A4-定位圈.dwg
A4-定位圈.dwg

4”号碗注塑模具设计【说明书+CAD】

收藏

压缩包内文档预览:
预览图
编号:120930793    类型:共享资源    大小:3.46MB    格式:ZIP    上传时间:2021-04-11 上传人:221589****qq.com IP属地:湖南
40
积分
关 键 词:
注塑 模具设计 说明书 CAD
资源描述:
4”号碗注塑模具设计【说明书+CAD】,注塑,模具设计,说明书,CAD
内容简介:
4碗注塑模设计XXXXXXX UNIVERSITY本 科 毕 业 论 文(设 计)题目: 4碗注塑模设计 学 院: 工学院 姓 名: XXXX 学 号: 专 业: 机械制造设计及自动化 年 级: 机制081 指导教师: XXXX 职 称: 副教授 二一二 年 五 月江西农业大学毕业设计(论文)任务书设计(论文)课题名称4”号碗注塑模设计学生姓名欧阳勰院(系)工学院专 业机械设计制造及其自动化指导教师XXXX职 称副教授学 历研究生毕业设计(论文)要求:1、好学上进,能吃苦耐劳,刻苦钻研,有相应专业知识,具备独立工作能力;2、能及时地查阅到国内外与本课题相关的资料和文件;3、会计算机绘图,能通过计算机绘图绘制相应的零件、部件和组件,绘制出总装配图;4、工作量要符合我院毕业设计的要求;5、根据毕业设计的要求在规定的时间内完成毕业答辩所需要的全部工作。毕业设计(论文)内容与技术参数:设计课题:4”碗注射塑模设计材料:ABS 板材厚度3mm 生产批量:大批量毕业设计(论文)工作计划:第一阶段:了解注塑模的生产过程;查阅国内外有关资料和文件分析注塑模的工艺特点,查找相关的装置;第二阶段:研究其它注塑模的工作原理,提出注塑模的设计思想;第三阶段:给出总体方案,画出工作草图,通过计算机绘图绘制相应的零件和部件,绘制出注塑模总装配图;第四阶段:撰写出设计说明书;根据毕业设计的要求在规定时间内完成毕业答辩所需要的所有工作。接受任务日期 年 月 日 要求完成日期 年 月 日学 生 签 名 年 月 日指导教师签名 年 月 日系主任签名 年 月 日摘要 在中国,人们已经越来越认识到模具在制造中的重要挤出地位,认识到模具技术技术水平的高低,已成为衡量一个国家制造业水平高低的重要标志,并在很大程度上决定着产品质量,效益和新产品的开发能力。 通模具按制造的产品分类,可以分为塑料模具(又分为注塑模具,铸压模具和吹塑模具),冲压模具,铸造模具,橡胶模具和玻璃模具等。其中尤以注塑模具和冲压模具用途广,技术成熟,占据的比重重大。经过对4碗工艺的正确分析,设计了一模四腔的塑料模具。详细的叙述了模具成型零件包括型腔,型芯等设计,重要的零件的工艺参数的选择和计算,浇注系统,冷却系统以及其它结构的设计过程,模架的选择原则。并利用PRO/E中的Plastic Advisor(塑料顾问)对设计完成的塑料模具进行了塑料流动分析。关键词:4碗;注塑模具;PRO/E;CADAbstract In china, people tend to recognize the important tool in the manufacture of mould, recognizing the status of those technical skills, and has become a country level of the manufacturing industry, and a large extent on product quality, efficiency and the new product developing ability. Die by manufacturing the product category, can be divided into plastic molds ( also divided into injection mold, pressure casting mold and blow mold), stamping die, die casting, rubber molds and glass molds. Especially in the injection mold and die stamping uses, technology is mature, occupied by major. After the4 bowl of the correct analysis of the technology, designing a mold four cavity mold. A detailed description of the mold of molding parts includes a cavity, core design, an important part of the process parameter selection and calculation, pouring system, cooling system and other structural design process, the choice of mold principle. And the use of PRO / E Plastic Advisor ( Plastic Advisor ) on the finished design plastic mold of plastic flow analysis.Key words :4bowl;injection mould;pro/e;cad22目录摘要IAbstractII1、制品成型工艺分析11. 材料选择11.1.1 PET(聚对苯二甲酸乙二醇酯)11.1.3 GPPS(通用级聚苯乙烯)11.1.4 AS(苯乙烯-丙烯腈共聚物)11.1.5 PP(聚丙烯)11.1.6 ABS(丙烯腈-苯乙烯-丁二烯共聚物)21.1.7 综述21.2 注塑模工艺21.3 ABS塑料的成型工艺参数31.4 塑件的尺寸选择31.4.1 塑件的尺寸32 注射成型机及标准模架的选择42.1 产品立体图42.2 注塑机的确定52.3 模架的初步选型63 型腔布局与分型面设计63.1 型腔的数目63.2 型腔的布局63.3 分型面的设计64 浇注系统设计74.1 主流道设计74.2 主流道尺寸计算84.3 分流道的设计94.4 浇口的设计94.4.1 浇口的选用94.4.2 浇口位置的选用94.4.3 浇注系统的平衡104.4.4 排气的设计104.5 浇口板的设计104.6 定位圈115 成型零件的设计125.1 成型零件的结构设计125.1.1 凹模结构设计125.1.2 型芯结构设计135.2 成型零件工作尺寸计算135.2.1 影响工作尺寸的因素135.2.2 凹、凸模的工作尺寸计算 凹模的工作尺寸146 合模导向机构的设计146.1 导柱导向机构设计要点146.2 带头导柱156.3 带头导套157.脱模机构的设计167.1 脱模机构设计的总体原则167.2 推件力的计算167.3 复位杆167.4 推板177.5 推杆固定板177.6 推料板187.7 垫块187.8 浇注系统凝料脱模机构188.注塑模温度控制系统设计199.注塑模排气系统设计1910. 注射机工艺参数的校核1910.1、注射量1910.2 注射压力1910.3 锁模力1910.4 开模行程2010.5 最大流程比20参考文献21致谢221、制品成型工艺分析1. 材料选择制作塑料碗要考虑的因素主要有:是否符合食品卫生标准,是否环保,耐高温性,塑料的韧性,耐候性,经济性。查阅资料,可选材料有PET,GPPS,AS,ABS,PP等,现分析如下1.1.1 PET(聚对苯二甲酸乙二醇酯)PET 是乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽。在较宽的温度范围内具有优良的物理机械性能,长期使用温度可达120,电绝缘性优良,甚至在高温高频下,其电性能仍较好,但耐电晕性较差,抗蠕变性,耐疲劳性,耐摩擦性、尺寸稳定性都很好。 1.1.2 PET的优点有良好的力学性能,冲击强度是其他薄膜的35倍,耐折性好。 耐油、耐脂肪、耐稀酸、稀碱,耐大多数溶剂。 具有优良的耐高、低温性能,可在120温度范围内长期使用,短期使用可耐150高温,可耐-70低温,且高、低温时对其机械性能影响很小。 气体和水蒸气渗透率低,既有优良的阻气、水、油及异味性能。 透明度高,可阻挡紫外线,光泽性好。 无毒、无味,卫生安全性好,可直接用于食品包装。1.1.3 GPPS(通用级聚苯乙烯) 通用级聚苯乙烯,可用于日用品、电气、仪表外壳、玩具、灯具、家用电器、文具、化妆品容器、室内外装饰品、果盘、光学零件(如三棱镜、透镜)透镜窗镜和模塑、车灯、电讯配件,电频电容器薄膜,高频绝缘材料、电视机等集装箱、波导管,化工容器等。悬浮聚合树脂可制成不同密度的泡沫塑料,用作绝热、隔音、防震、漂浮、包装材料,软木代用品,预发泡体可作水过滤介质及制备轻质混凝土,低发泡塑料可制成合成木材做家具等经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等1.1.4 AS(苯乙烯-丙烯腈共聚物) AS,亦称SAN,苯乙烯-丙烯腈共聚物,比聚苯乙烯有更高的冲击强度和优良的耐热性,耐油性,耐化学腐蚀性。如它能很好地耐某些使聚苯乙烯应力开裂的烃类。而弹性模量是现有热塑性塑料中较高的一种。 AS为苯乙烯-丙烯腈共聚体,不易产生内应力开裂。透明度很高,其软化温度和搞冲击强度比PS高。物化性能 SAN(AS)具有很强的承受载荷的能力、抗化学反应能力、抗热变形特性和几何稳定性。SAN(AS)中加入玻璃纤维添加剂可以增加强度和抗热变形能力,减小热膨胀系数。SAN(AS)的维卡软化温度约为110。载荷下挠曲变形温度约为100。SAN(AS)的收缩率约为0.3-0.7%。SAN(AS)是一种坚硬、透明的材料。苯乙烯成份使SAN(AS)坚硬、透明并易于加工;丙烯腈成份使SAN(AS)具有化学稳定性和热稳定性。 1.1.5 PP(聚丙烯) 主要应用于汽车工业(主要使用含金属添加剂的PP:挡泥板、通风管、风扇等),器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等),日用消费品(草坪和园艺设备如 剪草机和喷水器等)。PP是一种半结晶性材料。它比PE要更坚硬并且有更高的熔点。由于 均聚物型的PP温度高于0以上时非常脆,因此许多商业的PP材料是加入14%乙烯的无规则共聚物或更高比率乙烯含量的钳段式共聚物。共聚物型的PP材料有较低的热扭曲温度(100)、低透明度、低光泽度、低刚性,但是有有更强的抗冲击强度。PP的强度随着乙烯含量的增加而增大。PP的维卡软化温度为150。由于结晶度较高,这种材料的表面刚度和抗划痕特性很好。PP不存在环境应力开裂问题。通常,采用加入玻璃纤维、金属添加剂或热塑橡胶的方法对PP进行改性。PP的流动率MFR范围在140。低MFR的PP材料抗冲击特性较好但延展强度较低。对于相同MFR的材料,共聚物型的强度比均聚物型的要高。1.1.6 ABS(丙烯腈-苯乙烯-丁二烯共聚物) ABS树脂(丙烯腈-苯乙烯-丁二烯共聚物,ABS是Acrylonitrile Butadiene Styrene的首字母缩写)是一种强度高、韧性好、易于加工成型的热塑型高分子材料。 随着三种成分比例的调整,树脂的物理性能会有一定的变化: 1,3-丁二烯为ABS树脂提供低温延展性和抗冲击性,但是过多的丁二烯会降低树脂的硬度、光泽及流动性; 丙烯腈为ABS树脂提供硬度、耐热性、耐酸碱盐等化学腐蚀的性质; 苯乙烯为ABS树脂提供硬度、加工的流动性及产品表面的光洁度。ABS树脂是微黄色固体,有一定的韧性,密度约为1.041.06 gcm3。它抗酸、碱、盐的腐蚀能力比较强,也可在一定程度上耐受有机溶剂溶解。 ABS树脂可以在-2560的环境下表现正常,而且有很好的成型性,加工出的产品表面光洁,易于染色和电镀。因此它可以被用于家电玩具等日常用品。常见的乐高积木就是ABS制品。 ABS树脂可与多种树脂配混成共混物,如PCABS、ABS/PVC、PAABS、PBTABS等,产生新性能和新的应用领域,如:将ABS树脂和PMMA混合,可制造出透明ABS树脂。1.1.7 综述 ABS树脂具有突出的力学性能和良好的综合性能,ABS塑料的表面可以电镀,无毒无味。故拟定本次设计采用ABS生产塑料碗。1.2 注塑模工艺干燥处理:如果储存适当则不需要干燥处理。熔化温度:220275,注意不要超过275。模具温度:4080,建议使用50。结晶程度主要由模具温度决定。注射压力:可大到1800bar。注射速度:通常,使用高速注塑可以使内部压力减小到最小。如果制品表面出现了缺陷,那么应使用较高温度下的低速注塑。流道和浇口:对于冷流道,典型的流道直径范围是47mm。建议使用通体为圆形的注入口和流道。所有类型的浇口都可以使用。典型的浇口直径范围是11.5mm,但也可以使用小到0.7mm的浇口。对于边缘浇口,最小的浇口深度应为壁厚的一半;最小的浇口宽度应至少为壁厚的两倍。PP材料完全可以使用热流道系统。成型时间:注射时间 20s60s 高压时间 0s3s 冷却时间 20s90s 总周期 50s160s1.3 ABS塑料的成型工艺参数ABS塑料的成型工艺参数如表1所示:参数取值范围选取数值密度1.021.05g/cm1.03g/cm收缩率S0.3%0.8%0.5%温度/喷嘴180-190180料筒210-230220模具50-7060压力MPa注射70-9080保压50-7060时间/S注射3-53保压15-3020冷却15-3025总计40-7048表1 ABS塑料工艺参数1.4 塑件的尺寸选择1.4.1 塑件的尺寸塑件尺寸的大小受制于以下因素:a) 取决于用户的使用要求。b) 受制于塑件的流动性。c) 受制于塑料熔体在流动充填过程中所受到的结构阻力。根据日常需要,取碗的碗口直径为128mm,碗底直径为57.9mm,碗高42mm,碗壁厚3mm。如图1图1 塑件尺寸1.4.2 塑件尺寸公差标准a) 影响塑件尺寸精度的因素主要有:塑料材料的收缩率及其波动。b) 塑件结构的复杂程度。c) 模具因素(含模具制造、模具磨损及寿命、模具的装配、模具的合模及模具设计的不合理所可能带来的形位误差等)。d) 成型工艺因素(模塑成型的温度T、压力p、时间t及取向、结晶、成型后处理等)。e) 成型设备的控制精度等。其中,塑件尺寸精度主要取决于塑料收缩率的波动及模具制造误差。题中没有公差值,则我们按未注公差的尺寸许偏差计算,查表取MT5。1.4.3 塑件的表面质量塑件的表面质量包括塑件缺陷、表面光泽性与表面粗糙度,其与模塑成型工艺、塑料的品种、模具成型零件的表面粗糙度、模具的磨损程度等相关。模具型腔的表面粗糙度通常应比塑件对应部位的表面粗糙度在数值上要低1-2级。2 注射成型机及标准模架的选择2.1 产品立体图本课题设计的塑料制品为4碗,本实体如图2图2 塑料实体图2.2 注塑机的确定 该产品的材料为ABS,查手册克制起密度1.031.07g/cm,收缩率为0.4%0.7%,计算出其平均密度为1.05g/cm,平均收缩率为0.55%。 使用PRO/E软件计算出图形的体积,可以得出塑料的体积为V件=64.6cm,根据塑件的密度可以计算出塑件的质量为M件 =V件=1.0564.610-3=67.83g 浇注系统内的凝料的体积计算大约为V注14.46cm,可以计算出浇注喜用内凝料的质量为M注=V注=1.0514.4615g,由此可以看出所需塑料的总体积和总质量为V总=4V件+V注=464.6+14.46=272.86cm M总=4M件+M注=467.83+15=286g 根据所需塑料的总体积查表可以选择注射机的型号为:XS-ZY-500(螺栓式)注射机的参数: 注射容量:500cm 注射压力:145MPa 合模力:3500KN 最大成型面积:1000cm2 模具最大厚度:450mm 模具最小厚度:300mm 最大开(合)模行程:500mm 动定模固定板拉杆尺寸:600550mm 喷嘴球半径:R=18mm 喷嘴的孔径:5mm 定位圈的直径为:125mm2.3 模架的初步选型宽400mm,长460mm, 一模四腔根据GB/T 12555-2006,W 500初选DD5050-400*387*460定模板厚度:A=130mm动模板厚度:B=52mm垫块厚度:C=135mm模具厚度:H=70+A+B+C=(70+130+52+135)=387mm3 型腔布局与分型面设计3.1 型腔的数目 根据设计要求选择一模四腔3.2 型腔的布局 考虑到模具成型零件和抽芯结构以及出模方式的设计,模具的型腔排列方式如下图所示: 图(1)3.3 分型面的设计 分型面位置选择的总体原则,是能保证塑件的质量、便于塑件脱模及简化模具的结构,分型面受到塑件在模具中的成型位置、浇注系统设计、塑件的结构工艺性及精度、嵌件位置形状以及推出方法、模具的制造、排气、操作工艺等多种因素的影响,因此在选择分型面时应综合分析比较具体可以从以下方面进行选择。a) 分型面应选在塑件外形最大轮廓处。b) 便于塑件顺利脱模,尽量使塑件开模时留在动模一边。c) 保证塑件的精度要求。d) 满足塑件的外观质量要求。e) 便于模具加工制造。f) 对成型面积的影响。g) 对排气效果的影响。h) 对侧向抽芯的影响。 主要有以下几种分型面形式:平面分型面,倾斜分型面,阶梯分型面,曲面分型面,互垂直分型面,为操作简单,节约经济,选用平面分型面图(2)分型面4 浇注系统设计4.1 主流道设计 主流道是一端与注射机喷嘴相接触,可看作是喷嘴的通道在模具中的延续,另一端与分流道相连的一段带有锥度的流动通道。形状结构如图(3)所示,其设计要点: 图(3)a) 主流道设计成圆锥形,其锥角可取26,流道壁表面粗糙度取Ra=0.63m,且加工时应沿道轴向抛光。b) 主流道如端凹坑球面半径R2比注射机的、喷嘴球半径R1大12 mm;球面凹坑深度35mm;主流道始端入口直径d比注射机的喷嘴孔直径大0.51mm;一般d=2.55mm。c) 主流道末端呈圆无须过渡,圆角半径r=13mm。d) 主流道长度L以小于60mm为佳,最长不宜超过95mm。e) 主流道常开设在可拆卸的主流道衬套上;其材料常用T8A,热处理淬火后硬度5357HRC。4.2 主流道尺寸计算 根据选用的XSZY500型号的注射机相关尺寸得:喷嘴孔径=4mm;喷嘴前端球面半径=21mm;根据模具主流道与喷嘴的关系:R=+(12)=21+(12)=2122mmd=+(0.51)=7.5+(0.51)=88.5mm取主流道球面半径R=21mm; 主流道小端直径d=8mm。 4.3 分流道的设计 分流道是脱浇板下水平的流道。为了便于加工及凝料脱模,分流道大多设置在分型面上,分流道截面形状一般为圆形梯形U形半圆形及矩形等。本次设计采用圆形分流道,分流道直径7mm。a)分流道长度 分流道要尽可能短,且少弯折,便于注射成型过程中最经济地使用原料和注射机的能耗,减少压力损失和热量损失。将分流道设计成直的,总长160mm。b)分流道表面粗糙度 由于分流道中与模具接触的外层塑料迅速冷却,只有中心部位的塑料熔体的流动状态较为理想,因面分流道的内表面粗糙度Ra并不要求很低,一般取1.6m左右既可,这样表面稍不光滑,有助于塑料熔体的外层冷却皮层固定,从而与中心部位的熔体之间产生一定的速度差,以保证熔体流动时具有适宜的剪切速率和剪切热。c)分流道表面粗糙度 分流道在分型面上的布置与前面所述型腔排列密切相关,有多种不同的布置形式,但应遵循两方面原则:即一方面排列紧凑、缩小模具板面尺寸;另一方面流程尽量短、锁模力力求平衡。本模具的流道布置形式采用平衡式, 如图(1)所示。4.4 浇口的设计 浇口亦称进料口,是连接分流道与型腔的通道,除直接浇口外,它是浇注系统中截面最小的部分,但却是浇注系统的关键部分,浇口的位置、形状及尺寸对塑件性能和质量的影响很大。4.4.1 浇口的选用 它是流道系统和型腔之间的通道,这里我们采用点浇口: 浇口在成形自动切数断,故有利于自动成形。 浇口的痕迹不明显,通常不必后加工。 浇口之压力损失大,必须高之射出压力。 浇口部份易被固化之残锱树脂堵隹。 它常用于成型中、小型塑料件的一模多腔的模具中,也可用于单型腔模具或表面不允许有较大痕迹的塑件。4.4.2 浇口位置的选用模具设计时,浇口的位置及尺寸要求比较严格,初步试模后还需进一步修改浇口尺寸,无论采用何种浇口,其开设位置对塑件成型性能及质量影响很大,因此合理选择浇口的开设位置是提高质量的重要环节,同时浇口位置的不同还影响模具结构。总之要使塑件具有良好的性能与外表,一定要认真考虑浇口位置的选择,如图(6)所示。通常要考虑以下几项原则: 尽量缩短流动距离。 浇口应开设在塑件壁厚最大处。 必须尽量减少熔接痕。 应有利于型腔中气体排出。 考虑分子定向影响。 避免产生喷射和蠕动。 浇口处避免弯曲和受冲击载荷。 注意对外观质量的影响。图(5)进浇点4.4.3 浇注系统的平衡 对于中小型塑件的注射模具己广泛使用一模多腔的形式,设计应尽量保证所有的型腔同时得到均一的充填和成型。一般在塑件形状及模具结构允许的情况下,应将从主流道到各个型腔的分流道设计成长度相等、形状及截面尺寸相同(型腔布局为平衡式)的形式,否则就需要通过调节浇口尺寸使各浇口的流量及成型工艺条件达到一致,这就是浇注系统的平衡。显然,我们设计的模具是平衡式的,即从主流道到各个型腔的分流道的长度相等,形状及截面尺寸都相同。4.4.4 排气的设计 排气槽的作用主要有两点。一是在注射熔融物料时,排除模腔内的空气;二是排除物料在加热过程中产生的各种气体。越是薄壁制品,越是远离浇口的部位,排气槽的开设就显得尤为重要。另外对于小型件或精密零件也要重视排气槽的开设,因为它除了能避免制品表面灼伤和注射量不足外,还可以消除制品的各种缺陷,减少模具污染等。那么,模腔的排气怎样才算充分呢?一般来说,若以最高的注射速率注射熔料,在制品上却未留下焦斑,就可以认为模腔内的排气是充分的。适当地开设排气槽;可以大大降低注射压力、注射时间。保压时间以及锁模压力,使塑件成型由困难变为容易,从而提高生产效率,降低生产成本,降低机器的能量消耗。其设计往往主要靠实践经验,通过试模与修模再加以完善,此模我们利用模具零部件的配合间隙及分型面自然排气。4.5 浇口板的设计根据GB/T 4169.19-2006塑料注射模模零件 第19部分,浇口套示意图如下:图(6) 浇口套D=20mm;D1=54mm;D2=60mm;L=80mm浇口套 2080 GB/T 4169.19-20064.6 定位圈 因为采用的有托唧咀,所以用定位圈配合固定在模具的面板上。定位圈也是标准件,外径为100mm,内径53mm。根据GB/T 4169.18-2006塑料注射模具零件 第18部分,定位圈示意图如下: 图(7) 定位圈根据标准模架和CAD的标注尺寸选择如下几何尺寸:D=100mm D1=53mm h=15mm材料:45钢定位圈 100 GB/T 4169.18-20065 成型零件的设计 模具中决定塑件几何形状和尺寸的零件称为成型零件,包括凹模、型芯、镶块、成型杆和成型环等。成型零件工作时,直接与塑料接触,塑料熔体的高压、料流的冲刷,脱模时与塑件间还发生摩擦。因此,成型零件要求有正确的几何形状,较高的尺寸精度和较低的表面粗糙度,此外,成型零件还要求结构合理,有较高的强度、刚度及较好的耐磨性能。 设计成型零件时,应根据塑料的特性和塑件的结构及使用要求,确定型腔的总体结构,选择分型面和浇口位置,确定脱模方式、排气部位等,然后根据成型零件的加工、热处理、装配等要求进行成型零件结构设计,计算成型零件的工作尺寸,对关键的成型零件进行强度和刚度校核。5.1 成型零件的结构设计5.1.1 凹模结构设计 凹模是成型产品外形的主要部件。其结构特点:随产品的结构和模具的加工方法而变化。 镶拼的组合方式的优点: 对于形状复杂的型腔,若采用整体式结构,比较难加工。所以采用组合式的凹模结构。同时可以使凹模边缘的材料的性能低于凹模的材料,避免了整体式凹模采用一样的材料不经济,由于凹模的镶拼结构可以通过间隙利于排气,减少母模热变形。对于母模中易磨损的部位采用镶拼式,可以方便模具的维修,避免整体的凹模报废。 组合式凹模简化了复杂凹模的机加工工艺,有利于模具成型零件的热处理和模具的修复,有利于采用镶拼间隙来排气,可节省贵重模具材料。图(8)5.1.2 型芯结构设计 整体嵌入式型芯,适用于小型塑件的多腔模具及大中型模具中。最常用的嵌入装配方法是台肩垫板式,其他装配方法还有通孔螺钉联接式,沉孔螺钉联接式。 图(9)5.2 成型零件工作尺寸计算5.2.1 影响工作尺寸的因素(1)塑件收缩率的影响:聚丙烯收缩率为1.82.5(2)凹、凸模工作尺寸的制造公差:通常凹、凸模的制造公差取塑件公差的1/31/6,表面粗糙度取值为0.80.4。5.2.2 凹、凸模的工作尺寸计算 凹模的工作尺寸径向尺寸碗口: D1 =D1S(1+S)=128(1+0.0215)=130.7mm碗底: D2=D2S(1+S)=57.9(1+0.0215)=59mm深度尺寸: H=HS(1+S)=42(1+0.0215)=42.9mm2.2.2凸模的工作尺寸径向尺寸:d1=dS(1+S)=169(1+0.0215)=173mm深度尺寸:h=hS(1+S)=60(1+0.0215)=61.7mm6 合模导向机构的设计6.1 导柱导向机构设计要点 小型模具一般只设置两根导柱,当其元合模方位要求,采用等径且对称布置的方法,若有合模方位要求时,则应采取等径不对称布置,或不等径对称布置的形式。大中型模具常设置三个或四个导柱,采取等径不对称布置,或不等径对称布置的形式。 直导套常应用于简单模具或模板较薄的模具;型带头导套主要应用于复杂模具或大、中型模具的动定模导向中;型带头导套主要应用于推出机构的导向中。 导向零件应合理分布在模具的周围或靠近边缘部位;导柱中心到模板边缘的距离一般取导柱固定端的直径的11.5倍;其设置位置可参见标准模架系列。 导柱常固定在方便脱模取件的模具部分;但针对某些特殊的要求,如塑件在动模侧依靠推件板脱模,为了对推件板起到导向与支承作用,而在动模侧设置导柱。 为了确保合模的分型面良好贴合,导柱与导套在分型面处应设置承屑槽;一般都是削去一个面,或在导套的孔口倒角, 导柱工作部分的长度应比型芯端面的高度高出68mm,以确保其导向作用。 应确保各导柱、导套及导向孔的轴线平行,以及同轴度要求,否则将影响合模的准确性,甚至损坏导向零件。 导柱工作部分的配合精度采用H7/f7(低精度时可采用H8/f8或H9/f9);导柱固定部分的配合精度采用H7/k6(或H7/m6)。导套与安装之间一般用H7/m6的过渡配合,再用侧向螺钉防止其被拔出。 对于生产批量小、精度要求不高的模具,导柱可直接与模板上加工的导向孔配合。通常导向孔应做志通孔;如果型腔板特厚,导向孔做成盲孔时,则应在盲孔侧壁增设通气孔,或在导柱柱身、导向孔开口端磨出排气槽;导向孔导滑面的长度与表面粗糙度可根据同等规格的导套尺寸来取,长度超出部分应扩径以缩短滑配面。6.2 带头导柱GB/T 4169.4-2006 塑料注射模零件 第4部分:带头导柱示意图如下: 图(10) 带头导柱根据标准模架和CAD的标注尺寸选择如下几何尺寸:D=24mm;D1=28mm;h=6mm;L=180mm;L1=53mm材料:65Mn带头导柱 2418053 GBT 4169.4-20066.3 带头导套根据GB/T 4169.3-2006塑料注射模具零件 第3部分:带头导套示意图如下:图(11) 带头导套根据标准模架和CAD的标注尺寸选择如下几何尺寸:D=24mm;D1=42mm;D2=40mm;D3=41mm;L=43mm;h=6mm;R=2mm材料:Gcr15带头导套 2443 GB/T 4169.3-2006 7.脱模机构的设计7.1 脱模机构设计的总体原则a) 要求在开模过程中塑件留在动模一侧,以便推出机构尽量设在动模一侧,从而简化模具结构。b) 正确分析塑件对模具包紧力与粘附力的大小及分布,有针对性地选择合理的推出装置和推出位置,使脱模力的大小及分布与脱模阻力一致;推出力作用点应靠近塑件对凸模包紧力最大的位置,同时也应是塑件刚度与强度最大的位置;力的作用面尽可能大一些,以防止塑件在被推出过程中变形或损坏。c) 推出位置应尽可能设在塑件内部或对塑件外观影响不大的部位,以力求良好的塑件外观。d) 推出机构应结构简单,动作可靠(即:推出到位、能正确复位且不与其他零件相干涉,有足够的强度与刚度),远动灵活,制造及维修方便。7.2 推件力的计算脱模力:式中:L凸模被包紧部分的断面周长(cm) h被包紧部分的深度(cm) p由塑件收缩率产生的单位面积的正压力,一般取 Pa f摩擦系数,一般取0.1 脱模斜度。则:L=3.14*126=395.64mmh=63mmQ=395.64mm*63mm*10MPa(0.1*cos0-sin0)=24925.3N7.3 复位杆复位杆设计:GB/T 4169.13-2006塑料注射模具零件 第13部分:复位杆示意图如下:图(12) 复位杆根据标准模架和CAD的标注尺寸选择如下几何尺寸:D=18mm;D1=24mm;h=6mm;R=0.5;L=150mm材料:T10A复位杆18150 GB/T 4169.13-20067.4推板推板设计:GB/T 4169.7-2006 塑料注射模具零件 第7部分:推板示意图如图13:图(13) 推板根据标准模架和CAD的标注尺寸选择如下几何尺寸:W=350mm.L=350mm.H=17mm材料: 45钢推件板 35035017 GB/T 4169.7-20067.5 推杆固定板推件板设计:GB/T 4169.8-2006 塑料注射模具零件 第8部分示意图如图14: 图(14) A型模板根据标准模架和CAD的标注尺寸选择如下几何尺寸:W=350mm.L=350mm.H=27mm材料: 45钢推件板 35035027GB/T 4169.8-20067.6 推料板推料板设计:GB/T 4169.8-2006 塑料注射模具零件 第8部分示意图如图14根据标准模架和CAD的标注尺寸选择如下几何尺寸:W=350mm.L=350mm.H=30mm材料:45钢推料板 35035030 GB/T 4169.8-20067.7 垫块垫块设计:GB/T 4169.6-2006 塑料注射模具零件 第6部分:垫块示意图如下: 图(15) 垫块根据标准模架和CAD的标注尺寸选择如下几何尺寸:W=52mm,L=75mm,H=52mm材料:45钢垫块 5275152 GB/T 4169.6-20067.8 浇注系统凝料脱模机构流道凝料的脱模方式,这里采用三板式脱模,即双分型面。点浇口时料的浇注系统能够利用开模动作实现塑件与流道凝料的自动分离,同时利用塑件对凸模的包紧力将塑件与流道凝料拉断。8.注塑模温度控制系统设计 由于制品平均壁厚为3mm,制品尺寸又较小,确定小孔直径为8mm。由于冷却水道的位置,结构形式,孔径,表面状态,水的流速,模具材料等很多因素都会影响模具的热量向冷却水传递,精确计算比较。实际生产中。通常都是根据模具的结构确定冷却水路,通过调节沾湿,水速来满足要求。9.注塑模排气系统设计 排气槽的作用主要有两点。一是在注射熔融物料时,排除模腔内的空气;二是排除物料在加热过程中产生的各种气体。越是薄壁制品,越是远离浇口的部位,排气槽的开设就显得尤为重要。另外对于小型件或精密零件也要重视排气槽的开设,因为它除了能避免制品表面灼伤和注射量不足外,还可以消除制品的各种缺陷,减少模具污染等。那么,模腔的排气怎样才算充分呢?一般来说,若以最高的注射速率注射熔料,在制品上却未留下焦斑,就可以认为模腔内的排气是充分的。适当地开设排气槽;可以大大降低注射压力、注射时间。保压时间以及锁模压力,使塑件成型由困难变为容易,从而提高生产效率,降低生产成本,降低机器的能量消耗。其设计往往主要靠实践经验,通过试模与修模再加以完善,此模我们利用模具零部件的配合间隙及分型面自然排气。10. 注射机工艺参数的校核10.1、注射量塑件体积:V总=4V件+V注=464.6+14.46=272.86cm注射机理论注射容量:V理=500VV理*80%=500*0.80=400,故符合要求。10.2 注射压力所选注射机的须大于塑件所需的注射压力,聚丙烯的注射压力为70120MPa,注射机的注射压力为104MPa,符合要求。10.3 锁模力锁模力是指注射机的锁模机构对模具所施加的最大夹紧力,当高压的塑料熔体充填模腔时,会沿锁模方向产生一个很大的胀型力。为此,注射机的额定锁模力必须大于该胀型力,即:注射压力式中 P塑料成型时型腔压力; F浇注系统和塑件在分型面上的投影面积和(mm)P模具型腔内塑料熔体平均压力(MPa);一般为注射压力的0.30.65倍。PP塑料成型时的注射压力,我们选择P=0.65120=78MPa各型腔及浇注系统及各型腔在分型面上的投影面积: ,符合条件。10.4 开模行程对双分型面注射模,双分型面模具最小开模行程HminH=H1+H2+A+C+(510)mm 式中,H1塑件推出的最小距离 H2包括浇注系统在内的塑件高度 A-浇注系统凝料高度+30mm C-610mm 510mm-安全距离选用原则:注射机的动模板最大行程SmaxHmin注射机的动模板和定模板之间的最小间距Hmin 模具的最小厚度H0 H=63+100+10+65+(510)=243248mm所选注塑机的移模行程为300mm198mm,满足要求;Hmin=40mm模具最小厚度300mm,满足要求。10.5 最大流程比查阅资料PP的流长比为100200.本次设计的最大流程比:(126+3.1465/2)*1/1.5=152.0,满足要求参考文献1 杨占尧主编.塑料模具标准件及设计应用手册. 北京: 化工业出版社,20082 张维合主编.注塑模具设计实用教程. 北京: 化学工业出版社,20073 孙玲主编. 塑料成型工艺与模具设计. 北京: 清华大学出版社, 20084 洪慎章主编. 实用注塑成型及模具设计 .北京.机械工业出版社;20065 许洪斌 范泽兴等塑料注射成型工艺及模具化学工业出版社6 许发樾主编.模具常用机构设计. 北京; 机械工业出版社20037 李海梅主编.注塑成型及模具设计实用技术. 北京: 化工业出版社,20028 付宏生编著.注塑制品与注塑模具设计. 北京: 化学工业出版社, 2003致谢 大学生活一晃而过,回首走过的岁月,唏嘘不已!不过心中还很充实。当我做完这篇毕业设计的时候,有一种如释重负的感觉,心中感慨良多。 本设计的完成是在我们的导师XXXX老师的细心指导下进行的,在每次设计遇到问题时,老师不辞辛苦的讲解才使我的设计顺利进行。从设计的选题到资料的搜集直到最后设计的修改的整个过程中,花费了段老师很多宝贵的时间和精力,在此向导师表示衷心的感谢!导师严谨的治学态度,开拓进取的精神和高贵的责任心都将使学生受益终身! 还要感谢那所有教过我的老师们,你们严谨细致,一丝不苟的教学作风一直是我工作,学习中的榜样。你们循循善诱和不拘一格的思路给了我无尽的启迪。感谢四年来陪伴在我身边的同学,朋友,感谢他们为我提出的有益意见和建议,有了他们的支持,鼓励和帮助,我才能充实的度过了丰富多彩的四年大学学习生活。说不出再见!International Journal of Machine Tools & Manufacture 47 (2007) 740747Rapid tooling analysis of Stereolithography injection mould toolingSadegh Rahmati?, Phill Dickens1Manufacturing Engineering Group, Mechanical Engineering Department, University of Imam Hussain, Tehran, IranAvailable online 13 November 2006AbstractIncreasing competition in global markets is exerting intense pressure on companies to trim their product cycles continuously. Asdelivery times and costs of tools are on a downward trend, the modern tool manufacturer is under pressure to produce tools quickly,accurately and at a lower cost. Reducing the time to produce prototypes is a key to speed up the development of new products. Rapidtooling (RT) with particular regard to injection mould fabrication using rapid prototyping (RP) technology of Stereolithography (SL)may lead to savings in cost and time. In this paper, SL is used to directly build rapid injection mould tools for short run production. SLtools have been evaluated to analyse the maximum number of successful injections and quality of performance. SL epoxy tools were ableto resist the injection pressure and temperature and 500 injections were achieved. The tool failure mechanisms during injection areinvestigated and tool failure either occurs due to excessive flexural stresses, or because of excessive shear stresses.r 2006 Elsevier Ltd. All rights reserved.Keywords: Rapid prototyping; Stereolithography; Rapid tooling; Injection moulding1. IntroductionThe design to production time for new componentscontinues to decrease so that the long lead-time inproducing tooling conventionally becomes more of abarrier in responding to customer demand 1,2. Increasein design capabilities, product variety, demand for shor-tened lead-time and decrease in production quantities arethe major driving forces in the development of rapidtooling technologies, where tooling time and cost aresignificantly reduced 35. At the same time, SL toolingtechniques are improving and are becoming increasinglypopular among manufacturers 68. The development ofthe SL injection moulding tools at the University ofNottingham, has taken place along two fronts.The first was to provide material data for tool designunder extreme conditions of stress and temperature, andobtaining data from different tests, which resemble realsituations 9. The second development was a theoreticaland analytical analysis of SL tools during the injectionprocess 10. It has shown that SL injection mould toolingcan be used successfully in low to medium numbers, and upto 500 parts have been produced with one tool 11. Therest of the paper addresses the following: Section 2 outlinesthe experimental procedure, Section 3 focuses on theinjection pressure analysis, Section 4 deals with tooltemperatures studies and testing mechanical properties ofthe epoxy resin on tensile and impact strength, Section 5concentrates on the failure mechanisms during injection bylooking at flexural stresses, shear stresses, crack propaga-tion and fatigue using SEM observations, and Section 6 isthe results summary.2. Experimental methodIn constructing SL injection moulding tools, epoxy insertshells were fabricated directly from CAD data on an SLmachine (SLA 250). These inserts were then fitted into steelmould bases through steel frames, and back-filled with analuminium powder/aluminium chip/epoxy resin mixture(Fig. 1). The back-filled mixture added strength to theinserts and allowed heat to be conducted away from themould. The modular steel mould bases were two standardbase plates machined with a cylindrical pocket to fit thesteel frames and the inserts 12. The SL tools were thentested in a 50ton Battenfeld production moulding machineARTICLE IN PRESS/locate/ijmactool0890-6955/$-see front matter r 2006 Elsevier Ltd. All rights reserved.doi:10.1016/j.ijmachtools.2006.09.022?Corresponding author.E-mail address: rahmati (S. Rahmati).1Professor&HeadofRapidManufacturingResearchGroup,Loughborough University, UK.to produce parts from polypropylene (PP) and Acryloni-trile Butadiene Styrene (ABS) (Fig. 2).During the moulding process, the temperature andpressure of the cavity were monitored, and the melttemperature was controlled using different thermocouplesto ensure that the conditions within the cavity were asuniform as possible. Fractured samples of both the mouldsand the mouldings were examined using either an opticalmicroscope or a Scanning Electron Microscope (SEM).Fractured cubes were used to investigate the failure crosssections and fractured surfaces. Failed cubes embeddedinto the moulding material were mounted using a castingmaterial and cut and polished in order to be examined,using an optical microscope. However, fractured surfacesof the cubes and the core were investigated using SEM,which led to the interpretation of the failure mechanism ofthe SL tooling.3. Injection pressure analysisWhen the melt enters the cavity, it moves radially awayfrom the centre, and hits the blocks. Then the flow movesin three directions, upwards and around the cubes until thethree flow fronts meet at the back symmetrically. The flowloses pressure and heat as it moves away from the centreand in addition to this pressure loss, the flow movingupwards faces additional loss due to the bends. There aretwo main forces acting on the blocks, one due to the shearstress acting on the base, the other is the bending stresstrying to tip over the blocks. In general, at any instantwhere the injection pressure is higher than the toolstrength, failure is feasible. To avoid this, care is taken toinject at a temperature where the tool has sufficientstrength. This criterion has led to a well-defined cycle,where injection always takes place when the tool tempera-ture has dropped to 451C, where the materials strength isable to resist the injection pressure.When a shot is made, plastic is pushed into the cavityand as a result pressure is exerted on the tool. The pressureprofile is investigated using load cells placed at the bottomof the ejectors (Fig. 3). The pressure exerted on the ejectorswill be transferred to the load cells placed at the other endof the ejectors. Three ejector pins out of five, one in themiddle and two in the corners were selected for measuringthe pressure. All load cells were wired to a Data Loggerand operated by a PC. The voltage changes duringARTICLE IN PRESSSpring & Gating systemCavity Steel FrameCore Steel FrameEjector PinsStereolithographyCavity InsertBack Fill materialStereolithographyCore InsectFig. 1. Cross sectional view of the SL injection moulding tool inserts.Fig. 2. The moulding after being ejected from the SL tool.SprueCorner ejectorsMiddle ejectorSprue bushMouldingEjector baseLoad cellCore sideCavity sideMiddle ejectorLoad cell wiresFig. 3. The location of the ejectors and the load cells.S. Rahmati, P. Dickens / International Journal of Machine Tools & Manufacture 47 (2007) 740747741injection were recorded and converted into pressure. Theresults are plotted in Fig. 4 where the maximum injectionpressure of 1650psi (11.4Mpa) on the middle ejector,drops to about 1300psi (9MPa) on the corner ejectors.4. Temperature and material studies of SL epoxy toolA number of thermocouples were inserted in differentlocations of the core and cavity to continuously monitorthe temperature in real time. In particular thermocoupleswere inserted on features, which are more vulnerable toheat, such as cubes which were heated from five directions.A PC temperature logger was used to monitor and recordthe data and analyse the changes in temperature duringinjection. Fig. 5 is typical real time temperature behaviourwhere the cycle time is long enough to cool the mould to451C before starting a new injection.Standard specimens were built for tensile strength, shearstrength according to ISO527 and impact strength testaccording to ISO 179. Tests were carried out using aminimum of 10 specimens tested at each temperature,where samples were heated by built-in heating chamberandtestedusingInstron1195machineatdifferenttemperatures. The average impact strength result wasdetermined to be 28.4kJ/m2and the average result atvarious temperatures is plotted in Fig. 6. Epoxy tensile andshear test results are shown in Fig. 7. Although themaximum tensile and shear strength is at 201C, there isrelatively little elongation and elasticity at this temperature,which means that the impact resistance is minimum(Fig. 6).Thermosettingmaterialssuchasepoxypossessarelatively wide glass transition temperature. With anincrease in epoxys tool temperature, the tensile strengthof the tool decreases while its impact resistance increases(Figs. 6 and 7). These properties work in favour of the SLtooling technique. Due to the absence of water cooling andthe short freeze time of 15s, stress and warpage wereintroduced to the part, in particular at hot spots where heatwas dissipated at a lower rate. However, increasing thefreeze time from 15 to 35s has minimised the warpage.It is clear that there is an optimum mould temperature toget an acceptable moulding without damaging the SL tool.This temperature is a trade off between the tensile andshear strength on one hand and toughness strength on theother hand. For example injection at tool temperatures ofARTICLE IN PRESS02004006008001000120014001600180003691215182124Corner Pressure 1Middle PressureCorner Pressure 3Pressure Profile inside the SL Epoxy Cavity in Three Locations Pressure (psi)Time (sec)Fig. 4. The pressure profile inside the cavity at three locations.0204060801001200100200300400500600Temperature (Deg C)Core1Core2Core3Core4Cavity1Cavity2Cavity3Cavity4Time (sec)Fig. 5. Temperature variation inside the epoxy tool during successive cycles.S. Rahmati, P. Dickens / International Journal of Machine Tools & Manufacture 47 (2007) 740747742251C would probably cause failure because of the toolslack of toughness. However, at 451C the tool has survivedand more than 500 successful shots were made. Using anair jet to cool the mould has proved to be successful, andhas doubled the rate of production by reducing the cycletime from 4.3 to 2min.5. Failure mechanism analysisWhen the plastic is injected into the cavity, there is asudden pressure rise within the cavity, which is the highestpressure reached during the moulding cycle (Fig. 4). Thispressure exerts a force on the core features, which maycause tool fracture, if the ultimate tensile strength orflexural strength of the material is exceeded. Fig. 8, showsthe various scenarios which may arise during plasticinjection. In (a), there is no failure, in (b) there is a flexuralfailure and in (c) there is a shear failure. Flexural stress canlead to instant failure, or alternatively, to crack propaga-tion and fatigue failure.5.1. Flexural failure during injectionThe majority of failures observed during this investiga-tion were due to flexural stresses. During flexural failurethe injection pressure overcomes the tools flexural strengthso that the feature rotates about its pivot point, andultimately breaks off (Fig. 8(b). This may occur if theinjection pressure is beyond the flexural strength of the SLtool, but flexural failure is usually due to the history of theloading. The flexural stress for a cantilever beam with auniform force F acting on it, is given in 13:s 6F ? hat2,(1)where, h, a and t are the cube height, width and depthrespectively as shown in Fig. 9. Table 1 shows thetheoretical calculations of flexural stresses for the SL cubesversus their flexural strength. Using this equation it can beseen from Table 1 that only the largest cube should survivethe injection pressure and the rest of the cubes fail.ARTICLE IN PRESS2030405060708090100102030405060708090Impact Strength (kJ/m2)Impact StrengthTemperature (Deg C)Fig. 6. Impact strength of filled epoxy versus temperature.010203040506070102030405060708090100110Tensile Strength (MPa)010203040506070Tensile (MPa)Shear (MPa) Temperature (C)Shear Strength (MPa)Fig. 7. Maximum Tensile and Shear strength of epoxy SL5170 versus temperature.S. Rahmati, P. Dickens / International Journal of Machine Tools & Manufacture 47 (2007) 740747743However, in practice, the SL tools have produced hundredsof parts prior to failure, so that the theoretical model in Eq.(1) overestimates the flexural stresses. There are tworeasons for this discrepancy. First the flexural stressformula assumes a minimum beam aspect ratio of 10 whilethis ratio here is four 14. Secondly the injection pressureexerted on the cubes during injection was taken to be thepressure at front of the cubes but in reality this pressure ispartly counteracted by the melt pressure behind the cubes.In the case of the smallest cube, the net pressure is foundto be 153psi, which gives a flexural stress of 15Mpa usingEq. (1), which is less than 27Mpa (flexural strength of thetool at 401C). This suggests that all of the SL cubes shouldsurvive the injection pressure. A better theoretical methodfor calculating the flexural stresses would be through theapplication of computational fluid dynamics (CFD) andfinite element method (FEM), which will combine the fluidand stress analysis to model the SL tool.5.2. Crack propagation and fatigueFlexural stresses can also induce a fatigue typeprocess, spanning a number of moulding cycles. In thissituation, the cube pivots as in Fig. 8(b) without beingfractured but a crack is initiated at the intersection betweenthe face of the cube in tension due to flexural stresses, andthe core face perpendicular to it. During subsequent cycles,the crack propagates through the base of the cubeeventually resulting in failure. Failure analysis of theSEM images has revealed that the crack propagatesthrough the cubes prior to the ultimate failure. Micro-scopicpicturesofmouldingsnumberedsequentiallyindicate that the crack has started well before the ultimateflexural failure. Fig. 10 is a picture taken of the crosssection of a moulding before the actual failure happened,where subsequent injection mouldings have exhibiteda positive flaw corresponding to the inverse of thecrackgenerated.Fig.11showstheflexuralfailureof a similar cube to that seen in Fig. 10, after a numberof shots.Crack initiation in SL tools occurs predominately atstress concentrations, such as sharp corners or at stairsteppings (an inherent property of SL parts). CrackARTICLE IN PRESScubemoulding(a) (b) (c) Flow directionMelt pressureMelt pressurepivoting point Fig. 8. Schematic view of different scenarios, which may occur during injection. (a) No failure; (b) Flexural failure; (c) Shear failure.Plastic flowXYZtFlexural stress in X directionNeutral AxisY YhaFig.9. Schematicviewofthecubesstressparametersandtheapproaching flow.Table 1Flexural stresses exerted on the SL cubesMoment ofinertia I(m4)Moment M(Nm)Flexuralstress s(Mpa)Flexuralstrength at401C (Mpa)Cube 1108?10?121.68746.8565.0Cube 262.5?10?121.68767.4665.0Cube 332.0?10?121.687105.4165.0Cube 413.5?10?121.687187.4065.0Fig. 10. Moulding showing the attached plastic of crack before failure.S. Rahmati, P. Dickens / International Journal of Machine Tools & Manufacture 47 (2007) 740747744formation may also result from flaws or microscopicdefects created during photo-polymerisation process duetomaterialdiscontinuities15.Sharpcorners,stairstepping, voids or flaws are a cause or source of crackinitiation. Fatigue failure can be minimised by introducingfillets at the sharp corners in order to reduce the stressconcentration and crack propagation. Evidence of thecrack failure as shown in Fig. 12, can be seen on thefracture surface in the form of striations, where each oneof these marks represents crack growth. At the tip of thecrack and in a small region near the tip, the yield strengthofthematerialisexceeded.Inthisregion,plasticdeformation occurs and the stresses are limited by yielding17. After each cycle, the crack grows in the same manneruntil a critical crack length is reached. At this point, thecrack tip can increase in velocity and spread all the wayacross the cube resulting in failure.5.3. Shear failureDuring shear failure, the feature is sheared off in thedirection of the melt flow. Fig. 13, shows the cross sectionof a sheared SL cube. Notice that the SL cube has beenpushed across by the flow of plastic. The shear stress at apoint in a section is given by 18:t VQIa,(2)where V is the shear force at the given section, Q is the firstmoment of the area about the neutral axis, I is the momentof inertia of the cube section with respect to the neutralaxis, and a is the width of the cross-section. As the shearstress calculation results show in Table 2, the maximumshear stresses produced in the SL tool during operation arebelow the shear strength of the SL tool. Moreover, the SLtool can survive at injection temperatures beyond 401C asshown in the last column of the Table 2. Fig. 14, shows themaximum shear stresses at various points of the cube baseversus the average shear stress. The plot of the maximumshear stresses at various points results in a parabolic curve.6. ConclusionsSL tools have been successfully tested where failureswere observed after 500 shots. SL tool failure mechanismshave been investigated and different scenarios have beendemonstrated. Using a thermoplastic with a meltingtemperature of 2003001C in epoxy SL tooling which hasa Glass transition temperature (Tg) of about 60901C,seems unrealistic or impossible. However, the key point tothe success of this technique is the very low thermalconductivity of the SL tool and the short injection time(Fig. 15). These two factors are the key to the success of theSL injection mould tooling, which are overlooked bymany.ARTICLE IN PRESSFig. 11. Flexural failure as a result of crack propagation.Fig. 12. SEM observation revealing striation marking on the fracturedsurface.Fig. 13. SL cube being sheared off during injection moulding process.S. Rahmati, P. Dickens / International Journal of Machine Tools & Manufacture 47 (2007) 740747745Although epoxy has a very low tensile or shear strengthat high temperatures, during the first few seconds ofinjection in which the maximum pressure is exerted on thetool, the heat has not been able to penetrate. Therefore, thetool strength is still maintained and low conductivity of theepoxy works in favour of the process initially. It can beconcluded that the tool must be cooled down in eachcycle to as low as 40501C before the next injection ismade. Tool cooling can be achieved either through freeconvection,whichtakes45minorthroughforcedconvection by means of an air jet which reduces the cycletime to 1, 2min. The results of the work can be summarisedas follows:?More than 500 parts were produced using the epoxy SLcore and cavity using external air jet to cool the tool to451C.?Tool failure during injection is independent of theplastic temperature.?Failure during injection ma
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:4”号碗注塑模具设计【说明书+CAD】
链接地址:https://www.renrendoc.com/paper/120930793.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!