定稿论文.doc

滑橇式输送机5.5m 链式动力滚床设计【含CAD图纸+PDF图】

收藏

资源目录
跳过导航链接。
滑橇式输送机5.5m链式动力滚床设计含CAD图纸PDF图.zip
滑橇式输送机5.5m 链式动力滚床设计【含CAD图纸】
评定记录.doc---(点击预览)
答辩演示.ppt---(点击预览)
毕业设计任务书.doc---(点击预览)
毕业论文.doc---(点击预览)
开题报告.doc---(点击预览)
定稿论文.doc---(点击预览)
HQ1.01.5.1.PDF---(点击预览)
HQ1.01.5.1.dwg---(点击预览)
HQ1.01.5.0.PDF---(点击预览)
HQ1.01.5.0.dwg---(点击预览)
HQ1.01.5-6.PDF---(点击预览)
HQ1.01.5-6.dwg---(点击预览)
HQ1.01.5-5.PDF---(点击预览)
HQ1.01.5-5.dwg---(点击预览)
HQ1.01.5-4.PDF---(点击预览)
HQ1.01.5-4.dwg---(点击预览)
HQ1.01.5-3.PDF---(点击预览)
HQ1.01.5-3.dwg---(点击预览)
HQ1.01.5-2.PDF---(点击预览)
HQ1.01.5-2.dwg---(点击预览)
HQ1.01.5-1.PDF---(点击预览)
HQ1.01.5-1.dwg---(点击预览)
HQ1.01.4.2.PDF---(点击预览)
HQ1.01.4.2.dwg---(点击预览)
HQ1.01.4.1.PDF---(点击预览)
HQ1.01.4.1.dwg---(点击预览)
HQ1.01.4.0.PDF---(点击预览)
HQ1.01.4.0.dwg---(点击预览)
HQ1.01.3.PDF---(点击预览)
HQ1.01.3.dwg---(点击预览)
HQ1.01.2.1.1.0.PDF---(点击预览)
HQ1.01.2.1.1.0.dwg---(点击预览)
HQ1.01.2.1.1-2.PDF---(点击预览)
HQ1.01.2.1.1-2.dwg---(点击预览)
HQ1.01.2.1.1-1.PDF---(点击预览)
HQ1.01.2.1.1-1.dwg---(点击预览)
HQ1.01.2.1.0.PDF---(点击预览)
HQ1.01.2.1.0.dwg---(点击预览)
HQ1.01.2.1-3.PDF---(点击预览)
HQ1.01.2.1-3.dwg---(点击预览)
HQ1.01.2.1-2.PDF---(点击预览)
HQ1.01.2.1-2.dwg---(点击预览)
HQ1.01.2.1-1.PDF---(点击预览)
HQ1.01.2.1-1.dwg---(点击预览)
HQ1.01.2.0.PDF---(点击预览)
HQ1.01.2.0.dwg---(点击预览)
HQ1.01.2-1.PDF---(点击预览)
HQ1.01.2-1.dwg---(点击预览)
HQ1.01.1.2.0.PDF---(点击预览)
HQ1.01.1.2.0.dwg---(点击预览)
HQ1.01.1.2-1.PDF---(点击预览)
HQ1.01.1.2-1.dwg---(点击预览)
HQ1.01.1.1.0.PDF---(点击预览)
HQ1.01.1.1.0.dwg---(点击预览)
HQ1.01.1.1-2.PDF---(点击预览)
HQ1.01.1.1-2.dwg---(点击预览)
HQ1.01.1.1-1.PDF---(点击预览)
HQ1.01.1.1-1.dwg---(点击预览)
HQ1.01.1.0.PDF---(点击预览)
HQ1.01.1.0.dwg---(点击预览)
HQ1.01.1-2.PDF---(点击预览)
HQ1.01.1-2.dwg---(点击预览)
HQ1.01.1-1.PDF---(点击预览)
HQ1.01.1-1.dwg---(点击预览)
HQ1.01.00.PDF---(点击预览)
HQ1.01.00.dwg---(点击预览)
HQ1.01-1.PDF---(点击预览)
HQ1.01-1.dwg---(点击预览)
压缩包内文档预览:(预览前20页/共70页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:119125149    类型:共享资源    大小:7.49MB    格式:ZIP    上传时间:2021-03-27 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
滑橇式输送机5.5m 链式动力滚床设计【含CAD图纸+PDF图 滑橇式 输送 5.5 链式 动力 设计 CAD 图纸 PDF
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:414951605 或 1304139763】

内容简介:
武汉纺织大学2010届毕业设计论文武汉纺织大学 毕业设计(论文) 摘 要随着社会文明发展与进步,运输作为手段也不断发展,特别是在汽车行业,滑橇式输送系统在汽车制造中得到了广泛的使用。本次设计的链式动力滚床能在高温和低温的环境下工作,也能够低速运行,以及它的柔性化输送的优点,具有很高的生产率,由于链式动力滚床输送与运行速度稳定,工作过程中所消耗的功率校小,寿命长,所以获得了汽车制造业的青睐。链式动力滚床的设计主要包括,减速电机的选型以及载荷的计算与校核,链条的选择,链轮的设计,驱动链轮轴的设计以及动力棍子轴的设计,校核轴的疲劳强度,张紧装置的设计,滚动轴承的选择与计算等。关键词:(滑橇式输送系统、运输、速度、链式动力滚床)ABSTRACT With the development of social civilization and progress, as a means of transport is also growing, especially in the automotive industry, skid conveyor systems in the automobile industry have been widely used. The dynamic design of the chain roller bed to the high temperature and low temperature working environment, can also be low speed, as well as its flexible conveying the advantages of high productivity, power roller bed conveyor chain speed and stability , work the power consumed in the process school, long life, so get the favor of the automobile industry. Chain Power Roller bed design includes, gear motor selection and load calculation and checking, the choice of the chain, sprocket design, driven chain wheel axle design and the design of power stick, check the fatigue strength of shafts , tensioning device design, bearing selection and calculation.Keywords:(Skid conveyor system、Transport、Speed、Chain Power Roller Bed) 目 录1绪论611 滑橇输送机的发展及其行业现状6111 滑橇式输送机的发展6112 我国滑橇式输送机的行业现状712 滑橇输送机链式动力滚床主要组成82 总体传动系统方案的拟定921 传动方案设计9211 传动方案的要求9212 拟定传动方案93 减速电机的选型及计算1031 减速电机的选型10311 选型的分析1032 减速电机的相关计算10321 负载转矩及转速计算104 动力辊子设计1441 动力棍子轴的设计14411 轴的分类14412 轴的设计1542 套筒的设计19421 套筒的作用及结构设计1943 滚子的设计20431 带轮缘的滚子设计20432 带轮缘的滚子设计205 链传动设计2151 链传动的介绍21511 滚子链链轮21512 滚子链链轮的材料及结构设计2252 滚子链传动设计计算2553 链传动工作情况分析29531 链传动的运动分析29532链传动的受力分析31533滚子链传动失效形式32534链传动的布置、张紧和润滑336 基于动力辊子的滚动轴承设计3661 滚动轴承的介绍36611 滚动轴承的工作特点36612 滚动轴承的主要类型3762 计算准则38621 滚动轴承的校核计算3863 设计总结39结束语39参考文献40外文资料41中文翻译55致 谢1 绪论 11 滑橇输送机的发展及其行业现状111 滑橇式输送机的发展 19世纪末,滑橇输送机已开始在军工、钢铁等行业得到应用。所以,滑橇输送机是机械化输送领域中历史悠久、使用时间长、结构品种多因而占有重要地位的一个部类。 现代的滑橇输送机发展初期,由于受当时的社会整体水平与科技的制约,发展速度比较缓慢。直到20世纪初,一方面社会上各种工业机械的大生产对机械化输送提出了强烈要求。于是,各种形式的输送机陆续问世,生产输送机的专业厂不断建立,像著名的制造输送机的美国WEBB公司,还有如:美国的ASI;日本的NKC、大福与椿本;德国的多尔;英国的海顿和法国的西塔姆、威利等。输送机的产品也已从早期的机构粗大、外表笨重、功能单一、可靠性差和维修不便等低水平阶段发展到现在已是功能完善、调速精度高、可靠性好、有较高技术含量的机械产品。112 我国滑橇式输送机的行业现状 滑橇式输送机是由动力滚床、平移滚床、旋转台、举升台、平移机、链式输式送机等各种独立输送单元所组成的组合式输送系统,携带输送物品的橇体依靠托滚或链条的摩擦力实现储存、前进、后退、平移、举升和旋转等复杂功能,具有机动灵活、组合方便、运行平稳、布置紧凑等特点,是汽车和其它大型物体,喷漆、装配的理想运输设备。 我国的输送业是解放后才开始正式建立的,机械化输送业在中国的发展也只有几十年的历史,所以,我国的输送机行业可以算的上是一个年轻的行业。 我国滑橇输送机的生产是从国外同类设备进行测绘和仿制开始的。早期,专业生产厂很少,即使有,规模也不大,滑橇输送机大都是一些专业厂作为非标准产品来生产的,因此,生产效率低,技术不配套,发展非常缓慢。 进入80年代,尤其是改革开放以来,为了满足大规模机械化生产的需求,一个个新兴的以滑橇输送机为主的专业生产厂家如雨后春笋般涌现出来。这些新兴的生产厂家,凡能在激烈竞争中生存下来并迅速发展的,往往都具有知识密集、人才密集、资金密集与信息密集等特点。到80年代末、90年代初,中国的滑橇输送机械进入了飞速发展时期,随着中国经济的进一步腾飞,汽车、摩托车、家电、轻工、化工、钢铁等行业引进了许多国外成套进口设备。其中,有不少是滑橇式输送设备。这些滑橇式输送设备的配套国产化工作,既为滑橇式输送机制造厂提供了市场,又为我国滑橇式输送机行业提供了向先进工业国家学习的机会,促进了我国滑橇式输送机行业的发展。应该说我国的滑橇式输送机械工业由于底子薄、发展晚、同国外差距较大,目前的整体水平仅相当于国外七、八十年代的水平。至于滑橇输送机行业则更为薄弱。但是,由于国家的大力扶植,大部分新兴的滑橇输送机企业,通过广泛地同国内有关高校联合,共同承担工程、联合开发,有些还与国外的同行进行长期的合作,与国外先进企业联合设计与生产新型的滑橇输送机,并努力与国际接轨。通过这些途径,在很短时间内,使我国的滑橇式输送机制造厂快速地提高了自身的技术水平,个别先进企业将滑橇式输送机产品出口到国外,我国的滑橇输送机械也正逐步走向世界。12 滑橇输送机链式动力滚床主要组成 尽管滑橇式输送机的品种繁多,有些结构还比较复杂,但作为组成输送机的功能部件基本上由下述几类组成。(1) 原动机 原动机是滑橇式输送机链式动力滚床的动力来源,一般都采用交流电动机。视需要可以采用普通的交流异步电动机,或采用交流调速电动机。可调速的电动机有变级式的小范围内有级调速的电动机,也有能无级调速的变频、滑差交流电动机。采用可调速电机,电动机本身成本较高,但驱动装置的结构却比较简单。(2) 驱动装置 驱动装置,又称驱动站。通过驱动装置将电动机与输送机头轴联接起来,驱动装置的组成取决于其要实现的功能,通过驱动装置要实现的功能有: 降低速度 由于驱动电机的转速相对于输送链条运行速度的要求高得多,所以滑橇式输送机链式动力滚床必须有减速机构。减速机构通常有带传动、链传动、齿轮传动、蜗杆传动和履带驱动机构等。 机械调速 传动链条的运行速度如需在一定范围内变动,虽然可通过电动机调速来实现,由于单纯用电动机调速,会有电机转速低输出转矩小的弊病,所以在驱动装置中设置机械调速装置,如机械无级变速机与变速箱等。 安全保护滑橇式输送机链式动力滚床在工作过程中要求有安全保护与紧急制动的功能,安全保护设备大都设置在驱动站的高速运行部分。(3) 张紧装置 张紧装置用来拉紧尾轮,其作用在于: 保持输送链条在一定的张紧状态下运行,消除因链条松弛使链条输送机运行时出现跳动、振动和异常噪声等现象。 当输送链条因磨损而伸长时,通过张紧装置补偿,保持链条的预紧度。张紧装置有重锤张紧与弹簧张紧两种方法,张紧装置应安装于链条输送机线路中张力小的部位。(5) 电控装置 电控装置对单台滑橇式输送机链式动力滚床来说,其主要功能是控制驱动装置,使链条按要求的规律运行。但对于由输送机组成的生产自动线,如积放式悬挂输送线、带移行器等转向装置的承托式链条输送线设备,它的功能就要广泛得多。除了一般的控制输送机速度外,还需完成双(多)机驱动的同步、信号采集、信号传递、故障诊断等使链条自动生产线满足生产工艺要求的各种功能。2 总体传动系统方案的拟定21 传动方案设计 机械传动装置位于原动机和工作机之间,用以传递运动和动力或改变运动方式。传动装置方案设计是否合理,对整个机械的工作性能,尺寸,重量和成本等影响很大。211 传动方案的要求 合理的传动方案,首先应满足工作机的功能要求,其次还应该满足工作可靠、传动效率高、结构简单、尺寸紧凑、重量轻、成本低廉、工艺性好、 使用和维护方便等要求。任何一个方案,要满足上述所有要求是十分困难的,设计时要统筹兼顾,满足最主要的和最基本的要求。212 拟定传动方案 满足同一工作机的功能要求,往往可采用不同的传动机构、不同的组合和布局,从而可得出不同的传动方案。拟定传动方案时应该充分了解各种传动机构的性能及适用条件,结合工作机所传递的载荷性质和大小、运动方式和速度以及工作条件等。对各种传动方案进行分析比较,合理地选择。 由于本次设计选用的是SEW(天津)公司的减速电机,采用的是三相交流异步电动机。电机与减速器采用的是一种直联的方式,即电机法兰盘和减速器的法兰盘通过螺栓联接。具体选用的是R系列斜齿轮减速电机。通过底座安装,输出轴是实心轴,水平放置,布局比较紧凑,能够实现传动的要求。见图1。 图1 3 减速电机的选型及计算31 减速电机的选型311 选型的分析 SEW的R系列斜齿轮减速电机的选型,原则上应该根据负载的条件来选择减速电机。在减速电机的输出轴上所有的负载有两种,即阻尼转矩和惯量负载。 (1)当链式动力滚床作空载运行时,在整个速度范围内,加在减速电机输出轴的负载转矩应在减速电机输出轴的连续额定转矩范围内,即应在转矩速度特性曲线的连续工作区。 (2)最大负载转矩,加载周期以及过载时间都在提供的特性曲线的准许范围以内。 (3)减速电机在加速/减速过程中的转矩应在加速之内。 (4)对要求频繁起,制动以及周期性变化的负载,必须检查它的在一个周期中的转矩均方根值。并应小于减速电机的连续额定转矩。 32 减速电机的相关计算321 负载转矩及转速计算 (1)负载转矩的计算方法加到减速电机输出轴上的负载转矩计算公式,因机械而异。本次设计的动力滚床,应计算出折算到减速电机输出轴上的负载转矩。由于动力滚床的负载转矩在系统稳定前是最大的,之后才慢慢的进入系统的平稳期,所以要根据电机的稳定时间来计算负载转矩。根据;起始速度;稳定速度;电机稳定的时间应该在之间,取 ,;式中表示电机在0.1s内的启动加速度,表示电机在0.5s内的启动加速度; 式中D表示滚子的直径: 动力棍子1,2,3,4,5,6的角速度:动力棍子1,2,3,4,5,6的转速: (2)负载转矩,所以减速电机的输出转矩,输出转速为了选到最合适的减速电机,有必要了解该减速电机所驱动机器的详尽技术特性,确定一个使用系数 a.使用系数。 减速电机的选用首先应确定以下技术参数:每天工作小时数;每小时起停次数;每小时运转周期;可靠度要求;工作机转矩T;输出转速n;载荷类型;环境温度;现场散热条件;减速电机通常是根据恒转矩、起停不频繁及常温的情况设计的。其许用输出转矩T由下式确定: 其中 , 式中表示减速电机输出转矩,表示减速电机的使用系数:传动比: 式中表示减速器的输入转速,表示电机减速器的输出转速: 电机的功率: 表示减速机的传动效率,所以电机的功率选P=0.37kw 在选用减速电机时,根据不同的工况,必须同时满足以下条件:1、出工作机2、=总工作机式中: 总 表示总的使用系数 总 表示载荷特性系数 表示环境温度系数 表示可靠度系数 表示运行周期系数(见下表1各系数参数) 表2 各个系数参数 根据每天工作小时数为16小时;每小时起停次数80次;每小时运转周期100%,运转周期系数KW=1;可靠度要求较高,可靠度系数KR=1.6;总 b.载荷类型: 均匀载荷,允许惯性加速系数 中等冲击载荷,允许惯性加速系数 强冲击载荷,允许惯性加速系数 惯性加速系数=所有外部转动惯量/驱动电机的转动惯量 根据以上计算及已知条件,由SEW的R系列斜齿轮减速电机选型参数表中,选用合适的减速电机型号。 本次设计选用的电机减速器的型号为:R37DT71D4BMG 电动机的功率为:0.37kw 电动机的级数为:4 减速器的输出转速为:29r/min 输出扭矩为:123 总重量为:16kg 输出轴许用径向载荷:5590N4 动力辊子设计动力辊子设计包括轴、套筒、滚子、双链轮设计,所起的作用是使携带输送物品的橇体依靠托滚的摩擦力实现储存、前进、后退、平移等复杂功能。41 动力棍子轴的设计411 轴的分类: (1)按轴受载情况分为: a.转轴 支承传动零件又传递动力,即同时承受扭矩和弯矩。 b.心轴 只支承回转零件而不传递动力,即只承受弯矩。心轴又分为固定心轴(工作时轴不转动)和转动心轴(工作时轴转动)。 c.传动轴 主要起传递动力作用,即主要承受扭矩。 (2)按结构形状分为:光轴和阶梯轴;实心轴和空心轴。 (3)按几何轴线形状分为:直轴、曲轴和钢丝软轴。本次设计的动力棍子的轴属于固定心轴(工作时轴不转动)表2 轴的常用材料机械性能材料牌号 热处理毛坯直径(mm) 硬度(HBS) 抗拉强度极限b 屈服强度极限s 弯曲疲劳极限-1 剪切疲劳极限-1 许用弯曲应力-1 备注 Q235A热轧或锻后空冷 100 400-420 225170 105 40 用于不重要及受载荷不大的轴 100250 375-390 215 45 正火回火1017021759029522514055应用最广泛 100300162217570285245135调质2002172556403552751556040Cr 调质100100300 241286735685 540490 355355 200185 70用于载荷较大,而无很大冲击的重要轴 40CrNi 调质 100100300 270300240270 900785 735570 430370 260210 75用于很重要的轴 38SiMnMo调质100100300 229286217269 735685 590540 365345 210195 70用于重要的轴,性能近于40CrNi 38CrMoAlA调质 6060100100160 293321277302241277 930835785 785685590 440410375 280270220 75 用于要求高耐磨性,高强度且热处理(氮化)变形很小的轴 20Cr 渗碳淬火回火 60 渗碳5662HRC640 390 305 160 60 用于要求强度及韧性均较高的轴3Cr13 调质 100 241 835 635 395 230 75 用于腐蚀条件下的轴 1Cr18Ni9Ti 淬火 100 192 530 195 190 115 45 用于高低温及腐蚀条件下的轴 180 110 100200 490 QT600-3 190270 600 370 215 185 用于制造复杂外形的轴 QT800-2 245335 800 480 290 250 412 轴的设计 (1)选择轴的材料 选择轴的材料为45钢,调质处理。由轴的常用材料及其主要力学性能表 查得: , , , (2)初步确定轴端直径 取A=103(按轴的材料45选取A ,A的取值从126-103,因转速低且单向旋转故取小值)轴的输入端直径:考虑到轴的结构,轴径应增大,取。 (3)轴的结构设计 取轴颈处的直径为25mm,与深沟球轴承62052Z的孔径相同。轴承的轴向固定采用弹性挡圈25mm,轴的结构图如图2: 图2 a.计算轴的支承反力,弯矩 轴的垂直面受力简图,如图3: 图3轴端支承反力: 区段:AC剪力弯矩挠度 转角区段:CD剪力 弯矩 挠度转角根据上式: 最大转矩: ;根据碳钢的弹性模量从196206,取 ; 由于心轴的的截面是圆,惯性矩,所以有下式:最大挠度:由 , = =0.09mm转角: = (4)轴的疲劳强度校核 a.确定危险截面: 根据载荷分布及应力集中部位,确定两个截面为应力集中部位,且为危险截面。如下图4: 图4由校核危险截面的许用安全系数,计算安全系数均大于许用值,故轴的疲劳强度足够。心轴的实际受力如下图:图542 套筒的设计421 套筒的作用及结构设计 实际上在本次设计中,套筒也起着轴的作用,套筒充当的是空心轴,所起的作用是传递扭矩。 (1)选择套筒的材料 套筒的材料为Q235A,采用发黑处理。 (2)初步确定套筒的内径和外径 根据心轴的直径,由心轴的受力所产生轴的挠度,故套筒的内径,套筒的外径 (3)套筒的结构和各个尺寸如下图图6: 图643 滚子的设计431 带轮缘的滚子设计(焊接件)尺寸如下图图7: 图7432 带轮缘的滚子设计尺寸如下图图8: 图85 链传动设计:51链传动的介绍 链传动是应用较广的一种机械传动,是依靠链轮轮齿与链节的啮合来传递运动和动力。与带传动相比,链传动能保持准确的平均传动比,传动效率高,径向压轴力小,能在高温及低速情况下工作;与齿轮传动相比,链传动安装精度要求较低,成本低廉,可远距离传动。链传动的主要缺点是不能保持恒定的瞬时传动比。按用途不同,链可分为:传动链、输送链和起重链,在一般机械传动中,常用的是传动链。传动链有滚子链和齿形链等类型,其中滚子链使用最广,齿形链使用较少。511滚子链链轮 (1)链轮齿形必须保证链节能平稳自如地进入和退出啮合,尽量减少啮合时的链节的冲击和接触应力,而且要易于加工。 (2)常用的链轮端面齿形见下图。 图9 滚子链链轮端面齿形 图10 滚子链链轮的轴面齿形它是由三段圆弧aa 、ab、cd和一段直线bc构成,简称三圆弧一直线齿形。齿形用标准刀具加工,在链轮工作图上不必绘制端面齿形,只需在图上注明齿形按3R GBT 1244-1985规定制造即可,但应绘制链轮的轴面齿形,其尺寸参阅有关设计手册。工作图中应注明节距p 、齿数z 、分度圆直径d (链轮上链的各滚子中心所在的圆)、齿顶圆直径da、齿根圆直径df 。其计算公式为:分度圆直径 齿顶圆直径 齿根圆直径 式中-滚子直径(mm)512 滚子链链轮的材料及结构设计 链轮材料应保证轮齿有足够的强度和耐磨性,故链轮齿面一般都经过热处理,使之达到一定硬度。常用材料下表3:表3 链轮材料链轮材料热处理齿面硬度应用范围15、20渗碳、淬火、回火5060HRCz25的链轮45、50、ZG310-570淬火、回火4045HRC无剧烈冲击振动和要求耐磨损的链轮15Cr、20Cr渗碳、淬火、回火5060HRCz50的链轮 v2m/s夹布胶木P6kW、速度较高、要求传动平稳、噪声小的链轮 (1)链轮的结构: a.驱动单链轮的结构尺寸如下图11: 图11 b.双链轮的结构尺寸如下图12: 图12 c.张紧链轮的结构尺寸如下图13: 图1352滚子链传动设计计算: (1)确定传动比 根据整个的设计尺寸及驱动速度的要求,驱动链轮的齿数,传动双链轮的齿数,所有传动比: (2)当量的单排链的计算功率 根据链传动的工作情况、主动链轮齿数和链条排数,将链条传动所传递的功率修正为当量的单排链的计算功率 式中:-工况系数-主动链轮齿数系数-多排链系数-传递的功率,kw表4 工况系数载荷种类原动机电动机或汽轮机内燃机载荷平稳1.01.2中等冲击1.31.4较大冲击1.51.7 表5 多排链系数排数123454.1 表6 主动链轮齿数系数9111315171921232527293133350.4460.5540.6640.775 0.88741.461.581.701.821.930.3260.4410.5660.7010.84611.161.331.511.691.892.082.292.50由上式计算: (3)确定链条型号和节距p链条型号根据当量的单排链的计算功率和主动链轮转速由下图得到。然后由规格及参数表确定链条节距p: 图14 单排滚子链额定功率曲线 表7 滚子链规格和主要参数链号节距p排距滚子外径d1max内链节内宽b1min销轴直径d2max链板高度h2max极限拉伸载荷Qmin每米质量qmmmmmmmmmmmmmmmm08A12.7014.387.957.853.9612.07138000.6010A15.87518.1110.169.405.0815.09218001.0012A19.0522.7811.9112.575.9518.08311001.5016A25.4029.2915.8815.757.9424.13556002.6020A31.7535.7619.0518.909.5430.18867003.8024A38.1045.4422.2325.2211.1036.201246005.6028A44.4548.8725.4025.2212.7042.241690007.5032A50.8058.5528.5331.5514.2948.2622240010.1040A76.2087.8347.6347.3523.3072.3950040022.60本次的设计的驱动链条,传动链条的型号为:10A ,节距p=15.875。 (4)链速和链轮的极限转速 链速的提高受到动载荷的限制,所以一般最好不超过12m/s。链轮的最佳转速和极限转速可参看上图(单排滚子链额定功率曲线)。图中接近于最大许用传动功率时的转速为最佳转速,功率曲线右侧竖线为极限转速。 (5)链节距 链节距愈大,链和链轮齿各部尺寸也愈大,链的拉曳能力也愈大,但传动的速度不均匀性、动载荷、噪声等都将增加。因此设计时,在承载能力足够的条件下,应选取较小节距的单排链,高速重载时,可选用小节距的多排链。本次设计的链均为小节距的单排链。 (6)驱动链的长度和中心距 若链传动中心距过小,则小链轮上的包角也小,同时啮合的链轮齿数也减少;中心距过大,则易使链条抖动。链的长度常用链节数表示。按带传动求带长的公式可导出。式中 a 为链传动的中心矩:链条节数,先初定中心距:。取链节数为偶数,故取 根据圆整后的链节数用下式计算实际中心距: (7)传动链的长度和中心距 链条的节数,先初定中心距:取链节数为偶数,故取 根据圆整后的链节数用下式计算实际中心距: (8)驱动链条的长度L (9)传动链条的长度 (10)链条的速度v (11)驱动链轮及传动链轮作用在轴上的压力, 取53 链传动工作情况分析531 链传动的运动分析 (1)链传动的运动不均匀性 链条进入链轮后形成折线,因此链传动的运动情况和绕在正多边形轮子上的带传动很相似,见下图。边长相当于链节距,边数相当于链轮齿数。链轮每转一周,链移动的距离为,设、为两链轮的齿数, 为节距(mm),、为两链轮的转速(r/min),则链条的平均速度v(m/s)为链传动的平均传动比:事实上,链传动的瞬时链速和瞬时传动比都是变化的。分析如下:设链的紧边在传动时处于水平位置,见下图15。设主动轮以等角速度转动,则其分度圆周速度为 。当链节进入主动轮时,其销轴总是随着链轮的转动而不断改变其位置。当位于角的瞬时,水平运动的瞬时速度v等于销轴圆周速度的水平分量。即链速V: 图15 角的变化范围在之间,。 当时,链速最大,;当时,链速最小,。因此,即使主动链轮匀速转动时,链速也是变化的。每转过一个链节距就周期变化一次。同理,链条垂直运动的瞬时速度也作周期性变化,从而使链条上下抖动。从动链轮由于链速常数和角的不断变化,因而它的角速度也是变化的。链传动比的瞬时传动比为。显然,瞬时传动比不能得到恒定值。因此链传动工作不稳定。 (2)链传动的动载荷 链传动在工作时产生动载荷的主要原因是: a.链速和从动链轮角速度周期性变化,从而产生了附加的动载荷。链的加速度愈大,动载荷也将愈大。链轮转速愈高、链节距愈大、链轮齿数愈少,动载荷都将增大。 b.链沿垂直方向分速度也作周期性地变化,使链产生横向振动,这也是链传动产生动载荷的原因之一。 c.链节进入链轮的瞬时,链节与链轮轮 齿以一定的相对速度啮合,链与轮齿将受到冲击,并产生附加动载荷。如下图16所示,根据相对运动原理,把链轮看作静止的,链节就以角速度w 进入轮齿而产生冲击。这种现象,随着链轮转速的增加和链节距的加大而加剧。使传动产生振动和噪声。图 16 d.若链的张紧不好、链条松弛,在起动、制动、反转、载荷变化等情况下,将产生惯性冲击,使链传动产生很大的动载荷。由于链传动的动载荷效应,链传动不宜用于高速。532链传动的受力分析 安装链传动时,只需不大的张紧力,主要是使链松边的垂度不致过大,否则会产生显著振动、跳齿和脱链。若不考虑传动中的动载荷,作用在链上的力有:圆周力(即有效拉力)F、离心拉力和悬垂拉力。如下图17所示。 图17 链在传动中的主要作用力有: (1)链的紧边拉力为 (N) (2)链的松边拉力为 (N) (3)围绕在链轮上的链节在运动中产生的离心拉力 (N) 式中:q为链的每米长质量,kg/m;v为链速m/s。 (4)悬垂拉力 可利用求悬索拉力的方法近似求得 (N) 式中:a为链传动的中心距,m ; g为重力加速度,; 为下垂量y=0.02a时的垂度系数,与安装角有关。 链作用在轴上的压力可近似地取为,有冲击和振动时取大值。表8 的值值水平传动两链轮中心连线与水平面斜角垂直传动6421533滚子链传动失效形式 链传动的主要失效形式有以下几种: (1)链板疲劳破坏: 链在松边拉力和紧边拉力的反复作用下,经过一定的循环次数,链板会发生疲劳破坏。正常润滑条件下,疲劳强度是限定链传动承载能力的主要因素。 (2)滚子套筒的冲击疲劳破坏 链传动的啮入冲击首先由滚子和套筒承受。在反复多次的冲击下,经过一定的循环次数,滚子、套筒会发生冲击疲劳破坏。这种失效形式多发生于中、高速闭式链传动中。 (3)销轴与套筒的胶合 润滑不当或速度过高时,销轴和套筒的工作表面会发生胶合。胶合限定了链传动的极限转速。 (4)链条铰链磨损 铰链磨损后链节变长,容易引起跳齿或脱链。开式传动、环境条件恶劣或润滑密封不良时,极易引起铰链磨损,从而急剧降低链条的使用寿命。 (5)过载拉断 这种拉断常发生于低速重载或严重过载的传动中。534链传动的布置、张紧和润滑 (1)链传动的布置 为使链传动能工作正常,应注意其合理布置,布置的原则简要说明如下: a.两链轮的回转平面应在同一垂直平面内,否则易使链条脱落和产生不正常的磨损。 b.两链轮中心连线最好是水平的,或与水平面成45 以下的倾角,尽量避免垂直传动,以免与下方链轮啮合不良或脱离啮合。c.常见合理布置形式参见下表。 表9 传动链的布置 本次设计的驱动链轮的布置,采用的是两轮轴线不在同一水平面,松边应在下面。选择的是第二种布置方案。 传动链轮的布置,采用的是两轮轴线在同一水平面,松边在下面,选择的是第三种布置方案。 (2)链传动的张紧 链传动中如松边垂度过大,将引起啮合不良和链条振动,所以链传动张紧的目的和带传动不同,张紧力并不决定链的工作能力,而只是决定垂度的大小。张紧的方法很多,最常见的是移动链轮以增大两轮的中心矩。但如中心距不可调时,也可以采用张紧轮张紧,见下图18 a、b。张紧轮应装在靠近主动链轮的松边上。不论是带齿的还是不带齿的张紧轮,其分度圆直径最好与小链轮的分度圆直径相近。此外还可以用压板或托板张紧(下图18 c、d)。特别是中心距大的链传动,用托板控制垂度更为合理。 图18 链的张紧装置本次设计的张紧装置如下图19: 图19 张紧装置 (3)链传动的润滑 链传动的润滑至关重要。合宜的润滑能显著降低链条铰链的磨损,延长使用寿命。链传动的润滑方法可根据下图20选取。通常有四种润滑方式:人工定期用油壶或油刷给油;滴油润滑,用油杯通过油管向松边内外链板间隙处滴油;油浴润滑或飞溅润滑,采用密封的传动箱体,前者链条及链轮一部分浸入油中,后者采用直径较大的甩油盘溅油;油泵压力喷油润滑,用油泵经油管向链条连续供油,循环油可起润滑和冷却的作用。链传动使用的润滑油运动粘度在运转温度下约为20mm2/s40mm2/s。只有转速很慢又无法供油的地方,才可以用油脂代替。 图20本次设计的链的润滑方式,因为链速比较低,所有选择人工定期润滑。6 基于动力辊子的滚动轴承设计61 滚动轴承的介绍 滚动轴承是广泛运用的机械支承。其功能是在保证轴承有足够寿命的条件下,用以支承轴及轴上的零件,并与机座作相对旋转、摆动等运动,使转动副之间的摩擦尽量降低,以获得较高传动效率。常用的滚动轴承已制定了国家标准,它是利用滚动摩擦原理设计而成,由专业化工厂成批生产的标准件。在机械设计中只需根据工作条件选用合适的滚动轴承类型和型号进行组合结构设计。611 滚动轴承的工作特点与滑动轴承相比,滚动轴承具有下列优点: (1)应用设计简单,产品已标准化,并由专业生产厂家进行大批量生产,具有优良的互换性和通用性。 (2)起动摩擦力矩低,功率损耗小,滚动轴承效率(0.980.99)比混合润滑轴承高。 (3)负荷、转速和工作温度的适应范围宽,工况条件的少量变化对轴承性能影响不大。 (4)大多数类型的轴承能同时承受径向和轴向载荷,轴向尺寸较小。 (5)易于润滑、维护及保养。612滚动轴承的主要类型 机械有各种不同的工况,为满足这些具体的使用要求,需要有不同类型的轴承来保证实际需要。根据滚动体形状,滚动轴承大致可分为球轴承和滚子轴承;按其承受负荷的主要方向,则可分为向心轴承和推力轴承。为球轴承和滚子轴承的一般特性比较。 表10 球轴承和滚子轴承的一般特性比较项 目 球 轴 承滚子轴承负 荷较小负荷大 负 荷转 速高 速较 低 速摩 擦小较 大耐冲击性较 小较 大 (1)滚动轴承类型的选择 滚动轴承类型多种多样,选用时可考虑以下方面因素,从而进行选择。 a载荷的大小、方向和性质 b. 允许转速 c. 刚性 d. 调心性能和安装误差 e. 安装和拆卸 f. 市场性 (2)失效形式:在一般机械设备传动系统中,由于滚动轴承的失效而造成整个传动系统的损坏所占的比例很大。因此,在滚动轴承的设计中如对各种因素考虑不周,就将降低实际的使用寿命。表11 滚动轴承常见的失效形式失效形式现象失效原因点蚀内外圈的滚道及滚动体的表面出现许多点蚀坑过载、装配不当(配合过紧、内外圈不正)和润滑不良。磨粒磨损粘着磨损滚道表面、滚动体与保持架接触部位发生磨损,引擎内部松动。在滚道及滚动体表面上有粘着痕迹。轴承内部有言磨物、润滑不良。速度太高、润滑不良;不适当的装配;内外圈配合柱面松动;断裂内外圈上发生轴向、周向裂纹;保持架开裂;配合太紧;装配面部均匀;轴承座畸变;旋转爬行或微动磨损;塑性变形滚动体或套圈滚道上出现不均匀的塑性变形凹坑。静载荷或冲击载荷过大。其他锈蚀、电腐蚀、不正常温升轴承内有湿气或酸液;有电流连续或简短通过;润滑剂太多、内部游隙不当等;影响滚动轴承的主要因素为:载荷情况、润滑情况、装配情况、环境条件及材质或制造精度等。62 计算准则 决定轴承尺寸时,要针对主要失效形式进行必要的计算。一般工作条件的回转滚动轴承,应进行接触疲劳寿命计算。621 滚动轴承的校核计算本次设计的动力棍子总成及张紧轮总成选用的轴承是深沟球轴承:(1)6205 (2)6203如下表12所示: 表12 轴承参数表轴承类型型号d/mmD/mmB/mm深沟球轴承620525521514.0kN7.88kN深沟球轴承62031740129.95kN4.75kN (2)6205轴承寿命的计算 根据公式: 式中: -轴承的额定寿命(h) -轴承转速r/min -基本额定动载荷 (N) -当量动载荷 (N) -寿命指数;对球轴承,=3。 所有根据计算,6205满足寿命要求。 6203更满足寿命要求。63 设计总结 基于整个滑橇式输送机5.5m链式的动力滚床设计,设计部分完成了SEW减速电机的选型,动力辊子的设计,传动构件和传动装置的设计,以及张紧装置的设计,滚动轴承的选型与校验。5.5m的链式动力滚床有5个动力辊子,动力辊子按一定间隔均匀布置。动力辊子由安装在一根通轴上的两个滚子组成。其中一个滚子为“U形”带导向边沿的动力滚,另一个为平直的从动滚。依靠滚子的摩擦力来实现储存、前进、后退。结束语本次设计的5.5m的链式动力滚床,完成了设计中的尺寸计算及结构设计,并对其进行了一系列的校验,各项性能指标完全能够满足要求,说明设计的结构是合理的。然后选择电机和轴承,以及相关校验等。由于专业知识的限制,无法对控制系统进行设计。只是对控制系统做了初步的了解。作为机械设计制造及其自动化专业的学生,通过本次的毕业设计,明白要想作为一名设计人员其身上的担子是非常重的。因为设计都是极其复杂而又比较细致的工作。比如说这次选择的电机及其机构的转矩,轴的设计,以及链传动的设计,轴承的校核等,都是看是否能够满足使用要求。这些都说明了设计的复杂性。但是当自己设计的成果摆在面前时,自己就感觉特别的欣慰,毕竟设计成果满足任务要求。参考文献: 1范祖尧.现代机械设备设计手册M.北京:机械工业出版社,19962吉林工业大学 苏州链条厂.链传动设计与应用手册M.北京:机械工业出版社,19923郑志风.链传动M.北京:机械工业出版社,19844东北工学院编写组.机械零件设计手册(第2版)M.北京:冶金工业出版社,19895宋学义.袖珍液压气动手册M.北京:机械工业出版社,19956成大先.机械设计手册第5版M.北京:化学工业出版社,20087黄悠调,赵松年. 机电一体化技术基础及应用M . 北京:机械工业出版社, 2002.8赵丁选.机电一体化设计设计使用手册(下册) M . 北京:化学工业出版社, 工业装备与信息工程出版中心, 2003.9赵松年,张奇鹏. 机电一体化机械系统设计M . 北京:机械工业出版社, 1996.10等效量的计算 EB /OL . 2010- 05 - 17 . http: /166.111. 92. 21 / jixieyuanli/default. asp.外文资料The Two-Dimensional Dynamic Behavior of Conveyor BeltsIr. G. Lodewijks, Delft University of Technology, The Netherlands1. SUMMARY1-In this paper a new finite element model of a belt-conveyor system will be introduced. This model has been developed in order to be able to simulate both the longitudinal and transverse dynamic response of the belt during starting and stopping. Application of the model in the design stage of long overland belt-conveyor systems enables the engineer, for example, to design proper belt-conveyor curves by detecting premature lifting of the belt off the idlers. It also enables the design of optimal idler spacing and troughing configuration in order to ensure resonance free belt motion by determining (standing) longitudinal and transverse belt vibrations. Application of feed-back control techniques enables the design of optimal starting and stopping procedures whereas an optimal belt can be selected by taking the dynamic properties of the belt into account.2. INTRODUCTION2-The Netherlands has long been recognised as a country in which transport and transhipment play a major role in the economy. The port of Rotterdam, in particular is known as the gateway to Europe and claims to have the largest harbour system in the world. Besides the large numbers of containers, a large volume of bulk goods also passes through this port. Not all these goods are intended for the Dutch market, many have other destinations and are transhipped in Rotterdam. Good examples of typical bulk goods that are transhipped are coal and iron ore, a significant part of which is intended for the German market. In order to handle the bulk materials a wide range of different mechanical conveyors including belt-conveyors is used.3-The length of most belt-conveyor systems erected in the Netherlands is relatively small, since they are mainly used for in-plant movement of bulk materials. The longest belt-conveyor system, which is about 2 km long, is situated on the Maasvlakte, part of the port of Rotterdam, where it is used to transport coal from a bulk terminal to an electricity power station. In addition to domestic projects, an increasing number of Dutch engineering consultancies participates in international projects for the development of large overland belt-conveyor systems. This demands the understanding of typical difficulties encountered during the development of these systems, which are studied in the Department of Transport Technology of the Faculty of Mechanical Engineering, Delft University of Technology, one of the three Dutch Universities of Technology.4-The interaction between the conveyor belt properties, the bulk solids properties, the belt conveyor configuration and the environment all influence the level to which the conveyor-system meets its predefined requirements. Some interactions cause troublesome phenomena so research is initiated into those phenomena which cause practical problems, 1. One way to classify these problems is to divide them into the category which indicate their underlying causes in relation to the description of belt conveyors.5-The two most important dynamic considerations in the description of belt conveyors are the reduction of transient stresses in non-stationary moving belts and the design of belt-conveyor lay-outs for resonance-free operation, 2. In this paper a new finite element model of a belt-conveyor system will be presented which enables the simulation of the belts longitudinal and transverse response to starting and stopping procedures and its motion during steady state operation. Its beyond the scope of this paper to discuss the results of the simulation of a start-up procedure of a belt-conveyor system, therefore an example will be given which show some possibilities of the model。3. FINITE ELEMENT MODELS OF BELT-CONVEYOR SYSTEMS6-If the total power supply, needed to drive a belt-conveyor system, is calculated with design standards like DIN 22101 then the belt is assumed to be an inextensible body. This implies that the forces exerted on the belt during starting and stopping can be derived from Newtonian rigid body dynamics which yields the belt stress. With this belt stress the maximum extension of the belt can be calculated. This way of determining the elastic response of the belt is called the quasi-static (design) approach. For small belt-conveyor systems this leads to an acceptable design and acceptable operational behavior of the belt. For long belt-conveyor systems, however, this may lead to a poor design, high maintenance costs, short conveyor-component life and well known operational problems like : excessive large displacement of the weight of the gravity take-up device premature collapse of the belt, mostly due to the failure of the splices destruction of the pulleys and major damage of the idlers lifting of the belt off the idlers which can result in spillage of bulk material damage and malfunctioning of (hydrokinetic) drive systemsMany researchers developed models in which the elastic response of the belt is taken into account in order to determine the phenomena responsible for these problems. In most models the belt-conveyor model consists of finite elements in order to account for the variations of the resistances and forces exerted on the belt. The global elastic response of the belt is made up by the elastic response of all its elements. These finite element models have been applied in computer software which can be used in the design stage of long belt-conveyor systems. This is called the dynamic (design)approach Verification of the results of simulation has shown that software programs based on these kind of belt-models are quite successful in predicting the elastic response of the belt during starting and stopping, see for example 3 and 4.The finite element models as mentioned above determine only the longitudinal elastic response of the belt. Therefore they fail in the accurate determination of: the motion of the belt over the idlers and the pulleys the dynamic drive phenomena the bending resistance of the belt the development of (shock) stress waves the interaction between the belt sag and the propagation of longitudinal stress waves the interaction between the idler and the belt the influence of the belt speed on the stability of motion of the belt the dynamic stresses in the belt during. passage of the belt over a (driven) pulley the influence of parametric resonance of the belt due to the interaction between vibrations of the take up mass or eccentricities of the idlers and the transverse displacements of the belt the development of standing transverse waves the influence of the damping caused by bulk material and by the deformation of the cross- sectional area of the belt and bulk material during, passage of an idler the lifting of the belt off the idlers in convex and concave curvesThe transverse elastic response of the belt is often the cause of breakdowns in long belt-conveyor systems and should therefore be taken into account. The transverse response of a belt can be determined with special models as proposed in 5 and 6, but it is more convenient to extend the present finite element models with special elements which take this response into account.3.1 THE BELTA typical belt-conveyor geometry consisting of a drive pulley, a tail pulley, a vertical gravity take-up, a number of idlers and a plate support is shown in Figure 1. This geometry is taken as an example to illustrate how a finite element model of a belt conveyor can be developed when only the longitudinal elastic response of the belt is of interest.Since the length of the belt part between the drive pulley and the take-up pulley, Is, is negligible compared to the length of the total belt, L, these pulleys can mathematically be combined to one pulley as long as the mass inertias of the pulleys of the take-up system are accounted for. Since the resistance forces encountered by the belt during motion vary from place to place depending on the exact local (maintenance) conditions and geometry of the belt conveyor, these forces are distributed along the length of the belt. In order to be able to determine the influence of these distributed forces on the motion of the belt, the belt is divided into a number of finite elements and the forces which act on that specific part of the belt are allocated to the corresponding, element. If the interest is in the longitudinal elastic response of the belt only then the belt is not discredited on those places where it is supported by a pulley which does not force its motion (slip possible). The last step in building, the model is to replace the belts drive and tensioning system by two forces which represent the drive characteristic and the tension forces.The exact interpretation of the finite elements depends on which resistances and influences of the interaction between the belt and its supporting structure are taken into account and the mathematical description of the constitutive behavior of the belt material. Depending on this interpretation, the elements can be represented by a system of masses, springs and dashpots as is shown in Figure 1, 9, where such a system is given for one finite element with nodal points c and c+ 1. The springs K and dashpot H represent the visco-elastic behavior of the belts tensile member, G represents the belts variable longitudinal geometric stiffness produced by the vertical acting forces on the belts cross section between two idlers, V represent the belts velocity dependent resistances.Figure 1: Five element composite model NON LINEAR TRUSS ELEMENTIf only the longitudinal deformation of the belt is of interest then a truss element can be used to model the elastic response of the belt. A truss element as shown in Figure 2 has two nodal points, p and q, and four displacement parameters which determine the component vector x:xT = up vp uq vq (1)For the in-plane motion of the truss element there are three independent rigid body motions therefore one deformation parameter remains which describesFigure 2: Definition of the displacements of a truss elementthe change of length of the axis of the truss element 7:1 = D1(x) = ods - dsod (2)2dsowhere dso is the length of the undeformed element, ds the length of the deformed element and a dimensionless length coordinate along the axis of the element.Figure 3: Static sag of a tensioned beltAlthough bending, deformations are not included in the truss element, it is possible to take the static influence of small values of the belt sag into account. The static belt sag ratio is defined by (see Figure 3):K1 = /1 = q1/8T (3)where q is the distributed vertical load exerted on the belt by the weight of the belt and the bulk material, 1 the idler space and T the belt tension. The effect of the belt sag on the longitudinal deformation is determined by 7:s = 8/3 Ks (4)which yields the total longitudinal deformation of the non linear truss element:3.1.2 BEAM ELEMENTFigure 4: Definition of the nodal point displacements and rotations of a beam element.If the transverse displacement of the belt is being of interest then the belt can be modelled by a beam element. Also for the in-plane motion of a beam element, which has six displacement parameters, there are three independent rigid body motions. Therefore three deformation parameters remain: the longitudinal deformation parameter, 1, and two bending deformation parameters, 2 and 3.Figure 5: The bending deformations of a beam elementThe bending deformation parameters of the beam element can be defined with the component vector of the beam element (see Figure 4):xT = up vp p uq vq q (5)and the deformed configuration as shown in Figure 5:2 = D2(x) =e2p1pq (6)1o3 = D3(x) =-eq21pq1o3.2 THE MOVEMENT OF THE BELT OVER IDLERS AND PULLEYSThe movement of a belt is constrained when it moves over an idler or a pulley. In order to account for these constraints, constraint (boundary) conditions have to be added to the finite element description of the belt. This can be done by using multi-body dynamics. The classic description of the dynamics of multi-body mechanisms is developed for rigid bodies or rigid links which are connected by several constraint conditions. In a finite element description of a (deformable) conveyor belt, where the belt is discretised in a number of finite elements, the links between the elements are deformable. The finite elements are connected by nodal points and therefore share displacement parameters. To determine the movement of the belt, the rigid body modes are eliminated from the deformation modes. If a belt moves over an idler then the length coordinate , which determines the position of the belt on the idler, see Figure 6, is added to the component vector, e.g. (6), thus resulting in a vector of seven displacement parameters.Figure 6: Belt supported by an idler.There are two independent rigid body motions for an in-plane supported beam element therefore five deformation parameters remain. Three of them, 1, 2 and 3, determine the deformation of the belt and are already given in 3.1. The remaining two, 4 and 5, determine the interaction between the belt and the idler, see Figure 7.Figure 7: FEM beam element with two constraint conditions.These deformation parameters can be imagined as springs of infinite stiffness. This implies that:4 = D4(x) = (r + u )e2 - rid.e2 = 0 5 = D5(x) = (r + u)e1 - rid.e1 = 0 (7)If during simulation 4 0 then the belt is lifted off the idler and the constraint conditions are removed from the finite element description of the belt.3.3 THE ROLLING RESISTANCEIn order to enable application of a model for the rolling resistance in the finite element model of the belt conveyor an approximate formulation for this resistance has been developed, 8. Components of the total rolling resistance which is exerted on a belt during motion three parts that account for the major part of the dissipated energy, can be distinguished including: the indentation rolling resistance, the inertia of the idlers (acceleration rolling resistance) and the resistance of the bearings to rotation (bearing resistance). Parameters which determine the rolling resistance factor include the diameter and material of the idlers, belt parameters such as speed, width, material, tension, the ambient temperature, lateral belt load, the idler spacing and trough angle. The total rolling resistance factor that expresses the ratio between the total rolling resistance and the vertical belt load can be defined by:ft = fi + fa + fb (8)where fi is the indentation rolling resistance factor, fa the acceleration resistance factor and fb the bearings resistance factor. These components are defined by:Fi = CFznzh nhD-nD VbnvK-nk NTnT(9)fa =Mred uFzb tfb =MfFzbriwhere Fz is distributed vertical belt and bulk material load, h the thickness of the belt cover, D the idler diameter, Vb the belt speed, KN the nominal percent belt load, T the ambient temperature, mered the reduced mass of an idler, b the belt width, u the longitudinal displacement of the belt, Mf the total bearing resistance moment and ri the internal bearing radius.The dynamic and mechanic properties of the belt and belt cover material play an important role in the calculation of the rolling resistance. This enables the selection of belt and belt cover material which minimise the energy dissipated by the rolling resistance.3.4 THE BELTS DRIVE SYSTEMTo enable the determination of the influence of the rotation of the components of the drive system of a belt conveyor, on the stability of motion of the belt, a model of the drive system is included in the total model of the belt conveyor. The transition elements of the drive system, as for example the reduction box, are modelled with constraint conditions as described in section 3.2. A reduction box with reduction ratio i can be modelled by a reduction box element with two displacement parameters, p and q, one rigid body motion (rotation) and therefore one deformation parameter:red = Dred(x) = ip + q = 0 (10)To determine the electrical torque of an induction machine, the so-called two axis representation of an electrical machine is adapted. The vector of phase voltages v can be obtained from: v = Ri + sGi + L i/t (11)In eq. (11) i is the vector of phase currents, R the matrix of phase resistances, C the matrix of inductive phase resistances, L the matrix of phase inductances and s the electrical angular velocity of the rotor. The electromagnetic torque is equal to:Tc = iTGi (12)The connection of the motor model and the mechanical components of the drive system is given by the equations of motion of the drive system:Ti = Iijj+ CikkKil (13)ttwhere T is the torque vector, I the inertia matrix, C the damping matrix, K the stiffness matrix and the angle of rotation of the drive component axiss.To simulate a controlled start or stop procedure a feedback routine can be added to the model of the belts drive system in order to control the drive torque.3.5 THE EQUATIONS OF MOTIONThe equations of motion of the total belt conveyor model can be derived with the principle of virtual power which leads to 7:fk - Mkl x1 / t = 1Dik (14)where f is the vector of resistance forces, M the mass matrix and the vector of multipliers of Lagrange which may be interpret as the vector of stresses dual to the vector of strains . To arrive at the solution for x from this set of equations, integration is necessary. However the results of the integration have to satisfy the constraint conditions. If the zero prescribed strain components of for example e.g. (8) have a residual value then the results of the integration have to be corrected, also see 7. It is possible to use the feedback option of the model for example to restrict the vertical movement of the take-up mass. This inverse dynamic problem can be formulated as follows. Given the model of the belt and its drive system, the motion of the take-up system known, determine the motion of the remaining elements in terms of the degrees of freedom of the system and its rates. It is beyond the scope of this paper to discuss all the details of this option.3.6 EXAMPLEApplication of the FEM in the desian stage of long belt conveyor systems enables its proper design. The selected belt strength, for example, can be minimised by minimising, the maximum belt tension using the simulation results of the model. As an example of the features of the finite element model, the transverse vibration of a span of a stationary moving belt between two idler stations will be considered. This should be determined in the design stage of the conveyor in order to ensure resonance free belt support.The effect of the interaction between idlers and a moving belt is important in belt-conveyor design. Geometric imperfections of idlers and pulleys cause the belt on top of these supports to be displaced, yielding a transverse vibration of the belt between the supports. This imposes an alternating axial stress component in the belt. If this component is small compared to the prestress of the belt then the belt will vibrate in its natural frequency, otherwise the belts vibration will follow the imposed excitation. The belt can for example be excitated by an eccentricity of the idlers. This kind of vibrations is particularly noticeable on belt conveyor returns. Since the frequency of the imposed excitation depends on the angular speed of the pulleys and idlers, and thus on the belt speed, it is important to determine the influence of the belt speed on the natural frequency of the transverse vibration of the belt between two supports. If the frequency of the imposed excitation approaches the natural frequency of transverse vibration of the belt, resonance phenomena occur.The results of simulation with the finite element model can be used to determine the frequency of transverse vibration of a stationary moving belt span. This frequency is obtained after transformation of the results of the transverse displacement of the belt span from the time domain to the frequency domain using the fast fourier technique. Besides using the finite element model also an analytical approach can be used.The belt can be modelled as a prestressed beam. If the bending stiffness of the belt is neglected, the transverse displacements are small compared to the idler space, Ks 0的时候,那么带将脱离托辊,而描述带的有限元上的约束条件也将去除。3.3滚动阻力为了使一种模型能应用于带式输送机有限元模型的滚动阻力,已经制定了一种计算滚动阻力的近似公式, 8 。带运动中,暴露在带外面的总滚动阻力的组成部分,这三部分是耗能的主要部分,可以区分为包括:压痕滚动阻力,托辊的惯性(加速滚动阻力)和轴承滚动阻力(轴承阻力) 。确定滚动阻力因素的参数包括直径和托辊的材料,以及各种带参数,如速度,宽度,材料,紧张状态,环境温度,带横向负荷,托辊间距和槽角。总滚动阻力的因素,可以表示成总滚动阻力和带垂直负荷之间的比例,定义为:ft = fi + fa + fb (8)Fi是压痕滚动阻力的系数,FA是加速阻力系数,而FB是轴承阻力系数。这些组成系数由下面的9确定:Fi = CFznzh nhD-nD VbnvK-nk NTnT(9)fa =Mred uFzb tfb =MfFzbriFZ是带垂直方向上分布的负载和散装物料的负载的总和, H是带的覆盖厚度,D是托辊的直径,Vb是带速,KN是带负荷的名义百分之比,T是环境温度,Mred是托辊的折算质量,B是带的宽度, U是带的纵向位移,MF是总的轴承阻力矩和RI是轴承内部半径。在计算滚动阻力中,皮带的动力性能及机械性能和皮带上覆盖的材料发挥着重要作用。这使得带的选择和带上覆盖材料,尽量减少由动力阻力引起的能源消耗。3.4带驱动系统在稳定性的带运动情况下,为了能够测定带式输送机驱动系统的旋转组件的影响,这个带式输送机的总模型必须是含有驱动系统模型。驱动系统的旋转元件,就像一个减速箱,参照了3.2节中所述的约束条件。带有减速比的减速箱,可以用带两个位移参数的减速元件来代替, p和q ,像一个刚体的(旋转)运动,因此就剩下一个变形参数:red = Dred(x) = ip + q = 0 (10)要确定电式扭矩感应式电机,是否适应所谓的两轴式电动机。该相电压的矢量v可从(11)获得:v = Ri + sGi + L i/t (11)在(11)式中I是相电流矢量,R是模型的相电阻, c是模型的相电感抗,L是模型的相感系数而s是电机转子的角速度。电磁转矩等于:Tc = iTGi (12)电机模型和驱动系统机械组件是由驱动系统的运动方程联系着的:Ti = Iijj+ CikkKil (13)tt其中T是扭矩矢量,I是模型的惯量,C是模型的阻尼,K是矩阵刚度和是电机旋转轴的角速度。 模拟启动或停止程序控制反馈的程序可以添加到带式驱动系统模型中,用来控制驱动扭矩。3.5运动方程整个带式输送机模型的运动方程可以得出潜在功率的原则, 7 :fk - Mkl x1 / t = 1Dik (14)其中F是阻力矢量,M是模型的质量而是拉格朗日乘数的矢量,可能解释为双重压力矢量to张力矢量 。为了解决带有X这一组方程,方程一体化是必要的。但是一体化的结果,必须确保满足约束条件。如果(8)式中应变为零,那么必须纠正一体化结果,如见 7 。可以使用模型的反馈选择,例如限制提升物质垂直方向上的运动。这种违逆动力学的问题可以用下面公式表示。鉴于带模型及其驱动系统的提升运动众所周知,根据系统自由度和它的比例(速度)可以确定其他元件的运动。它超出了本文所讨论关于此项的所有细节范围。3.6实例为了在长距离带式输送机系统设计阶段能够正确设计,应用了有限元法。例如带强度的选择,可以减少的尽量减少,使用模型模拟的结果确定传送带的最大张力。以有限元模型的功能作为例子,应该考虑到在两个托辊位置范围之间稳定移动带的横向振动。在运输机的设计阶段这必须被确定,才得以确保空带的共振。 对于皮带输送机的
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:滑橇式输送机5.5m 链式动力滚床设计【含CAD图纸+PDF图】
链接地址:https://www.renrendoc.com/paper/119125149.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!