进水阀盖注射模设计-注塑模具【三维PROE】[32张CAD图纸+PDF图]
收藏
资源目录
压缩包内文档预览:(预览前20页/共44页)
编号:121640127
类型:共享资源
大小:29.52MB
格式:ZIP
上传时间:2021-04-15
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
三维PROE
32张CAD图纸+PDF图
进水
注射
设计
注塑
模具
三维
PROE
32
CAD
图纸
PDF
- 资源描述:
-
喜欢这套资料就充值下载吧。。。资源目录里展示的都可在线预览哦。。。下载后都有,,请放心下载,,文件全都包含在内,,【有疑问咨询QQ:1064457796 或 1304139763】
- 内容简介:
-
任务书填写要求1毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系部领导签字后生效。此任务书应在第七学期结束前填好并发给学生;2任务书内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴;3任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系部主管领导审批后方可重新填写;4任务书内有关“系部”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号;5任务书内“主要参考文献”的填写,应按照国标GB 77142005文后参考文献著录规则的要求书写,不能有随意性;6有关年月日等日期的填写,应当按照国标GB/T 74082005数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2009年3月15日”或“2009-03-15”。毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的: 塑料件在各行业及日常生活广泛使用,塑料模具的设计制造的社会需求也日益增长,而且要求越来越高。通过对进水阀盖注射模设计,培养学生检索资料,综合应用所学知识,并根据工程实际的要求解决工程实际问题的方法与能力,训练学生模具设计制造的基本技能和模具CAD设计能力,提高独立工作的能力,适应社会需求。2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):本设计要求学生根据所给进水阀盖实物,测绘零件图纸,并设计成型注射模具,并学习Pro/Engineer、UG或Solidworks等大型CAD软件在模具设计中的应用,具体要求如下:1) 查阅资料(不少于15篇),翻译一定量的外文资料(不少于3000汉字),撰写开题报告及文献综述(不少于2000字);2) 测绘塑件图纸,完成其CAD三维造型设计;3) 完成塑件注射模具方案设计和相关设计计算,要求一模两腔;4) 完成该注射模具装配设计;5) 模具成型零件CAD三维造型设计;6) 完成全部零件及装配图纸设计;7) 撰写设计说明书。毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括毕业设计论文、图表、实物样品等: 课题成果内容包括:1) 塑件图纸及CAD三维数据模型;2) 全套注射模具图纸,成型零件三维造型;3) 毕业设计论文。4主要参考文献:1 成都科技大学,北京化工学院,天津轻工业学院合编.塑料成型模具M.北京:中国轻工业出版社,19822 胡石玉.模具制造技术M.南京:东南大学出版社,19973 骆志斌.模具工手册M.南京:江苏科学技术出版社,20004 机械设计手册联合编写组.机械设计手册(第3版上、中、下)M.北京:化学工业出版社,19875 王庆五,仇亚琴,张昱等编著.SolidWorks 2006中文版模具设计专家指导教程M.北京:机械工业出版社,20066 模具实用技术丛书编委会.塑料模具设计制造与应用实例M.北京:机械工业出版社,20027 张明善主编.塑料成型工艺及设备M.北京:中国轻工业出版社,19988 轻工业部广州轻工业学校编.塑料成型工艺学M.北京:中国轻工业出版社,19909 唐志玉主编塑料模具设计师指南M.北京:国防工业出版社,199910 模具设计与制造技术教育丛书编委会编模具常用机构设计M.北京:机械工业出版社,200311 林清安.Pro/ENGINEER零件设计(基础篇上、下)M.北京:北京大学出版社,2000毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:起 迄 日 期工 作 内 容2009年3月 9日 3月15日熟悉课题,查阅有关资料,完成资料翻译3月16日 3月29日完成文献综述,撰写开题报告,学习注射模设计方法,熟悉Solidworks或ProE三维CAD软件3月30 日 4月8 日测绘塑件零件图纸,熟悉Solidworks或ProE三维CAD软件,完成塑件三维数据模型设计4月9日 4月15日进行注射模结构方案设计4月16日 4月29日基本掌握CAD软件操作,完成塑件注射模方案设计和基本计算4月30日 5月10日塑件注射模结构设计,利用Solidworks或ProE等CAD软件进行零件造型设计5月11日 5月17日完成塑件注射模零件造型、装配体设计和修改完善5月18日 5月31日完成塑件注射模工程图和装配图设计6月1 日 6月7日完善图纸,撰写设计说明书6月8日 6月13日打印设计说明书和图纸,整理相关资料6月14日 准备答辩所在专业审查意见:负责人: 年 月 日系部意见:系部主任: 年 月 日Journal of Materials Processing Technology 171 (2006) 259267Design and thermal analysis of plastic injection mouldS.H. Tang, Y.M. Kong, S.M. Sapuan, R. Samin, S. SulaimanDepartment of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, MalaysiaReceived 3 September 2004; accepted 21 June 2005AbstractThis paper presents the design of a plastic injection mould for producing warpage testing specimen and performing thermal analysis forthe mould to access on the effect of thermal residual stress in the mould. The technique, theory, methods as well as consideration neededin designing of plastic injection mould are presented. Design of mould was carried out using commercial computer aided design softwareUnigraphics, Version 13.0. The model for thermal residual stress analysis due to uneven cooling of the specimen was developed and solvedusing a commercial finite element analysis software called LUSAS Analyst, Version 13.5. The software provides contour plot of temperaturedistribution for the model and also temperature variation through the plastic injection molding cycle by plotting time response curves. Theresults show that shrinkage is likely to occur in the region near the cooling channels as compared to other regions. This uneven cooling effectat different regions of mould contributed to warpage. 2005 Elsevier B.V. All rights reserved.Keywords: Plastic Injection mould; Design; Thermal analysis1. IntroductionPlastic industry is one of the worlds fastest growingindustries, ranked as one of the few billion-dollar industries.Almost every product that is used in daily life involves theusage of plastic and most of these products can be producedby plastic injection molding method 1. Plastic injectionmolding process is well known as the manufacturing processtocreateproductswithvariousshapesandcomplexgeometryat low cost 2.The plastic injection molding process is a cyclic process.There are four significant stages in the process. These stagesare filling, packing, cooling and ejection. The plastic injec-tion molding process begins with feeding the resin and theappropriateadditivesfromthehoppertotheheating/injectionsystemoftheinjectionplasticinjectionmoldingmachine3.This is the “filling stage” in which the mould cavity is filledwithhotpolymermeltatinjectiontemperature.Afterthecav-ityisfilled,inthe“packingstage”,additionalpolymermeltispacked into the cavity at a higher pressure to compensate theexpectedshrinkageasthepolymersolidifies.ThisisfollowedCorresponding author.E-mail address: .my (S.H. Tang).by “cooling stage” where the mould is cooled until the part issufficiently rigid to be ejected. The last step is the “ejectionstage” in which the mould is opened and the part is ejected,after which the mould is closed again to begin the next cycle4.The design and manufacture of injection molded poly-meric parts with desired properties is a costly process domi-nated by empiricism, including the repeated modification ofactual tooling. Among the task of mould design, designingthe mould specific supplementary geometry, usually on thecore side, is quite complicated by the inclusion of projectionand depression 5.In order to design a mould, many important designingfactors must be taken into consideration. These factors aremouldsize,numberofcavity,cavitylayouts,runnersystems,gating systems, shrinkage and ejection system 6.In thermal analysis of the mould, the main objective isto analyze the effect of thermal residual stress or molded-instresses on product dimension. Thermally induced stressesdevelop principally during the cooling stage of an injectionmolded part, mainly as a consequence of its low thermalconductivity and the difference in temperature between themolten resin and the mould. An uneven temperature fieldexists around product cavity during cooling 7.0924-0136/$ see front matter 2005 Elsevier B.V. All rights reserved.doi:10.1016/j.jmatprotec.2005.06.075260S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259267During cooling, location near the cooling channel experi-ences more cooling than location far away from the coolingchannel. This different temperature causes the material toexperience differential shrinkage causing thermal stresses.Significantthermalstresscancausewarpageproblem.There-fore,itisimportanttosimulatethethermalresidualstressfieldof the injection-molded part during the cooling stage 8. Byunderstanding the characteristics of thermal stress distribu-tion, deformation caused by the thermal residual stress canbe predicted.In this paper the design of a plastic injection mould forproducingwarpagetestingspecimenandforperformingther-mal analysis for the mould to access on the effect of thermalresidual stress in the mould is presented.2. Methodology2.1. Design of warpage testing specimenThis section illustrates the design of the warpage testingspecimen to be used in plastic injection mould. It is clearthat warpage is the main problem that exists in product withthin shell feature. Therefore, the main purpose of the prod-uct development is to design a plastic part for determiningthe effective factors in the warpage problem of an injection-moulded part with a thin shell.The warpage testing specimen is developed from thinshell plastics. The overall dimensions of the specimen were120mminlength,50mminwidthand1mminthickness.Thematerial used for producing the warpage testing specimenwas acrylonitrile butadiene stylene (ABS) and the injectiontemperature, time and pressure were 210C, 3s and 60MPa,respectively. Fig. 1 shows the warpage testing specimen pro-duced.2.2. Design of plastic injection mould for warpagetesting specimenThissectiondescribesthedesignaspectsandotherconsid-erationsinvolvedindesigningthemouldtoproducewarpagetestingspecimen.ThematerialusedforproducingtheplasticFig. 1. Warpage testing specimen produced.injectionmouldforwarpagetestingspecimenwasAISI1050carbon steel.Four design concepts had been considered in designing ofthe mould including:i. Three-plate mould (Concept 1) having two parting linewith single cavity. Not applicable due to high cost.ii. Two-platemould(Concept2)havingonepartinglinewithsingle cavity without gating system. Not applicable dueto low production quantity per injection.iii. Two-plate mould (Concept 3) having one parting linewithdoublecavitieswithgatingandejectionsystem.Notapplicable as ejector pins might damage the product asthe product is too thin.iv. Two-platemould(Concept4)havingonepartinglinewithdoublecavitieswithgatingsystem,onlyusedspruepulleract as ejector to avoid product damage during ejection.In designing of the mould for the warpage testing spec-imen, the fourth design concept had been applied. Variousdesign considerations had been applied in the design.Firstly,themouldwasdesignedbasedontheplatendimen-sion of the plastic injection machine used (BOY 22D). Thereis a limitation of the machine, which is the maximum area ofmachine platen is given by the distance between two tie bars.The distance between tie bars of the machine is 254mm.Therefore, the maximum width of the mould plate shouldnot exceed this distance. Furthermore, 4mm space had beenreserved between the two tie bars and the mould for mouldsetting-up and handling purposes. This gives the final max-imum width of the mould as 250mm. The standard mouldbasewith250mm250mmisemployed.ThemouldbaseisfittedtothemachineusingMatexclampattheupperrightandlower left corner of the mould base or mould platen. Dimen-sions of other related mould plates are shown in Table 1.The mould had been designed with clamping pressurehaving clamping force higher than the internal cavity force(reaction force) to avoid flashing from happening.Based on the dimensions provided by standard mould set,thewidthandtheheightofthecoreplateare200and250mm,respectively.Thesedimensionsenableddesignoftwocavitieson core plate to be placed horizontally as there is enoughspace while the cavity plate is left empty and it is only fixedwithspruebushingforthepurposeoffeedingmoltenplastics.Therefore,itisonlyonestandardpartinglinewasdesignedatTable 1Mould plates dimensions.ComponentsSize (mm)widthheightthicknessTop clamping plate25025025Cavity plate20025040Core plate20025040Side plate/support plate3725070Ejector-retainer plate12025015Ejector plate12025020Bottom clamping plate25025025S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259267261the surface of the product. The product and the runner werereleased in a plane through the parting line during mouldopening.Standardorsidegatewasdesignedforthismould.Thegateis located between the runner and the product. The bottomland of the gate was designed to have 20slanting and hasonly 0.5mm thickness for easy de-gating purpose. The gatewas also designed to have 4mm width and 0.5mm thicknessfor the entrance of molten plastic.In the mould design, the parabolic cross section type ofrunnerwasselectedasithastheadvantageofsimplermachin-ing in one mould half only, which is the core plate in thiscase. However, this type of runner has disadvantages such asmoreheatlossandscrapcomparedwithcircularcrosssectiontype. This might cause the molten plastic to solidify faster.This problem was reduced by designing in such a way thatthe runner is short and has larger diameter, which is 6mm indiameter.Itisimportantthattherunnerdesigneddistributesmaterialor molten plastic into cavities at the same time under thesame pressure and with the same temperature. Due to this,the cavity layout had been designed in symmetrical form.Another design aspect that is taken into consideration wasair vent design. The mating surface between the core plateand the cavity plate has very fine finishing in order to preventflashingfromtakingplace.However,thiscancauseairtotrapin the cavity when the mould is closed and cause short shotor incomplete part. Sufficient air vent was designed to ensurethat air trap can be released to avoid incomplete part fromoccurring.The cooling system was drilled along the length of thecavities and was located horizontally to the mould to alloweven cooling. These cooling channels were drilled on bothcavity and core plates. The cooling channels provided suffi-cientcoolingofthemouldinthecaseofturbulentflow.Fig.2shows cavity layout with air vents and cooling channels oncore plate.In this mould design, the ejection system only consists ofthe ejector retainer plate, sprue puller and also the ejectorFig. 2. Cavity layout with air vents and cooling channels.plate. The sprue puller located at the center of core plate notonly functions as the puller to hold the product in positionwhen the mould is opened but it also acts as ejector to pushthe product out of the mould during ejection stage. No addi-tional ejector is used or located at product cavities becausethe product produced is very thin, i.e. 1mm. Additional ejec-tor in the product cavity area might create hole and damageto the product during ejection.Finally, enough tolerance of dimensions is given consid-eration to compensate for shrinkage of materials.Fig. 3 shows 3D solid modeling as well as the wireframemodeling of the mould developed using Unigraphics.3. Results and discussion3.1. Results of product production and modificationFrom the mould designed and fabricated, the warpagetesting specimens produced have some defects during trialrun. The defects are short shot, flashing and warpage. Theshortshotissubsequentlyeliminatedbymillingofadditionalair vents at corners of the cavities to allow air trapped toFig. 3. 3D solid modeling and wireframe modeling of the mould.262S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259267Fig. 4. Extra air vents to avoid short shot.escape. Meanwhile, flashing was reduced by reducing thepacking pressure of the machine. Warpage can be controlledby controlling various parameters such as the injection time,injection temperature and melting temperature.After these modifications, the mould produced high qual-ity warpage testing specimen with low cost and requiredlittle finishing by de-gating. Fig. 4 shows modifications ofthe mould, which is machining of extra air vents that caneliminate short shot.3.2. Detail analysis of mould and productAfterthemouldandproductsweredeveloped,theanalysisofmouldandtheproductwascarriedout.Intheplasticinjec-tionmouldingprocess,moltenABSat210Cisinjectedintothe mould through the sprue bushing on the cavity plate anddirected into the product cavity. After cooling takes place,the product is formed. One cycle of the product takes about35s including 20s of cooling time.The material used for producing warpage testing speci-men was ABS and the injection temperature, time and pres-sure were 210C, 3s and 60MPa respectively. The materialselected for the mould was AISI 1050 carbon steel.Properties of these materials were important in determin-ing temperature distribution in the mould carried out usingfinite element analysis. Table 2 shows the properties for ABSand AISI 1050 carbon steel.The critical part of analysis for mould is on the cavity andcore plate because these are the place where the product isformed. Therefore, thermal analysis to study the temperatureFig. 5. Model for thermal analysis.distribution and temperature at through different times areperformedusingcommercialfiniteelementanalysissoftwarecalled LUSAS Analyst, Version 13.5. A two-dimensional(2D) thermal analysis is carried out for to study the effectof thermal residual stress on the mould at different regions.Due to symmetry, the thermal analysis was performed bymodeling only the top half of the vertical cross section orside view of both the cavity and core plate that were clampedtogether during injection. Fig. 5 shows the model of thermalanalysis analyzed with irregular meshing.Modelingforthemodelalsoinvolvesassigningpropertiesandprocessorcycletimetothemodel.Thisallowedthefiniteelement solver to analyze the mould modeled and plot timeresponse graphs to show temperature variation over a certainduration and at different regions.For the product analysis, a two dimensional tensile stressanalysis was carried using LUSAS Analyst, Version 13.5.Basically the product was loaded in tension on one end whilethe other end is clamped. Load increments were applied untilthe model reaches plasticity. Fig. 6 shows loaded model ofthe analysis.3.3. Result and discussion for mould and productanalysisFor mould analysis, the thermal distribution at differenttime intervals was observed. Fig. 7 shows the 2D analysisTable 2Material properties for mould and productCarbon Steel (AISI 1050), mouldABS Polymer, productDensity, 7860kg/m3Density, 1050kg/m3Youngs modulus, E208GPaYoungs modulus, E2.519GPaPoissons ratio, 0.297Poissons ratio, 0.4Yield strength, SY365.4MPaYield strength, SY65MPaTensile strength, SUTS636MPaThermal expansion, 65106K1Thermal expansion, 11.65106K1Conductivity, k0.135W/(mK)Conductivity, k49.4W/(mK)Specific heat, c1250J/(kgK)Specific heat, c477J/(kgK)S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259267263Fig. 6. Loaded model for analysis of product.contour plots of thermal or heat distribution at different timeintervals in one complete cycle of plastic injection molding.For the 2D analysis of the mould, time response graphsare plotted to analyze the effect of thermal residual stress onthe products. Fig. 8 shows nodes selected for plotting timeresponse graphs.Figs. 917 show temperature distribution curves for dif-ferent nodes as indicated in Fig. 8.From the temperature distribution graphs plotted inFigs. 917, it is clear that every node selected for the graphplotted experiencing increased in temperature, i.e. from theambient temperature to a certain temperature higher thanthe ambient temperature and then remained constant at thistemperatureforacertainperiodoftime.Thisincreaseintem-perature was caused by the injection of molten plastic intothe cavity of the product.After a certain period of time, the temperature is thenfurther increased to achieve the highest temperature andremained constant at that temperature. Increase in temper-ature was due to packing stages that involved high pressure,Fig. 7. Contour plots of heat distribution at different time intervals.264S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259267Fig. 8. Selected nodals near product region for time response graph plots.Fig. 9. Temperature distribution graph for Node 284.Fig. 10. Temperature distribution graph for Node 213.Fig. 11. Temperature distribution graph for Node 302.Fig. 12. Temperature distribution graph for Node 290.which caused the temperature to increase. This temperatureremains constant until the cooling stage starts, which causesreduction in mould temperature to a lower value and remainsat this value. The graphs plotted were not smooth due to theabsence of function of inputting filling rate of the moltenplastic as well as the cooling rate of the coolant. The graphsplotted only show maximum value of temperature that canbe achieved in the cycle.The most critical stage in the thermal residual stress anal-ysis is during the cooling stage. This is because the coolingFig. 13. Temperature distribution graph for Node 278.S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259267265Fig. 14. Temperature distribution graph for Node 1838.Fig. 15. Temperature distribution graph for Node 1904.stage causes the material to cool from above to below theglasstransitiontemperature.Thematerialexperiencesdiffer-ential shrinkage that causes thermal stress that might resultin warpage.From the temperature after the cooling stage as shown inFigs. 917, it is clear that the area (node) located near thecooling channel experienced more cooling effect due to fur-Fig. 16. Temperature distribution graph for Node 1853.Fig. 17. Temperature distribution graph for Node 1866.ther decreasing in temperature and the region away from thecooling channel experienced less cooling effect. More cool-ing effect with quite fast cooling rate means more shrinkageisoccurringattheregion.However,thefarthestregion,Node284experiencemorecoolingalthoughfarawayfromcoolingchannel due to heat loss to environment.Asaresult,thecoolingchannellocatedatthecenteroftheproduct cavity caused the temperature difference around themiddle of the part higher than other locations. Compressivestress was developed at the middle area of the part due tomoreshrinkageandcausedwarpageduetounevenshrinkagethat happened. However, the temperature differences aftercooling for different nodes are small and the warpage effectisnotverysignificant.Itisimportantforadesignertodesignamouldthathaslessthermalresidualstresseffectwithefficientcooling system.Fortheproductanalysis,fromthestepsbeingcarriedouttoanalyze the plastic injection product, the stress distributionon product at different load factor is observed in the twodimensional analysis. Figs. 1821 show the contour plots ofequivalent stress at different load increments.A critical point, Node 127, where the product experiencesmaximum tensile stress was selected for analysis. The stressversus strain curve and the load case versus stress curves atthis point were plotted in Figs. 22 and 23.Fromtheloadcaseversusstresscurvesatthispointplottedin Fig. 23, it is clear that the product experiencing increasedin tensile load until it reached the load factor of 23, whichis 1150N. This means that the product can withstand tensileload until 1150N. Load higher than this value causes failuretotheproduct.BasedonFig.23,thefailureislikelytooccurattheregionneartothefixedendoftheproductwithmaximumstress of 3.27107Pa.The product stress analysis reveals very limited informa-tion since the product produced was for warpage testingpurposes and had no relation with tensile loading analy
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。