至关重要的影响。在此研究中,基于结构的机械设计方法就是用来设计和优化超精密高速切削加工机床。这种方法在设计阶段充分考虑机械部件对机床加工性能和伺服性能的影响。组分的结构对已加工表面粗糙度的影响得到讨论,并给出了空气静压主轴优化结构形式。讨论了机械结构对控制系统和电子驱动器的影响,并建立综合动态设计模型,用于优化液体静压导轨。此外,由机床的有限元模型分析机床对加工地形的机械系统动态性能上的影响。此方法为机械部件和机床刚度循环的设计和优化提供了理论依据。关键字 :机械结构;设计方法;综合设计;机械动力学简介现代工业越来越要求光学设备,如数码相机、高能固体激光,和超大望远镜,这使得有必要开发光学零件精密机床加工1 - 4。机床发展主要包含机械部件的设计、电子驱动系统的选择和控制系统设计5,6。机械部件的设计总是主要从机械的角度,组件被设计的非常健壮来克服变形。然而,很少有人注意机械部件结构对加工性能的影响。此外,传统的机电一体化设计方法通常是基于顺序的方法,首先设计机械结构,然后配有现成的电动马达,驱动电路,传感器。最后,完成控制系统的设计并且优化现有机械系统7,8。这种设计方法,在机械系统的设计过程中不从控制的角度方面考虑,不太可能达到系统最优控制性能。此外,分别设计和优化每一个机械部件通常不会促成系统的权重,动态响应,成本角度的最优。此外,机械系统的动态循环刚度设计总是尽可能高的去提高已加工表面的效果,有时它的确有帮助,但有时它会让事情更糟。如果设计者选择随机刚度的动态循环,或者至少没有考虑对处理地形的影响,这将导致一个糟糕的加工结果,特别是大型光学零件的加工。在本文中,提出了基于结构的机械设计方法,如图 1 所示。1.在设计阶段,机械部件结构对加工性能的影响得到充分考虑,这有助于设计者对设计参数的选择。为了达到综合机电系统的优化, 机械系统、 控制系统和电子驱动系统设计被视为一个整体,同时,考虑所有涉及工程领域方面,因而使全局优化。图 1 基于结构的机械设计方法概论最后,从机床的有限元模型分析出机床对加工地形的机械系统动态性能。在高速切削机床设计上实现拟议的设计方法。2基于机械结构的设计方法在高速切削机床上的应用2.1 考虑到其对表面形貌的影响的主轴的结构设计主轴是超精密加工机床的关键因素。其静态和动态性能的结果对加工效果产生了很多影响9,10。然而,很少有人注意电主轴结构的设计对工件表面形貌的影响。其他人 11 指出在高速切削加工中主轴的倾斜运动和工件表面的频波纹度误差之间存在着一定关系。此外,金刚石刀具的三维轨迹显示了如下所示:其中,R 表示刀具轨迹的半径,z 表示角速度分量,表示初始角度,f 表示机床工作台的进给的速度, KT 表示主轴的转角刚度,表示进动角速度,M 表示不平衡质量产生的扭矩,R 表示刀尖与主轴质心之间的距离,C 表示的轴向的惯性张量,A表示径向惯性张量。方程 (1) 显示波动的时间和振幅主要受C和A的影响。在此设计中,为了减少中频波纹度的影响和中频波纹表面复映,主轴的结构设计需有同一轴向和径向惯性张量,如图 2 所示,这使刀具位移在 Z 方向要减少:方程 (2) 表明,主轴 KT 的角刚度对刀具在 Z 方向的位移也有重要影响。大角刚度的主轴可以有效地减少刀具尖位移。为了提高角刚度,采用了气体静压轴承与大支持表面,并且膜间隙得到优化,如图 3 所示。由此可见,轴承刚度在每个方向都增加,随着膜间隙的增大而减小。最大的刚度在轴向、 径向,在15 m时角度分别求得2,188 N /m,640 N /m 和 1167.5 Nm/弧秒。因此,15 m 选择作为轴承膜间隙。图 4 显示了基于方程(1),在粗糙度小于3毫微米显示的仿真结果。仿真条件如下,分别是切削深度为 5 m,刀尖圆弧半径是 5 毫米,进给的速度是 10 m/s ,主轴角刚度是 1,167.5 Nm/弧秒。2.2 综合动态设计与液体静压导轨的优化导轨的性能直接影响形状精度。为了满足在 415 415 mm2的平面上平整度小于3m的目标规范,导轨需要具有良好的静态、 动态和伺服性能。在此研究中,提出了一种液体静压导轨系统的综合设计。一种影响电驱动程序的机械及电子系统,从而使全局优化的设计方法论正在发展。此外,液体静压导轨系统的控制性能被评估并进行了优化,这样物理系统的设计和控制器的设计得到集成。图 2 主轴的结构 图 3 刚度与膜间隙之间的关系半封闭式的类型用于提高导轨的刚度,降低装配的难度。此外,直线电机适用于增强传动精度和结构紧凑性。在导轨上的直线电机的安装过程中,驱动力的方向必须对齐滑块的质心来减少运动误差。图 5a 所示,液体静压导轨由运输、 指南、 供油系统、 直线电机和线性编码器组成,其分辨率为 5 毫微米。图 5b 显示了直线电机驱动的物体的受力分析,其运动方程可以计算如下 其中,kf 是电机推力系数;i是线性马达 (A) 的 q 轴向电流;m是运动部件的重量(公斤);B 是在液体静压导轨的油的粘度(每平方米牛顿秒);FL是的干扰力 (牛顿)。拉普拉斯变换之后,制定相应的传递函数为:确定直线进给系统的传递函数的方案如图 6 所示,并利用 Simulink 进行仿真分析。传统的方法和液体静压导轨设计的综合方法的区别得以确定。图 7 分别显示用传统方法设计在 1 N 干扰力作用下的阶跃响应和在相同的增益系数阶跃响应的位置环。 图 4 表面粗糙度的仿真可以看到,直线进给系统刚度可以满足要求 (约 166 N /m),但令人震惊的是系统具有较大的超调量伴随较长的上升时间 (40ms),这个问题不能通过调试控制参数解决。这是因为在传统的控制系统中上升时间和最大超调量是一对矛盾的指标,因此,当超调量减小,上升时间将会增加。然而,在综合的设计方法中,优化机械系统对控制过程和提高导轨性能提供了极大的方便。它可以减少最大的超调量同时增加上升时间。托架的重量对动态性能有较大影响,并减少它而无需更改电气设备,不仅提高加速度而且还提高响应能力。因此,在设计初期阶段的减少托架的重量有利于伺服性能,并且减少控制员工的麻烦。除了托架和工件的重力,托架也具有定子和转子之间的电磁力(约 0.2 m p a)。托架的变形如图 8a 所示。如果托架的刚度不足够,它将降低定子和转子之间的差距,使线性电机损坏。因此,应使用适当的结构以满足强度和刚度的要求,而不是随意的在托架的设计中减少重量。图 8b 显示了托架的结构参数,如流体静力学理论所描述的,a、b、c和d 提供刚度和支撑,所以在优化过程这四个参数保持不变。e、 f、 g、 h和i作为设计变量,当竖向变形以少于 20m作为状态变量和最轻重量作为优化的目标 (托板的密度是不变,最轻的重量等于最小体)。优化模型的计算可以为:图 5 液体静压导轨:液体静压导轨结构和工作台b结构的受力分析图 6直线进给系统的块图图 7 导轨的响应: a在干扰力作用下的阶跃响应和b位置的阶跃响应图 8托架结构的优化:a托架的变形,b托架结构、 c 优化迭代曲线图 9机械结构的全机有限元模型图 8 c 表明,优化后托板的重量从436减少到225公斤。图 7 显示优化后系统刚度已略有增加。同时,暂态过程的振幅及振荡频率减少了。经优化后,上升时间从 40 毫秒减少为 20毫秒,并且最大的超调量从 18%减少为零。它表明动态质量大大改善。 2.3 机床的动力学建模与分析为了预测机械系统动态性能对加工地形的影响,建立了机床整机的有限元模型 (FEM)。机床的联接类型,例如螺栓联接和轴承联接等,对动态性能有很大的影响 12,13。因此,交界处的建模方法直接决定机床的整体模型的准确性。在此研究中,Conta173 和 Targ
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:快走丝电火花线切割机床设计[三维UG][24张CAD图纸+PDF图]
链接地址:https://www.renrendoc.com/paper/118716501.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!