译文2.doc

夹具类外文翻译-工业机械手夹具的运动合成——一种创造性的设计方法【PDF+WORD】【中文1000字】

收藏

资源目录
跳过导航链接。
夹具类外文翻译-工业机械手夹具的运动合成一种创造性的设计方法PDFWORD中文1000字.zip
夹具类外文翻译-工业机械手夹具的运动合成——一种创造性的设计方法【PDF+WORD】【中文1000字】
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:119207771    类型:共享资源    大小:834.65KB    格式:ZIP    上传时间:2021-03-28 上传人:资料****站 IP属地:河南
15
积分
关 键 词:
PDF+WORD 夹具 外文 翻译 工业 机械手 运动 合成 一种 创造性 设计 方法 PDF WORD 中文 1000
资源描述:
夹具类外文翻译-工业机械手夹具的运动合成——一种创造性的设计方法【PDF+WORD】【中文1000字】,PDF+WORD,夹具,外文,翻译,工业,机械手,运动,合成,一种,创造性,设计,方法,PDF,WORD,中文,1000
内容简介:
257 End Effects Kinematic Synthesis of Industrial Robot Hand/Gripper一A Creative Design Approach Jay Lee United States Postal Servic, Office of Advanced Technology, 475 LEnfant Plaza S. W., Rm 2140, Washington DC 20260-812 U.S.A. The purpose of this research is to synthesize industrial robot hand mechanisms. Investigations on DOF(凹,complexity and the structure (Graph) will be presented. Therefore, a kinematic structure table of robot hand mechanisms can be generated. The advantages of using this reference table are as follows: Identification of the kinematic structure of robot handmechanisms for robot hand standardization.币1e atlas of graph (structure) can be used to enumeratenew robot hand mechanisms. Leads to creation or invention of new robot hand mechanisms according to the separation of structure and function.lis paper will present a creative design approach in designing industrial robot hand/gripper mechanisms. This research work was conducted while the author was at Columbia University. Keywords: Kinematics, Grippers, Hand mechanisms. North-Holland Robotics 4 (1988) 257-263 1. IntroductionRobotic hand/gripper is the integral part in most of the robotic applications. Market study predicted that there will be over 60% robotic applications in assembly and material handling l . Design of the robotic gripping mechanism always becomes the key element for the entitled project. Often, very little time is spent in optimal kinematic structure (topology) design in the early stages of a design process. Time pressures sometimes force engineers to repeat topologies that have worked in similar applications in the past, rather than try to create better designs 2. Chen 3 presented a complete su凹ey of mechanisms used for grippers for industrial robots. Erdman et al. 2 suggested techniques of type synthesis based on graph the。可and expert systems. Some extensive work in creating database for robotic hand (grippers) mechanism has been done by the author 8. This paper will present a creative design ap-Mr. Jay Lee is program director in material handling research for the Office of Advanced Technology of United States Postal Service. He re侃ived his B.S. from Taiwan and holds an M.S. degr民in Mechanical Engineering from the University of Wisconsin-Madison and an M.S. in Industrial Management from State University of New York at Stony Brook. He is currently a doctoral candidate in Mechanical Engineering at University of Mal)land. He has served as a part-time lecturer for the State Uruversity of New York at Stony Brook, for the Polytechnics University and as adjunct assistant professor for the New York Institute of Technology. He fo口nerly served as a program manager in developing high precision and high sp四d ro otic technologies for Anorad Corp. (Hauppauge, NY). Before Anorad, he was a senior mechanical engineer and group leader in developing vision-guided robotic technologies for Robotic Vision Systems, Inc. also in Hauppauge, New York. 0921-8830/88/$3.50 1988, Else世er Science Publishers B.V. (North-Holland) 258 J. Lee/ Kinematic Synthesis of Industrial Robot Hand/Gripper proach in designing industrial robot hand/gripper mechanism. The development of the kinematic structure of robot hand/gripper mechanisms will also be presented. 2. Overview of Industrial Robot Hand (Gripper)Mechanism (3)In general, grippers can be classified according to the following: (1)Mechanical finger type: According to thenumber of fingers in a gripper, we have(i)2 finger type(垃)3 finger type (iii)multifinger type.According to the number of hands mounted on the wrist of the robot arm we have (i)single gripper(总)dual gripper (iii)multiple gripper (index type).According to the part configuration, we have (i)linear motion gripper (paraller)(ii)angular motion gripper.According to the kinematic structure, we have (i)linkage type(ii)gear and rack type仙i)cam type (iv)screw type(v)rope and pulley type (MIT /UTAHhand, Hitachi hand).(2)Vacuum and magneticpe: this class ineludes three fitted with suction cup or electromagnets.(3)Special hand and gripper: this class consistsof inflatable finger, paper picking gripper.In this paper, we will investigate mechanical finger type because most industrial robot hand/gripper mechanisms fall into this category. 2.1. Kinematic Synthesis of Robot Hand (Gripper) Mechanism Mechanism creation based on the separation of structure from function was proposed by Freudenstein 4一7. Kinematic structure can be enumerated in an essentially systematic, unbiased fashion as a function of the degree of freedom of the mechanism, the natural of the desired motion and a parameter representing an indication of the complexity of the mechanism. Each structure obtained in this way can then be sketched and evaluated with respect to the functional requirements of the mechanism. Potentially acceptable mechanisms can then be evaluated in depth until a final design is achieved. Most mechanisms obey the following generaldegree-of-freedom equation: F(L-J-l)+ Lh 、,IJ, 、where F = degree of freedom of mechanism Degree of Freed。m(f) Kinematic Element 2 耐WMWA四494 Comments Helical Pair (H) Gear Pair (G) Turning Pair (R) Sliding Pair (P) Ball in Cylinder Fig. 1. Common used kinematic elements in robot hand/gripper mechanism. J. Lee/ Kinematic Synthesis of Industrial Robot Hand/Gripper259 Table 1 Correspondence between graph and mech缸rismMechanism Links 且Joints (j) 旦旦EVertices (vJ Edges (el 些主主 Joined Links Edge-connected vertices Different Joints Labeled Edges R = Pin Joint P = Slid工ng Joint G = Gear Joint H = Helical Joint Gr口unded Element Fixed Link Same Mechanisms 工somorphic Graphs Different Mechanisms Noniscmorphic Graphs 工口dependent Loops 工ndependent Loops mobilit number (degr四of fr臼dom in whichmechanism operates: 3 for plane and spherical motions;6 for general three-dimensional motions), L = number of links, j = number of joints, and /; = degree of fr创om of relative motion at ith joint. In terms of the graph of the mechanism, Equation (1) may be written asF(e-1)+I:1; (2) where v = number of vertices of graph ( v = L) and e = number of edges of graph ( e = j). LIND=j-L+ 1 (3) LIND = Number of independent loops in the mechanism combining (1) and (3) L/; = F+ LIND (4) For gear trains it can be shown 7) that these equations specialize to the following: L=F+l + LIND j=F+2 LIND Ja=LIND 1R =F+ LIND R p G H LIND where 元,iRdenote the number of gear pairs and pin joints. Most robot hands (grippers) are openloop mechanisms whose structures are generally simpler than those of close-loop mechanisms. The 6 b CFig. 2. Typical robot hand mechanism and graph. 260 J. Lee/ Kinematic Synthesis of Industrial Robot Hand/Gripper KINEMATIC ROBOT HAND NO V MECHANISM STRUCTURE 句5 E三R 2 句5 仨三吨2 r, 3 3 也5E三剖仨2 R 3 句5 6 曰:13 R 句Fig. 3. Kinematic structure of robot hand mechanisms. most common joints in robot hands (grippers) mechanisms are the turning pairs or pin joints (R), the sliding pair (P), gear pairs (G), helical pairs or screw-and-nut (H) (see Fig. ). Table I shows the espondence between graphs and m民hanisms. The graph representation of a typical robot hand mechanism is shown in Fig. 2. The degree of freedom (F) and complexity (LIND) can be illustrated by use of example from Fig. 2. Number of links (L) = 6 Number of joints (j) = 7 汇兀RRPRRRR=7 3 (plane mechanism) KINEMATIC ROBOT HAND NO V e STRUCTURE ,MECHANISM 5 5 6 3写26 6 7 -* 3 R 句7 6 7 扣留Therefore F=3(L一j+1) + L,/;= 3(6 - 7一1)+ 7 = 1The number of closed loops in this mechanism is (a) LIND=j-L+ 1=7-6+1=2 This should be equal to the result from the graph (b). From Table I we know that the number of edges ( e) in the graph is equal to the number of links in the mechanism. The number of vertices ( v)in the graph is equal to the number of joints (j)in the mechanism.J. Lee/ Kinematic Synthesis of Industrial Robot Hand/Gripper 261 Therefore LIND can be rewritten in the following form: LIND=l+e-v=l+7-6=2 2.2. Creating of Kinematic Structure (Graph)卢rIndustrial Robot Hand/ Gripper Mechanism In order to lead to creation or invention of new robot hand/gripper mechanisms according to the separation of structures and functions, a kinematic structure reference table of industrial robot/gripper mechanism should be generated. Over hundreds of different indistrial robot hand/gripper mechanisms have been investigated by the author. Fig. 3 shows parts of these kinema tic structures ( design database) which are generated by the author.be advantages of using this reference table are as follows: 2 (1) Identification of kinematic structure ofrobot hand/gripper mechanisms.(2) The atlas of graph (structure) can be used toenumerate new robot hand/gripper mecharusms.4 H 3 Fig. 4. Example 1. 3 R 4 Fig. 5. Example 2. (3) Leads to creation or invention of new robothand/gripper mechanisms according to theseparation of structure and function.2.3. Creative D臼ign of Industrial Robot Hand/ Gripper Mechanism The following examples will show how to do creative design from the generated kinematic structure (design database). Example 1. In Fig. 3, numbers 1, 2 and 3 have the same vertices (时,edges ( e) and kinematic structure (graph). If we look at these graphs without looking at the robot hand mechanisms, we can find that the differences among these three graphs are kinematic element at link 2- link 4, and link 2 -link 3. Number I is prismatic joint (P). Number 2 is gear joint (G) and number 3 is pin joint (R). If we would like to design a new robot hand by use of another type of kinematic joint, we could use the Helical Joint (H). The H joint will replace 262 J. Lee/ Kinematic Synthesis of Industrial Robot Hand/Gripperthe above mentioned P, G and R joints. Therefore, a new graph and hand/gripper mechanism can be presented and designed (Fig. 4). In Fig. 4two fingers are driven by a motor through a pulley to drive a screw bar 11. Example 2. Let us compare number 6 and 7 from Fig. 3. They have s创ne number of vertices ( v) and edges ( e) and same graph. If we would like to modify these mechanisms by use of gears, what kind of modifications should be done? Obviously, if we are going to use gears, the gears have to be fixed and rotate about the pin joint with the fixed link. Therefore, link 3 and link 5 have to be replaced by G. The modified graph and modified design of new robot hand/gripper mechanism can be shown in Fig. 5.SEARCH PROCESS (RULES) MODIFICATION RETRY M。dified Data Fig. 6. Database retrieve/storage system for robot hand des,gn. 半J亏一百4毒S睛、Fig. 7. User-machine interface in expert system. 2.4. Expert System Approach to Robot Hand/ Gripper Mechanisms Expert systems consist of three m句or compo-nents 10: a database;rules for transforming the database; a control strategy for selecting which rule toapply next. The database is a representation of parameters important to the problem. The rules of an expert system encode knowledge about how to reason from one set of facts to another. The controlstrategy determines which rules to apply when several rules are applicable. In general, expert systems are useful in the following sorts of task: debugging design diagnosis interpretation prediction monitoring plannin instruction modification.The most difficult phase of mechanical designis the conceptual phase. By use of the generated kinematic structure (Design Database), an expert system can be created. This knowledge base system contains general information about robot J. Lee / Kinematic Synthesis of Industrial Robot Hand/ Gripper 263 hand/mechanisms, kinematic structures (graphs), functions, types of drive mechanisms and applications. The designer enters the design requirements, the master will select the appropriate mechanisms and graphs from design database according to the functions, drive mechanisms, and applications. The designer can then study these proposed kinematic structures. Potentially acceptable mechanisms can then be evaluated in depth until a final design is achieved. Fig. 6 shows the database retrieve and storage system in a knowledge base system for creative design of robot hand/gripper mechanism. Similar study has been conducted by Chase and Roberts (9). Fig. 7 shows user-machine interface for creative design and robot hand/gripper mechanism. 3. SummaryBy using kinematic structure (graph) the。可,acreative design approach has been presented for designing robot hand/gripper mechanisms. A knowledge base design database system can also be created through the generated kinematic structure table of robot hand/gripper mechanisms. References l) U.S. Robotics Market Study, Frost & Sullivan, 1986. 2 Arthur G. Erdman, Thomas Thompson and Donald R.Riley,“Type Selection of Robot and Gripper KinematicTopology Using Expert Systems”,International Journal of Robotic Research, Vol. 5, No. 2 Summer 1986, pp. 183-189.(3) Fan Yu Chen,“Gripping Mechanisms for IndustrialRobots”,Mechanism and Machine Theory, Vol. 17, No. 5,pp. 299-311, 1982.4 Freudenstein, F. and E.R. M球i,“TheCreation of Mechanisms According to Kinematic Structure and Function气General Motors Research Publications, GMR 3073, September 1979.5 Freudenstein, F. and E.R. Maki,“Development of anOptimum Variable-Stroke Internal Combustion EngineerMechanism from the Viewpoint of Kinematics Structure”, ASME 82-DET-29, September 1982.(6 Dobrjansky, L and F. Freudenstein,“Some Applications 。f Graph Theory to the Structure Analysis of Mech缸tism”,Journal of Engineering for IndustFeb. 1967. 7 Buchsbaum, F. and Freudenstein, F. “Synthesis ofKinematic Structure of Geared Kinematic Chains andOther Mechanisms Journal of Mechanism, 1970, pp.357-392.(8 Le吧,J“Kinematic Synthesis of Industrial Robot Hand Mechanisms”,Columbia University Project Report, Fall 1985. (9 Chase, T.R. and Roberts, TR. University of Rhode Island Kingston, RI. (10) Soroka, Barry Irvin, “Expert Systems and Robotics” Robots 8 Conference Proceedings, pp. 19 132, 140.11) Shaum, Loren,“Programmable End-Effectors EAS Interface”Schaum Manufacturing, Inc. Elkhart, IN. 【中文3120字】工业机械手/夹具的运动合成-一种创造性的设计方法Jay Lee 美国邮政服务,先进技术办公室,475 S . W . L广场,2140室,20260-8120华盛顿直流,美国本研究的目的是综合工业机器手的机制。调查的自由度,复杂性和结构(图)将提交。因此,可以产生一个运动表结构的机器手机制。本研究的目的是综合工业机器人手机。对DOF的调查(凹,复杂性和将显示结构(Graph)。 因此,可以生成机器人手机构的运动学结构表。使用本参考表的优点如下:机器人手标准化机器人手动机构的运动学结构识别。.图集可用于枚举新的机器人手机。根据结构和功能的分离,引导创造或发明新的机器人手持机器人。本文将在设计工业机器人手/夹具机构时展示创意设计方法。这项研究工作是在作者在哥伦比亚大学进行的。关键词:运动学,夹爪,手机构。1.简介机器人手/夹具是大多数机器人应用的组成部分。市场研究预测,组装和物料搬运中将有超过60的机器人应用l。机器人抓握机构的设计始终成为该项目的关键要素。十分之一,花费最少的时间花费的时间很少matic结构(拓扑)设计在设计过程的早期阶段。时间压力有时会迫使工程师重复以前在类似应用中工作的拓扑,而不是尝试创建更好的设计2。陈3提出了一种用于工业机器人夹具的机构的完整体系。 Erdman等人2提出了基于可图和专家系统图的类型合成技术。作者8已经对机器人手(抓爪)机制创建数据库进行了大量的工作。本文将介绍一种设计工业机器人手/夹具机构的创新设计方法。还将展示机器人手/夹具机构的运动结构的发展。工业机器人手(夹爪)机构概述(3)通常,夹具可以根据以下内容进行分类:(1)机械手指类型:根据夹子中的手指数量,我们有(i)2手指类型(ii)3指型(iii)多功能型。根据我们拥有的机器人手腕上安装的手的数量(i)单个夹具(ii)双夹具(iii)多个夹具(索引型)。根据零件配置,我们有(i)直线运动夹具(paraller)(ii)角运动夹具。根据运动学结构,我们有(i)联动类型(ii)齿轮和齿条类型(iii)凸轮类型(iv)螺丝型(v)绳索和滑轮类型(MIT / UTAH手,日立手)。(2)真空和磁性pe:这个类别包括三个装有吸盘或电磁铁。(3)特殊的手和夹子:这个类由充气手指,采摘夹具组成。在本文中,我们将研究机械手指类型,因为大多数工业机器人手/夹具机构属于这一类。2.1机器人手(夹爪)机构的动力学合成Freuden Stein提出了基于结构与功能分离的机制创造47。运动结构可以在一个基本上系统,无偏见的情况下被证明时间作为机制的自由度的函数,期望运动的自然以及表示机构的复杂性的指示的参数。然后可以以这种方式获得的每个结构相对于机构的功能要求进行草图和评估。然后可以深入评估潜在可接受的机制,直到达到最终设计。大多数机制遵循以下一般自由度方程:其中F=机构自由度图1机器人手/夹具机构中常用的运动元件。表1图表与机制之间的对应关系=流动人数(自由度)机制运作:= 3,平面和球面运动;= 6对于一般的三维运动),L =链接数,j =关节数,和 =第i个相对运动的程度结合关于机理图,式(1)可以写成:其中v =图的顶点数(v = L),e =图的边数(e = j)。LIND =组合(1)和(3)的机制中的独立循环数对于齿轮系,可以显示7这些方程式专门针对以下内容:其中代表数量的齿轮对和针接头。大多数机器人手(夹子)是开环机构,其结构通常比闭环机构的结构简单。机器人手(抓爪)机构中最常见的接头是转向对或销接头(R),滑动对(P),齿轮对(G),螺旋对或螺母和螺母(H)(见图1)。 )。图2.典型的机器人手机构和图图3机器人手动机构的运动结构表I显示了图和m民间之间的无差异。典型的机器人手动机构的图形表示如图2所示。自由度(F)和复杂度(LIND)c该机制中的闭环次数为(a)这应该等于图(b)的结果。从表I中我们知道图中的边数(e)等于机制中的链接数。图中的顶点数(v)等于机构中关节(j)的数量。因此,LIND可以以以下形式重写:2.2 创建运动结构(图)卢工业机器人手/抓爪机构为了根据结构和功能的分离导致新的机器人手/夹具机构的创造或发明,应该产生工业机器人/夹具机构的运动学结构参考表。作者研究了数百种不同的不连续机器人手/夹子机构。图3显示了作者生成的这些动力学结构(设计数据库)的一部分。使用该参考表的优点如下:(1)机器人手/夹具机构的运动学结构识别。(2)图形(结构图)的图集可用于枚举新的机器人手/夹子机械手。(3)根据结构和功能的分离,引导创造或发明新的机器人手/夹具机构。图4.实例1图5案例二以下示例将展示如何从生成的运动结构(设计数据库)进行创意设计。示例1.在图3中,数字1,2和3具有相同的顶点(时,边(e)和运动结构(图)。如果我们看这些图,而不看机器人手机,我们可以发现这三个图之间的差异是链路2-链路4和链路2链路3的运动元素。数字I是棱柱关节(P)。编号2为齿轮接头(G),编号3为销接头(R)。如果我们想通过使用另一种类型的运动关节来设计新的机器人手,我们可以使用螺旋接头(H)。 H关节
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:夹具类外文翻译-工业机械手夹具的运动合成——一种创造性的设计方法【PDF+WORD】【中文1000字】
链接地址:https://www.renrendoc.com/paper/119207771.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!