外文-颚式破碎机耦合平面的动力学研究.pdf

PE150x250复摆颚式破碎机的设计-鄂式破碎机【含7张CAD图纸+PDF图】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图 预览图 预览图 预览图
编号:118728547    类型:共享资源    大小:2.09MB    格式:ZIP    上传时间:2021-03-24 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
PE150 x250复摆颚式破碎机的设计-鄂式破碎机【含7张CAD图纸+PDF图 x250 复摆 颚式破碎机 设计 破碎 CAD 图纸 PDF
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】 喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】

内容简介:
Investigation on Kinetic Features of Multi-Liners in Coupler Plane of Single Toggle Jaw Crusher Cao Jinxi, Qin Zhiyu, Wang Guopeng, Rong Xingfu, Yang Shichun College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China Abstract- A jaw crusher is a kind of size reduction machine which is widely used in mineral, aggregates and metallurgy fields. The performance of jaw crusher is mainly determined by the kinetic characteristic of the liner during the crushing process. The practical kinetic characteristic of the liners which are located in certain domain of the coupler plane are computed and discussed. Based on those computing results and analysis for the points chosen from the liners paralleling coupler plane, unique swing features and kinematics arguments are determined in order to build the kinetic characteristic arguments. The job is helpful for a design of new prototype of this kind of machine on optimizing the frame, designing the chamber and recognizing the crushing character. Keywords - jaw crusher, liners, kinetic features, kinematics argumentsI. INTRODUCTION The performance of a jaw crusher is mainly determined by the kinetic characteristic of the liner during the crushing process. The liner motion is not in translation, but complex swing one 1. Features and analysis of liner motion is a necessary foundation for better jaw crusher design In previous researches much attention has focused on an analysis of the straight-line along the direction of the couple of the fourbar crank-rocker 2345 or the designed liner in a stereotypy jaw crusher6 based on a fourbar crank-rocker model, the results of which cannot reflect the kinetic characteristic and the variation trend of optimizing points which should be used in a crushing interface. With those kinds of traditional designing ways the kinetic characteristic of any points in the coupler plane and the correlation among those characteristic can not be fully described. In this paper, a certain domain, called the liner domain, of the coupler plane is chosen to discuss the kinetic characteristic of a liner or a crushing interface in the domain. Based on the computation and the analysis of the practical kinetic characteristic of the points along a liner paralleling to the direction of coupler line, some kinematics arguments are determined in order to build some kinetic characteristic arguments for the computing, analyzing and designing. The job is helpful for a design of new prototype of this kind of machine on optimizing a frame, designing a chamber and recognizing a crushing character. II. CHOOSING THE POINTS ON LINERS FOR COMPUTINGA liner of jaw crusher is an interface for analyzing the crushing force, on which the crushing force occurs, in other words, the directly contact and the interaction between the material and the liner occur there. So the interface has great effect on the crushing feature of jaw crusher. The liner is one of the curves in the cross-section of the couple plane, which is also given a definition as one of the coupler curves in a fourbar crank-rocker model. Since different positions of liners in the coupler plane have different moving features, the motion of points along the liners in the computing domain is quite different from that of them in the straight-line coupler of the simple fourbar crank-rocker model. Therefore, it is necessary to consider motion differences caused by different liner positions and their motion features to select a coupler curve as the swing liner with good crushing character. Based on the fourbar crank-rocker model, the system sketch of jaw crusher for calculating is shown in Fig. 1. The global static coordinate is XOY and the dynamic coordinate is UCV. Although a real shape and position of a fixed working liner is usually determined by a suspension point of the jaw crusher, computation of a liner will be done on the one of chosen curves in the liner domain. Thus with different position on the liner, each computing point on it liners will arrive at the limit position at different time. On a traditional designing way, the limit position is usually determined by the horizontal motion distance which is simply used as a designing factor or parameter to describe a moving feature of the liner. However it is well known that a practical crushing force exerted on fractured material is in the normal direction of the liner. The normal direction of each point in the liner changes in one operation cycle. So a distance between the limit positions in normal direction of those points is quite different from that of the displacement of horizontal motion. In order to describe the kinetic characteristic of the points in the liner domain, the single toggle jaw crusher PE400*600 is taken as example to compute and analyze the distributed kinetic characteristic. The calculation parameters of the PE400600 are shown in Table I. In order to illustrate the motion of the points in liner domain, it is needed to define the liner domain. Some planes paralleling to the BC are selected and each plane is divided into 20 equal parts. In the U direction, 7 evenly distributed points are selected from the-300 to 300 and in the V direction 21 evenly distributed points are selected from -200 to 1800. So there are 21 points selected to be calculate in the V direction for a certain U. With the points for computing and the liner domain chosen as above mentioned, computing results are shown in the follows. 16391-4244-0737-0/07/$20.00 c ?2007 IEEEFig. 1 Jaw crusher sketch TABLE I PE400*600 JAW CRUSHER CALCULATION PARAMETERS (mm)r l k a b N(rpm)12.0 1085.0 455.0 45.3 815.7 300 Where r is crank AB, l is the coupler BC, k is the rocker CO, a and b are X and Y component of the A point and N the rotation speed of the crank. III. MOVEMENT COMPUTATION AND FEATURE ANALYSIS OF POINTSThe mechanism of the jaw crusher is shown in Fig. 1. Given the rotation direction of the crank AB is clockwise. Where ?90 and 1) 1)(1()(sin2222+=nmnmnmn (1)sincosnm+= (2)cos(2)cossin(222222rblbarklrbam+= (3)cossinrbran= (4)Given the position of any point in coordinate UCV is (u, v) and in coordinate XOY is (x, y) Then sinsin)(cosravlux+= (5)coscos)(sinrbvluy+= (6)And the velocity of the points can be express as following equations: ()?=ddurddvlvXsincoscos (7)()?+=ddurddvlvYsinsinsin (8)?+=)cos()(rddvlvU (9)?+=)sin(rdduvV (10) ?+=sin)cos(sinsin)cos(cos)sin(rbrabllalrdd (11)-400 -200 0200 400 600 800-600-400-20002004006008001000120014001600YXUVm mm mFig. 2 Calculation paths of different pointsThe path of the points in liner domain is shown in Fig. 2. It is shown in Fig. 2 that the path of any point is a closed curve that is analogous to an ellipse. The path of different point is different, and the variation of the shape has a certain law. It is shown in equation 9 that the point with the same V component has the same velocity component in the U direction, i.e., the U component has no effect on the velocity component in the U direction. The variation of the velocity component in U direction relative to the angle parameter ? is shown in Fig. 3. It is obvious that the amplitude of the velocity variation is minimal for the points at the suspending point zone. The variation of the initial phase has a certain law. 060120180240300360-800-600-400-2000200400600800velocityVmm/sOFig. 3 Velocity component in U direction 16402007 Second IEEE Conference on Industrial Electronics and Applications060120180240300360-600-500-400-300-200-1000100200300400500600 velocityUmm/sOFig. 4 Velocity component in V direction It is shown in equation 10 that the point with the same U component has the same velocity component in the V direction. In other words the V component has no effect on the velocity component in the V direction. The variation of the velocity component in V direction relative to the angle parameter ? is shown in Fig. 4. It is obvious that the amplitude of the velocity variation is decreasing with the decreasing U component. The variation of the initial phase has a certain law. IV. KINETIC CHARACTERISTIC ARGUMENT OF POINTS IN LINER DOMAINTaking the points in the liner domain as a distribution whole, the analysis to the kinetic characteristic of the points and its variation are carried out. The common feature and variation law is shown in the following A. Feature Argument of the Motion PathIt is shown in Fig. 2 that the path of the points is analogous to the ellipse. In order to describe the feature of the path, the maximal distance between two dots on single path is called the long axis, and the angel between the long axis and the X axis is called the gradient. The path gradient of point in the liner scope plane is shown in Fig. 5. It is shown that path gradient of the points in the suspending point has the same value. For the points having the same U component, the gradient is gradually increasing at lower part of liner, and after the maximal value the gradient is gradually decreasing with the increasing of the V component. 040080012001600-100-80-60-40-20020406080100angleVUommFig. 5 Paths gradient of the points in the liner domain 0400800120016000.00.81.0ellipticityUVmmFig. 6 The ellipticity of the points in the liner scope planeThe ration between the longest axis and the shortest axis of single path is called ellipticity that can reflect the basic feature the closed curves. The ellipticity of the points in the liner domain is shown in Fig. 6. The ellipticity of the point having the same U component got the maximal value in the suspending point zone. B. Critical Value of the Motion during the Crushing Process The start points in the U direction during the close and the open process in one operation cycle is shown in Fig. 7. It can be seen that the start of the close process is not simultaneous. However, the calculation indicates that the start of close process of the point with the same V component is simultaneous. C. Distance in the U and V Direction The distance of points in the U direction during one crushing cycle is shown in Fig. 8. It is obviously that the points having the same V component have the same close and open distance, i.e., the distance in the U direction has no relationship with the U component. 040080012001600050100150200250300350Vstart of open processstart of open processOmmFig. 7 The start of the close and the open process in the U direction2007 Second IEEE Conference on Industrial Electronics and Applications1641040080012001600051015202530354045close process open process distancevmmmmFig. 8 The distance of points in the U direction during one crushing cycle -300-200-100010020030081012141618distanceupwar ddownwar dUmmmmFig. 9 Upward and downward distances in the V direction of the points in the liner scope plane The upward and the downward distances in the V direction of the points in the liner scope plane are shown in Fig. 9. The result shows that the points with the same U component have the same distance in the V direction. The distance in V direction is decreasing with the decreasing of U component, which will relive the liner wear. V. CONCLUSIONSA certain domain of the coupler plane and some points in it are chosen to discuss the kinetic characteristic of the crushing interface or the liner. Based on the computation and the analysis of the practical kinetic characteristic of the points in the liner domain, some traditional motion parameters and some kinetic arguments are calculated. According to the requirement for the squeezing motion of diffe
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:PE150x250复摆颚式破碎机的设计-鄂式破碎机【含7张CAD图纸+PDF图】
链接地址:https://www.renrendoc.com/paper/118728547.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!