卧式数控加工中心回转工作台设计【含5张CAD图纸+PDF图】
收藏
资源目录
压缩包内文档预览:
编号:118959486
类型:共享资源
大小:2.69MB
格式:ZIP
上传时间:2021-03-26
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
卧式
数控加工中心
回转
工作台
设计
CAD
图纸
PDF
- 资源描述:
-
喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】
- 内容简介:
-
任务书学院 专业 姓名 学号 设计题目: 卧式数控加工中心回转工作台设计 一、设计的内容随着经济的不断发展,客户需求日益多样化,对制造企业的生产模式提出了更高的要求,大批量的生产方式将逐渐被模块化、柔性化的生产方式所取代。因此,企业对制造装备提出了更高的要求,柔性化的数控加工设备将成为装备制造业发展的主流。因此,将卧式数控加工中心的设计作为设计题目,迎合了装备制造业发展趋势。卧式加工中心的回转工作台可以有效减少装夹次数,提高加工中心的工序集中程度和加工效率。要求有较高的回转定位精度。二、设计的要求与数据要求:收集加工中心设计资料,了解数控加工中心的工作原理,对典型立式数控加工中心的结构进行比较,提出本次设计的总体方案。了解加工中心进给机构的类型及工作原理,并对主轴箱部件进行详细设计。设计参数如下:加工中心的加工范围为800500600,主轴输出功率10KW,采用BT40标准刀柄。三、设计应完成的工作1 设计说明书1份(12000字);2 手工绘制图、计算机打印图纸若干张(折合A0图纸3.0张以上);其中,手工绘制图或计算机打印图纸不少于(折合A0图一张);3 外文翻译,汉字不少于5000字;4 参考文献:中文15篇,英文2篇。四 设计进程安排 序 号设计各阶段名称日 期1参考文献查阅(综述)、外文资料翻译寒假期间2毕业实习,资料收集20XX.2.24-20XX.3.313方案论证,绘制装配图20XX.4.1-20XX.4.304绘制零件图20XX.5.1-20XX.5.165整理设计说明书20XX.5.17-20XX.6.4五、参考资料及文献查询方向、范围1、 收集相关的机床设计资料,加工中心结构、特别换刀机械手设计的资料。2、 参考设计文献有机械制造装备技术、数控机床等。3、 机械设计手册。 设计开始日期 20XX年2月24 日 指导教师: 设计完成日期 20XX年6月 4 日 系 主 任: 院 长: 20XX年2月24 日题题 目目 卧式数控加工中心 回转工作台设计 学学 院院 专专 业业 班班 级级 学学 生生 学学 号号 指导教师指导教师 - I -摘 要 随着无数科学家们努力的科学研究,科学技术在二十一世纪的今天可以说是在日新月异的发生这变化。数控技术更是慢慢的登上了世界的舞台,在制造业领域发挥了巨大的作用。而工作台正是数控加工中心的一部分,随着科学技术的不断创新,数控回转工作台已经得到普及。 本次设计的课题恰是数控回转工作台,经过对该课题的设计,使我们灵活的运用大学所学的知识,以及可以掌握一些机械设计的方法和步骤。该课题的主要内容包括:确定设计方案、零件的设计计算与校核、绘制装配图和零件图、写设计说明书。数控回转工作台实在普通工作台的基础上进行改造的,在里面增加了涡轮蜗杆等传动机构,使工作台不仅能在 X、Y、Z 三个方向上进行平面移动,而且还能在绕着 Z轴做回转运动,大提高了工作效率,节省了时间。8-10 关键词:数控回转工作台;涡轮;蜗杆- II -ABSTRACTAlong with the science and research of countless scientists work, science and technology in twenty-first Century, today it can be said that this change change rapidly. Numerical control technology is more slowly on to the world stage, play a great role in the field of manufacturing industry. And the working table is part of a CNC machining center, with the continuous innovation of science and technology,NC rotary table has been popular.The graduation design topic is NC rotary table, through the design of the project,make us flexible use of university knowledge, and be able to grasp some of the methods and steps of mechanical design. The main contents of the paperinclude: to determine the design, parts design and checking, assembly drawing and parts, write design specification.Based on NC rotary table is really ordinary working table is modified, the worm and gear to increase on the inside, the table can not only move in a plane in X, Y,Z three directions, but also around the Z axis for rotary motion, greatly improves the work efficiency, saving time.Key words:NC rotary table;turbine;worm- III -目 录摘要. .IABSTRACT.II1 前言.11.1 选题的背景和意义.1 1.1.1 国内外现状.1 1.1.2 选题的目的及意义.21.2 设计内容.2 1.3 设计方案.22 数控回转工作台的设计.52.1 电动机的选择及运动参数的计算.5 2.1.1 电动机类型的选择.5 2.1.2 电动机功率的选择.52.2 齿轮传动的设计.62.2.1 选择齿轮传动的类型和材料.62.2.2 按齿轮接触疲劳强度设计.62.2.3 按齿根弯曲强度设计.82.2.4 几何尺寸计算.92.3 涡轮及蜗杆的选用与校核.10 2.3.1 选用蜗杆传动类型.10 2.3.2 选择材料.10 2.3.3 按齿面接触疲劳强度进行设计.10 2.3.4 蜗杆与涡轮的主要参数与几何尺寸.11 2.3.5 校核齿根弯曲疲劳强度.12 2.3.6 验算效率.122.4 轴的计算与校核.13 2.4.1 齿轮轴的设计与校核.13 2.4.2 蜗杆轴的设计与校核.172.5 轴承的计算与选用.21 2.5.1 轴承受到的载荷.22 2.5.2 验算轴承寿命.235 结论.24参考文献.25- IV -致谢.26- 1 -1 前言 二十一世纪的今天,社会在进步,科技在创新,生产力水平也随之快速发展。因而数控技术也随之越来越广泛的应用于社会的各个领域。在数控技术上,数控机床的应用最为普遍。而工作台又是数控机床上必不可少的一部分,随着科技的发展,科学家的研究,能够实现圆周进给和分度运动的工作台渐渐被使用于卧式的镗床和数控加工中心上。数控回转工作台不仅提高了机床加工的工作效率,完成更多的加工工艺,主要的是它由伺服电机、齿轮、涡轮蜗杆以及工作台等部分组成,里面还设计了锁紧装置,可以实现涡轮的加紧,所以说数控回转工作台是一种很实用的加工工具,慢慢取代普通工作台,已成为数控机床和数控加工中心上不可缺少的一部分。本次毕业课题的主要要求就是通过数控回转工作台的工作原理来进行机械机构的设计与各零部件的数据计算。设计思路是先原理后结构,先整体后局部。811131.1 选题的背景和意义1.1.1. 国内外现状 目前,我国在数控机床行业飞速发展。其中,许多加工中心在加工精度上都已达到了一定的标准水平,可与许多发达国家的数控机床想媲美。而工作台却是机床上必不可少的一部分,随着经济与科学技术的发展,数控回转工作台慢慢背普及,已经被广泛应用于各种数控机床和和数控中心上。数控回转工作台是在普通工作台的基础上进行改造的,但是由于我国机床附件厂的资金匮乏,造成了一些机床附件在技术创新和技术改造方面的力度不大,致使一些机床附件的发展水平停滞不前,成为了制约我国机床工业发展的瓶颈。12 然而,国外的数控机床已经达到了很高的发展水平。能够加工许多结构复杂的零件,从而完成更多的工艺。9而数控回转工作台的应用更是大大提高了数控机床或数控加工中心的工作效率,节省了更多的人力物力。1.1.2 选题目的及意义 随着我国国民经济的迅速发展和国防建设的需要,对高档数控机床提出了急迫的大需求。机床制造业是一国工业之基石,他为新技术、新产品的开发和现代工业生产提供重要的手段,是不可或缺的战略性产业。即使是发达工业化国家,也无不高度重视。机床是一个国家制造业水平的象征。12 数控回转工作台不仅可以在 X、Y、Z 三个坐标平面内进行水平移动,还可以绕着 Z 轴做回转运动,从而提高了机械加工效率,完成更多的加工工艺。数控回转工- 2 -作台有伺服电机带动,通过齿轮传动,涡轮蜗杆的传动,进而带动工作台做回转运动10。1.2 设计内容数控回转工作台是各种数控机床及数控加工中心的重要附件,它是由普通的工作台改造而来,虽说其外形与普通工作台一样,但它是由伺服系统进行驱动,再通过齿轮传动系统将动力传递给涡轮蜗杆,再有涡轮带动工作台转动。数控回转工作台的结构:伺服电动机、齿轮、涡轮蜗杆、工作台等。数控回转工作台的功能;通过工作台的绕 Z 轴的旋转进行加工一些形状复杂的零件。1.3 设计方案 方案一:采用皮带传动加涡轮蜗杆的传动方案。此方案缺点: 1. 滑动损失:皮带工作时,由于带轮两边的拉力差以及相应的变形经差形成弹性滑动,导致带轮与从动轮速度损失。打滑使运动处于不稳定状态,效率下降,摩擦加剧,影响皮带寿命。1 2. 滞后损失:皮带运行时会产生反复伸缩,皮带与带轮的摩擦引起功率损失1。 3. 轴承的摩擦损失:皮带工作时轴承受到皮带的拉力,也引起转矩。1图 1.1 皮带传动加涡轮蜗杆传动结构简图- 3 - 方案二:采用的是涡轮蜗杆加齿轮组的传动方案齿轮传动承载能力高,传动运动正确、平稳,传递功率和圆周速度范围很大,传动速率高,结构紧凑。156 特点:1.尺寸小,结构紧凑。 2.传动平稳,噪声低。 3.可以自锁。 4.效率低、制造成本。图 1.2 涡轮蜗杆加齿轮传动结构简图 方案三:采用的是齿轮传动和锥齿轮的传动方案 锥齿轮传动不具备自锁功能。5- 4 -图 1.3 齿轮和锥齿轮传动结构简图 设计中应选最优方案,故选择方案二,其结构图如下:- 5 - 图1.4 齿轮传动与涡轮蜗杆传动结构图2 数控回转工作台的设计2.1 电动机的选择及运动参数的计算在数控加工加工中心的许多机械加工都需要原动力来进行微量进给,而要实现这些微量进给的原动力可以由步进电机、直流伺服电机、或交流伺服电机这些可以作为驱动元件来提供。22.1.1 电动机类型的选择- 6 -选择电动机的类型主要根据工作机械的工作载荷特性,有无冲击,过载情况,调速范围,起动、制动的频繁程度以及电网供电状况等。2对恒转矩负载特性的机械,应选用机械特性为硬特性的电动机;对恒功率负载特性的机械,应选用变速直流电动机或带机械变速的交流异步电动机。24由于直流电动机需要直流电源,结构复杂,价格昂贵。因此,当交流电动机能满足工作机械要求时,一般不采用直流电动机。现场一般采用三相交流电源如无特性要求均应采用三相交流电动机。当电动机需经常起动、制动和正反转时(例如起重机) ,要求电动机有较小的转动惯量和较大的过载能力因此应选用起重及冶金用三相异步电动机,常用的为 YZ 或 YZR 系列。24此外,根据电动机的工作环境条件,如环境湿度、温度、通风及有无防尘、防爆等特殊要求,选择不同的防护性能的外壳结构形式。根据电动机与被驱动机械的连接形式,决定其安装方式,一般采用卧式。所以按照工作要求和工作环境条件选用交流伺服电动机。22.1.2 电动机功率的选择标准电动机的容量由额定功率表示。所选电动机的额定功率应等于或稍大于工作要求的功率。容量小于工作要求则不能保证工作机正常工作,或电动机长期过载、发热大而过早损坏;容量大则增加成本,并且由于功率和功率因数低而造成浪费。27电动机的容量主要有运行时发热条件限定,在不变或变化很小的载荷下长期连续运行的机械,只要其电动机的负载不超过额定值,电动机便不会过热,通常不必校验发热和发起力矩。27 (1)电动机的选择按照以上工作要求和条件选用交流伺服电动机。初步定电机转速为960r/min。 (2)功率的计算T=FS=20009.820010=3920N.3回转工作台的转速为:n=960/403=8r/min.电动机的工作效率为:=0.97w工作所需功率: p =Tn/9950=39208/(99500.97)=3.3kw (3.17)ww电机所需的输出功率为: p =p /0w- 7 -式中:为电机至工作台之间的总效率。齿轮:=0.97 轴承:=0.9912蜗杆:=0.8 联轴器:=0.96 34因此,总效率=0.970.99 0.80.96=0.69.126346 p =p /=3.3/0.69=4.8kw.0w则取电机额定功率为:p =5.5kw 电机转速为:n=960r/min.m2.2 齿轮传动的设计一级传动为齿轮传动,其传动比为:i=32.2.1 选择齿轮传动的类型和材料 1)选用直齿圆柱齿轮传动; 2)工作台的转速不高,故选用 7 级精度; 3)材料选择。由机械设计中表(10-1)选择小齿轮材料为 40Cr(调质) ,硬度为 280HBS,大齿轮材料为 45 钢(调质) ,硬度为 240HBS。1 4)选小齿轮齿数 Z =24,大齿轮齿数取 Z =72。122.2.2 按齿轮接触疲劳强度设计 由机械设计中设计计算公式(10.9a)进行计算,即 d 2.32 t 123).(1.HEdZuuKT(10.9a) (1)确定公式内的各计算数值。 1)试选载荷系数 K =1.3。t 2)计算小齿轮传递的转矩。 T =95.510 5.5/960 (3.17)1nPm5105 .955 =5.45710 Nmm 4 3)由机械设计中表(10-7)选取齿宽系数=1。d 4)由机械设计中表(10-6)查的材料的弹性影响系数 Z =189.8MPa 。1E21 5)由图(10-21d)按齿面硬度查的小齿轮的接触疲劳强度极限=600MPa。1limH- 8 -大齿轮的接触疲劳强度极限=550MPa。12limH 6)由式(10.13)计算应力循环次数。 N =60n j=609601(1282508)=1.8410 11hL9(10.13) N =N /3=0.61410219 7) 由图(10-19)取接触疲劳寿命系数=0.90;=0.95。1HNK2HNK 8) 计算接触疲劳需用应力。取失效概率为 1%,安全系数 S=1,由式(10.12)得 =0.9600=540MPa H1SKHN1lim1(10.12) =0.95550=522.5MPa H2SKHN2lim2(10.12) (2) 计算 1) 试算小齿轮分度圆直径 d ,代入中较小值。t 1Hd 2.32=2.32=53.86mmt 123).(1.HEdZuuKT324)5 .5228 .189(3411047. 53 . 1 2)计算圆周速度。=2.7m/s10006011ndt10006096086.53 3)计算齿宽 b.b=153.86=53.86mmtdd1 4)计算齿宽与齿高之比。hb模数 =2.24mmtm11zdt2486.53齿高 =2.25=2.252.24=5.05mmhtm=10.67hb05. 586.53 5)计算载荷系数。- 9 -根据=2.7m/s,7 级精度,由机械设计中图(10-8)查的动载荷系数=1.12;K直齿轮,;11FaHaKK由机械设计中表(10-2)查的使用系数=1;AK小齿轮选用 7 级精度,=1.423。HK由=10.67,=1.423 查图(10-13)得=1.35;故载荷系数1hbHKFK =11.1211.423=1.594 HHVAKKKKK (10.13) 6)按实际的载荷系数校正所算得的分度圆直径,由式()得a10.10 mm 65.573 . 1594. 186.533311ttKKdd(10.10a) 7)计算模数mmm,4 . 22465.5711zdm2.2.3 按齿根弯曲强度设计 由机械设计中式(10.5)得弯曲强度的设计公式为 3211)(2FSaFadYYzKTm(10.5) (1)确定公式内的各计算数值 1)由机械设计中图(10-20c)查得小齿轮的弯曲疲劳强度极限=500MPa;大齿轮的弯曲疲劳强度极限=380MPa;11FE2FE 2)由图(10-18)取弯曲疲劳寿命系数=0.85,=0.88;11FNK2FNK 3)计算弯曲疲劳许用应力。取弯曲疲劳安全系数 S=1.4,由式(10.12)得 MPaSKFEFNF57.3034 . 150085. 0111(10.12)- 10 - MPaSKFEFEF86.2384 . 138088. 0222 4)计算载荷系数。K=FFVAKKKKK 512. 135. 1112. 11 5)查取齿形系数。由表 10-5 查得 ;。65. 21FaY226. 22FaY 6)查取应力校正系数。由表 10-5 查得 ;。58. 11SaY764. 12SaY 7)计算大、小齿轮的并加以比较。FSaFaYY 01379. 057.30358. 165. 2111FSaFaYY(10.4) 01644. 086.238764. 1226. 2222FSaFaYY大齿轮的数值大。 (2)设计计算mmm68. 101644. 02411047. 5512. 12324取模数=mm,分度圆直径mm,算出小齿轮齿数m5 . 265.571d245 . 265.5711mdz大齿轮齿数 722432z2.2.4 几何尺寸计算 (1)计算分度圆直径 由机械原理中表(5-1)得mm605 . 22411mzdmm1805 . 27222mzd (2)计算中心距- 11 -mm120218060221dda (3)计算齿轮宽度mm606011dbd取mm。6021 BB2.3 涡轮及蜗杆的选用与校核2.3.1 选用蜗杆传动类型 根据 GB/T10085-1988 的推荐,采用渐开线蜗杆(ZI) 。1蜗杆转速,其传动比,输入功率为。min/3201rn 40ikwP52.3.2 选择材料 因蜗杆的传动功率和速度不大,故蜗杆用钢;因希望功率高些,耐磨性高45些,故蜗杆螺旋齿面要求淬火,硬度为。蜗杆用铸锡磷青铜,HRC5545110PZCuSn金属模铸造。为了节约贵重的有色金属,仅齿圈用青铜制造,而轮芯用灰铸铁 HT制造。11002.3.3 按齿面接触疲劳强度进行设计由机械设计中式(11.12) ,传动中心距 322)(HEZZKTa(11.12) (1)确定作用在涡轮上的转矩2T 按,估计效率,则21z8 . 0 (3.17)4mmNinPnPT477500040/3208 . 051055. 9/1055. 91055. 96162262 (2)确定载荷系数K 取载荷系数;则1K15. 1AK05. 1K21. 105. 1115. 1vAKKKK (3)确定弹性影响系数EZ- 12 - 因选用的是铸锡磷青铜涡轮和钢蜗杆相配,故。121160MPaZE (4)确定接触系数Z 由与的比值=,从图()中可查得。11daad135. 018119 . 2Z (5)确定许用接触应力H从机械设计中表()查得涡轮的基本许用应力。711MPaH268应力循环次数 7210536. 182508816060hLjnN(10.13)寿命系数87710536. 110HNK95. 0则 MPaKHHNH6 .25426895. 0 (6)计算中心距 (11.12)mma297)2189 . 2160(477500021. 132 取中心距,因,故从文献机械设计中表()1取模数amm35040i211,蜗杆分度圆直径。这时,从图()中可查得接触mmm8mmd7012 . 01ad1811系数,因此,因此以上计算结果可用。174. 2ZZZ 2.3.4 蜗杆与涡轮的主要参数与几何尺寸 (1)蜗杆 轴向齿距;直径系数;齿顶圆直径;齿根圆mmpa133.2510qmmda851直径;分度圆导程角;蜗杆轴向齿厚。1mmdf6013618115664.12asmm(2)涡轮 涡轮齿数;变位系数;822Z5 . 02x 验算传动比,这时传动比误差为,是允许的。4128212ZZi%5 . 2404041- 13 - 涡轮分度圆直径65682822 mZdmm 涡轮的喉圆直径672826562222aahddmm 涡轮齿根圆直径mmhddff8 .63682 . 126562222 涡轮咽喉母圆半径mmdarag6 .318 .6362135021222.3.5 校核齿根弯曲疲劳强度53. 12212FFaFYYmddKT 当量齿数 96.86)31.11(cos82cos3322zzv 根据,从文献机械设计中图()中可查的齿形系96.86, 5 . 022vzx1911数。87. 22FaY 螺旋角系数9192. 014031.1111401Y 许用弯曲应力 FNFFK 从表()中查得由制造的涡轮的基本许用弯曲应力811110PZCuSn。1MPaF56 寿命系数 644. 01022. 510976FNKMPaMPaF086.36644. 05648.439192. 087. 2865670477500021. 153. 1FMPa弯曲强度是满足的。2.3.6 验算效率 )tan(tan)96. 095. 0(v(11.20a)- 14 - 已知;与相对滑动速度有关。31.11vvfarctanvfsv smndvs/45. 231.11cos10006032070cos10006011(11.12) 从机械设计中表()用插值法查得、;代入式18110204. 0vf1687. 1v中得,大于原估计值,因此,符合要求。184. 0 轴的计算与校核4 . 2 齿轮轴的设计与校核1 . 4 . 2 . 求输入轴上的功率,转速和转矩11P1n1T 取轴承效率=,联轴器效率 则199. 096. 02211PP 2 . 596. 099. 05 . 5kwmin/9601rn (3.17)mmNnPT2 .517299602 . 595500009550000111 . 求作用在齿轮上的力2 已知高速小齿轮的分度圆直径为1dmm60 齿轮轴所受的力如下图所示:- 15 -图 齿轮轴受力图1 . 2NdTFt31.1724602 .5817292211NFFtr6 .62720tan31.172420tan0aF 初步确定齿轮轴的最小直径. 3 齿轮轴的结构如下图:图 齿轮轴的结构图2 . 2 选取轴的材料为钢,进行调质处理。根据文献机械设计中表(),45315- 16 -取,于是得1120A (15.2)mmnPAd209602 . 511233110min 输入轴的最小处安装联轴器,为了使所选轴直径与联轴器的孔径相-d-d适应,故需同时选取联轴器的型号。 联轴器的计算转矩,查机械设计中表(),取,则:1TKTAca1143 . 1AKmmNTKTAca96.642472 .517293 . 11 查标准,选用型凸缘联轴器,其公称转矩为20035843/TGB4GYH。半联轴器的孔径,故取,半联轴器长度mmN 224000mmd30-dmm30,半联轴器与轴配合的毂孔长度。1mmL82mmL501 . 轴的机构设计4 (1) 拟定轴上零件的装配方案 (2) 根据轴向定位的要求确定轴的各段直径和长度 mm40-dmmL52- mmd48-mmL38- mmd64-mmL8- mmd48-mmL32- mmd40-mmL56- mmd30-mmL54- (3)轴上零件的周向定位 齿轮、半联轴器与轴的周向定位均采用平键连接。按由文献机械设计-d中表()1得。同时为了保证齿轮与轴的配合有良好的对中16mmlhb28914性,故选择齿轮轮毂与轴的配合为,同样半联轴器与轴连接,选用平键为67nH,半联轴器与轴的配合为。滚动轴承与轴的周向定位是由mmlhb327867kH- 17 -过度配合来保证的,为。167mH (4)确定轴的倒角尺寸参照机械设计表(),取轴端倒角为。215455 . 1 5. 求轴上的载荷 齿轮轴上的应力分析图如下 - 18 -图 齿轮轴应力分析3 . 2 从轴的受力情况可以看出截面是轴的危险截面。现将计算出截面上的、BHM及的值列于下表VMM表 齿轮轴危险截面应力1 . 2载荷水平面H垂直面H力F,NFNH2 .1801NFNH7 .4772,NFNV5 .651NFNV45.1732弯矩MmmNMH2 .2866mmNMV7 .1040总弯矩mmNMMMVH10.306822扭矩TmmNT17846 6. 按弯扭合成应力校核轴的强度 只需校核轴的危险截面,故取,轴的计算用力6 . 0 (15.5) MPaWTMca6 . 3351 . 0)178466 . 0(10.3068)(32222 前已选定轴的材料为钢,调质处理,由机械设计轴表()查的45115。因此,故安全。1MPa6011ca2.4.2 蜗杆轴的设计与校核 1. 求输出轴上的功率、转速和转矩。2P2n2T齿轮的传动效率为,轴承为,则97. 0199. 02kwPP0 . 599. 097. 02 . 52112min/320396012rinn mmNnPT75.1492183200 . 595500009550000222(3.17) 2. 求作用在齿轮上的力 大齿轮的分度圆直径为mmd1802- 19 -NdTFt165818075.1492182222NFFtr5 .60320tan165820tan0aF 3. 初步确定轴的最小直径 先估计轴的最小直径。选取轴的材料为钢,进行调质处理。1根据表(45),取,于是得3151120A (15.2)mmnPAd283200 . 511233220min取mmd40min取轴两端直径为mm45 4. 轴的结构设计 (1) 拟定轴的结构图图 蜗杆轴结构图4 . 2 (2). 确定轴的各段直径和长度- -dmm40lmm132- -dmm45lmm90- -dmm54lmm80- -dmm85lmm240- -dmm54lmm80- -dmm45lmm14- 20 - -dmm40lmm73 (3). 轴端倒角为。455 . 1 5. 轴的受力分析 蜗杆轴的受力分析如下图:图 蜗杆轴受力图5 . 2根据机械设计中式(11.7)、 (11.8)和(11.9)得 (11.7)1122dTFt1 2222dTFa(11.8) tan22trFF(11.9)代入数值计算得:NFt6 .12632NFa7 .6352NFr9 .4592蜗杆轴的应力分析如下图:- 21 - 图 2.6 蜗杆轴应力分析图 从轴的受力情况可以看出截面是轴的危险截面。现将计算出的截面处的B- 22 -、及值列于下表,如下表所示:HMVMM表 蜗杆轴的危险截面应力2 . 2载荷水平面H垂直面V力F,NFNH8 .9951NFNH8 .7362,NFNV73.551NFNV17.2342弯矩1MNMH6 .1242981NMV48.395041总弯矩MNMMMVHH1304242121扭矩TNT50643 . 按弯扭合成应力校核轴的强度5 只需校核危险截面,故取,轴的计算应力6 . 0 MPaWTMca0 . 6)8 .60(1 . 0)506436 . 0(130424)(3222221(15.5) 前已选定轴的材料为钢,调质处理,由机械设计中表()查的45115,因此,故安全。1MPa6011ca2.5 轴承的计算与选用 以蜗杆为例,蜗杆轴选用圆锥滚子轴承 30309 其基本额定动载荷 Cr=130KN,基本额定静载荷 C0r=158KN 蜗杆轴所受到的轴向力,切向力,径向力如下图:- 23 -图 2.7 蜗杆轴受力图2.5.1 轴承受到的载荷 1)由轴的计算结果得,轴承受到载荷FNH1=995.8N FNH2=736.8NFNV1=55.73N FV2=234.17N Fr1=FN1=N 7 .99773.558 .995222121NVNHFF(13.3) Fr2=FN2=N 77317.2348 .736222222NVNHFF 轴承所受的力如下图:图 2.8 轴承受力图FA=6357NFr1=997N Fr2=773NFd1=eFr1=0.4997=398.8N Fd2=eFr2=0.4773=309.2N FA+Fd2Fd1 所以:1.压紧 2.放松 Fa1=FA+Fd2=6357+309.2=6666.2N (13.11a) Fa2=Fd2=309.2N (13.12b) 3)球轴承当量动载荷 P1和 P2eFFra69. 69972 .666611- 24 -eFFra2 .3092 .30922 由机械设计中表(13-5)分别进行查表或插值计算得径向载荷系数和轴向载荷系数为 对轴承 1 对轴承 2 4 . 01x5 . 11y4 . 02x5 . 12y 按表(13-6),取 fp=1.5 P1=fp(x1Fr1+y1Fa1)=1.5(0.4997+1.56666.2)=15597.2N (13.8a)P2=fp(x2Fr2+y2Fa2)=1.5(0.4773+1.5309.2)=1159.5N2.5.2 验算轴承寿命 P1P2,所以按轴承 1 的受力大小验算 (13.5)hhLhPCnL156215)2 .1559710130(3206010)(60103103616故选用轴承满足寿命要求。- 25 - 5 结 论 经过此次长达几个月的设计,让我体会到了那些设计师们的艰辛。仅仅一次的设计,我就感到有一些力不从心。虽然再设计过程中出现了很多问题,但通过老师的细心讲解与自己的不懈努力,最终完成了这次可以说是一个人生转折点的设计。这次的设计,让我将这大学四年来所学的只是得到了很好的运用,并将其进行了一个系统化的整理,高兴的是我还没有将这些知识忘掉,而这次的设计又将我所学的知识进行了巩固,我想这是学校让我们做设计的一个重要的目的吧。让即将进入社会的我们可以有一个对所学专业的重新认识,给我们以后的工作打下坚实的基础。我所设计的课题(数控回转工作台)听起来很简单,但当我拿到这个课题的时候,有种无从下手的感觉,但在导师的讲解下和和通过自己对资料的查找,明白了数控回转工作台的工作原理,通过自己的设计,时期在通用工作台的基础上增加了齿轮传动与涡轮蜗杆传动机构,再在原动力(伺服电机)的驱动下使工作台进行了旋转,从而有普通的工作台变成了回转工作台。 通过此次设计,我明白了所有的东西并不都是很完美,都是通过不断地改进和完善才能使其做到尽量的完美。使其性能越来越好,更能体现他的价值。- 26 -参 考 文 献1 濮良贵,纪名刚.机械设计M,第八版.北京:高等教育出版社,2006:186-3832 吴宗泽,高志.机械设计课程设计手册M,第四版.北京:高等教育出版社,2006:58-1023 罗良武,赵勤,王嫦娟.画法几何及工程制图M,第二版.北京:机械工业出版社,2008:80-2574 冯清秀,邓星钟.机电传动控制M,第五版.武汉:华中科技大学出版社,2011:11-505 郑文伟,吴克坚.机械原理M,第七版.北京:高等教育出版社,2005:52-1526 郑金星.机械制造装备设计M.哈尔滨:哈尔滨工程大学出版社,2006:14-1527 薛蒲昌.基于 PID 的数控机床工作台电液位置伺服系统分析J.信息技术,2009,(6):107-1098 崔旭芳.数控回转工作台的原理与设计J.技术交流,2008,(3):102-1039 顾华锋.数控机床回转工作台动态性能分析与仿真J.机床与液压,2008,(36):216-22010 王友林.数控双转轴式回转工作台的结构与工作原理J.煤矿机械,2009,(30):102-10311 张立莹.数控回转工作台加紧机械浅析J.制造技术,2001,(3):102-10312 钟雯.机械类设计课题精选M.北京:化学工业出版社,2010:10-4513 杨萍.数控工作台设计J.组合机床自动化加工技术,1996,(8):18-4214 Duke K. Improving Gear Pump Relief Groove DesignJ.Prec. Natl. Conf. Fluid Power,2007:7-3015 Xiaojin Fu,Guohua Yan.The Fuzzy Optimization Design of the Gear PumpJ.Interational Conference on Agile Manufacturing(ICAM 2003),2003:337-341- 27 -致 谢四年的大学生活即将结束,在大学的最后一段时间里,我们完成了设计。在这里,我非常感谢我的导师和陪我在一起做设计的同学们,是你们陪我度过了大学的最后一段时光。我很感谢我的导师,你不辞辛苦为我们精心的讲解,在此次设计中,由于所学知识不系统,无法运用到实际中,因此遇到了很多的问题,使我感到很迷茫。而您总是耐心的给我们讲解,讲解其中的设计原理,当你发现我们的错误时,及时为我们纠正,让我们少走了很多弯路。再就是我也感谢我的同学们,你们的帮助也是我解决了不少设计中的技术难题。最后感谢学校在我们即将离校,步入社会时给了我们这次实践机会,还给我们提供了良好的学习环境,同时感谢评阅老师们,在炎热的夏季抽出宝贵的时间来评阅这片设计。Part program automatic check for three axis CNC machines Roberto Licaria,*, Ernesto Lo Valvob, Mario PiacentiniaaUniversita di Palermo, Palazzo Steri Piazza Marina, 61-90133 Palermo, ItalybUniversita di Catania, Catania, ItalyAbstractThe simulation and verification of NC codes for CNC machining is a very important task. The aim of this work is to limit the number ofcutting tests needed to verify the right writing of the part program for a CN milling machine in the intent of saving time, human resourcesand money. This is obtained through the Boolean operation among solids, in AutoCAD environment, of the volume covered by the toolduring the operations ruled by the part program. # 2001 Published by Elsevier Science B.V.Keywords: CNC machines; AutoCAD; Part program1. IntroductionWe have recently attendedtothe irreversibledevelopmentof computers, that now are cheaper, more friendly and,consequently, more diffused in modern industries. Compu-ters have been used in the industry sector for several years indifferent stages: in the design stage using CAD systems;in the process planning stage using CAPP systems; in theproduction stage using CAM systems.Since afewyearsago,thesethreestages were isolated oneby another and each stage should have answered specificproblems and questions. Sometimes it happened that theproduction stage imposed some essential conditions to theother stages (as an example, when the designer establishesthe tolerance for the piece; or when it is necessary to makesome change to the piece during the production stage sincethere is an impossible or difficult machine production), butthe three stages were strictly separated.Moreover, it was thought that it was impossible fordifferent programs, written by different programmers withdifferent logics, to speak to each other. Recently,different programs tried to communicate in order to solvesome problems, but this is very difficult to be achieved.There exist a number of programs which are able toperform that way, but they are not universal programs:they are very specialized programs which can be used onlyin specific fields using powerful computers. As a matter offact,itisnecessarytodevelopauniversalsoftwareeasytobeused by a simple, common and very cheap PC.Numerical Control machines are very commonly used fortheir ability to help industries to achieve an increase inproductivity and in quality at the lowest costs. As a matter offact, NC machines are faster and more precise than tradi-tional ones and they work very accurate surfaces, but aremore expensive and it is more difficult to use them than thetraditional ones.Moreover, it is necessary to compile a specific program tobe read by the machine control unit in order to obtain thedata needed to exactly move the tool. This program (calledpart program) is written using a particular programminglanguage that can be read by every NC machine (machineshave to be similar: turning machines, end milling machines,etc.).The first problem we meet using NC machines is thatwhen the programmer makes a mistake in writing the partprogram, the piece will not be realized the way we want, butit will have a different shape or different features. But itcould be more dangerous (and also expensive) if the pro-grammingmistakegivesthetoolamotioncommandthatcangenerate a collision between the tool and the fixed parts ofthe machine, because of the speed of the NC machine tool ishigher than that of the traditional machine tool.We have other problems using NC machines, for examplehow to choose the right depth or feed rate or how to choosethe shape of the workpiece in order to minimize the materialwaste. As a rule, in order to solve these problems somecutting tests are realized, but they are very expensive to beimplemented since they are a waste of human resources,time, materials and money.Moreover, not all the problems are very easy to be solvedbyimplementingonetestonly,sothatthetesthastobemadeagain over and over. It should be really useful to makevirtual cutting tests using computers instead of NCmachines and as much useful should be the possibility toJournal of Materials Processing Technology 109 (2001) 290293*Corresponding author.0924-0136/01/$ see front matter # 2001 Published by Elsevier Science B.V.PII: S0924-0136(00)00812-8display the space regions crossed by the machine tool duringthe processing work.The diffusion of electronic realistic representation sys-temsofmechanicalpiecessuggestsustousetheminordertorealize a virtual simulation of the cutting tests for the threeaxis end milling machine 15.Our task was to create a software which can directly readand interpret the part program and display it using theAutoCAD solid modeler. Our software makes it possibleto compare the tested piece on the screen either with theproject piece or with the workpiece, and it shows the toolpath, so that dangerous collisions can be monitored.2. The cutting processThe cutting process is the result of an interferencebetween the tool and the workpiece, and it can be simulatedby a number of Boolean operations between primitives.The tool, an end milling tool, can be represented by arevolution AutoCAD solid. The tools swept volume canbe represented by surfaces, while edges and vertexes of thisvolume are created by the tool motion. Every primitivecreates its own swept volume, depending on the motiondirection. For example, a cylindric tool can move followinga line which can be parallel or orthogonal to the tool axis. Inthe first case,the swept volume is a higher cylinder, in thesecond case the swept volume is a combination of a boxand two half cylinders.A cutting process on a circular line can be represented bythe motion of a closed polyline (the tools cross-section)around a revolution axis (Fig. 1). These solids can besubtracted from the solid representing the workpiece, inorder to simulate the end milling cutting process.3. AutoCADAutodesks AutoCAD was the most popular and verypowerful CAD software for PC since it was introduced in1982. It has always been providing AutoLISP and ADSprogramming interfaces in order to develop customizedapplications. ADS is more efficient and easier to be usedthan LISP and it has been offered as an alternative interfacesince version R11. ADS uses ANSI-C as the programminglanguage since it has been the most widely accepted lan-guage for the development of miscellaneous applications. Itcan also use all portable ANSI-C libraries.We developed our software in 1996 using AutoCAD R12.At that time AutoCAD used AME for solid modeling, but ithas switched to ACIS standard since version R13. With thenewly released R14, we decided to upgrade our softwarebecause of the ACISs faster computing efficiency and moreprecise description of solids. Moreover, it reduces the size ofthe drawing files. As a consequence, ACIS is able to handlevery complicated models much better than AME can.4. The developed softwareOursoftwareiswrittenusingClanguagetobeexecutedinAutoCAD ADS environment with some instructions pecu-liar to AutoCAD commands execution 6,7.The software is divided into two fundamental parts:? The first part creates an interface between the part pro-gram and the AutoCAD ambient.? The second part makes the part program data ready to beread and interpreted.The part program contains some instructions about thetool path (Gxx instructions), geometrical characteristics(like points coordinates or joint radius), technological char-acteristics (feed rate, spindle speed, etc.): the softwareinterprets the geometrical instructions only.The software runs inside AutoCAD and the operator candraw the workpiece or load it as an external file, choose thetool shape (there are four types of tool: cylindric, cylindricball-end, half sphere, sphere) and its dimensions: the soft-ware calculate and draw the cross-section of the tool that isan AutoCAD polyline (Fig. 2). Now the operator has to loadthe part program and the simulation can start.Fig. 1. Tools swept volume.Fig. 2. Tool options.R. Licari et al./Journal of Materials Processing Technology 109 (2001) 290293291The procedure, first of all, analyses the geometricalcharacteristics and organizes them in a chronological order(for example: the X-coordinate of the start point of a genericmotion is called oldX, the X-coordinate of the end point iscalled valX.After this first step, the software interprets the motioninstructions (G00, G01, G02 and G03) given by the partprogram and draws them through the AutoCAD commandsExtrude and Revolve. The Extrude AutoCAD com-mand can add the 3D to a 2D closed polyline, whereas theRevolve AutoCAD command realizes a revolution solidfrom a 2D closed polyline.TheG00instructionrepresentsthemotionsofthetoolwhenit does not touch theworkpiece: in our work it is representedby a prismatic AutoCAD solid. The cross-section of thissolid is the same as the tool and it is obtained by Extrudecommand. The simulation of this motionis useful in order toverify the possibility of a collision with fixturing.The G01 instruction represents the motions of the toolwhen it touches the workpiece: in our work it is representedby a prismatic AutoCAD solid. The cross-section of thissolid is still the same as the tool and it is obtained by theExtrude command. The Extrude AutoCAD commanduses a segment; its start point has oldX, oldY, oldZas coordinates and its end point has valX, valY, valZas coordinates.NoticethatinordertoexecutetheExtrudecommand,itisnecessary tohave the Z-axis aligned with that segmentandthe polyline lying on the XY plane. For this reason we havecreated the same instructions to change the AutoCADcoordinate system (UCS: user coordinate system).The G02 and the G03 instructions are represented byrevolution solids. These solids are created by the rotation ofthe cross-section of the tool around a revolution axis. Thisaxis starts from the center of the fillet and is perpendicular tothe XY plane.As the part program does not include the informationsneeded by AutoCAD in order to draw this solid, it wasnecessary for us to realize some calculation subroutines inorder to obtain the essential information from the partprogram data. Now the operator can start the simulation.Hechoosestheworkpiece(orhedrawsit)andhechoosestheshape and the dimension of the tool; the software automa-tically draws a polyline and puts it in the so-called restpoint, far away from the workpiece. The tool has aprogramming point: it is the point that follows the partprogram trajectory (Fig. 3).When our software processes a G00 or G01 instruction, ithas two options:1. The start point Z-coordinate is different from the endpoint Z-coordinate: we have a vertical motion and thesoftware draws a cylinder with the same radius of thetool and h ? ?Z2? Z1?.2. The start point Z-coordinate is the same as the end pointZ-coordinate: the tool moves on the XY plane and thesoftware makes a copy of the polyline cross-section ofthe tool and moves it towards the start point of themotion. The software changes the UCS (the Z-axis isaligned with the segment from the start point to the endpoint) and rotates the polyline since it has to beperpendicular to the Z-axis. Now the polyline can beextruded and the software draws a solid representing thetool motion (Fig. 4).When our software processes a G02 or a G03 instruction,the tool moves on the XY plane and the software makes acopy of the polyline cross-section of the tool and moves ittowards the end point (G02) or the start point (G03) of themotion. The result of this procedure is the revolution axis,the revolution of the polyline and the drawing of a solidrepresenting the tool motion (Fig. 5).At the end of the simulation, the operator can see on themonitor of his PC the complete tool path. But he has now aFig. 3. Tools programming point.Fig. 4. G01 command simulation.292R. Licari et al./Journal of Materials Processing Technology 109 (2001) 290293CAD file: this tool path is an AutoCAD solid, which can bemeasured, which perspective can be changed, which volumecan be calculated. He can also use another AutoCADcommand: the Subtract command by which he obtainsthe final shape of the workpiece and he can measure it, hecan change the viewpoint or obtain geometric informationon volume, center of gravity and so on.We have tested our software using some part program andthe results have been very flatt
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。