外文翻译-外文.doc

连杆弹簧复位自动调偏装置设计

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:122388721    类型:共享资源    大小:702.57KB    格式:ZIP    上传时间:2021-04-19 上传人:221589****qq.com IP属地:湖南
40
积分
关 键 词:
连杆 弹簧 复位 自动 装置 设计
资源描述:
连杆弹簧复位自动调偏装置设计,连杆,弹簧,复位,自动,装置,设计
内容简介:
Link mechanismLinkages include garage door mechanisms, car wiper mechanisms, gear shift mechanisms.They are a very important part of mechanical engineering which is given very little attention.A link is defined as a rigid body having two or more pairing elements which connect it to other bodies for the purpose of transmitting force or motion . In every machine, at least one link either occupies a fixed position relative to the earth or carries the machine as a whole along with it during motion. This link is the frame of the machine and is called the fixed link.An arrangement based on components connected by rotary or sliding interfaces only is called a linkage. These type of connections, revolute and prismatic, are called lower pairs. Higher pairs are based on point line or curve interfaces. Examples of lower pairs include hinges rotary bearings, slideways , universal couplings. Examples of higher pairs include cams and gears.Kinematic analysis, a particular given mechanism is investigated based on the mechanism geometry plus factors which identify the motion such as input angular velocity, angular acceleration, etc. Kinematic synthesis is the process of designing a mechanism to accomplish a desired task. Here, both choosing the types as well as the dimensions of the new mechanism can be part of kinematic synthesis.Planar, Spatial and Spherical MechanismsA planar mechanism is one in which all particles describe plane curves is space and all of the planes are co-planar.The majority of linkages and mechanisms are designed as planer systems. The main reason for this is that planar systems are more convenient to engineer. Spatial mechanisma are far more complicated to engineer requiring computer synthesis. Planar mechanisms ultilising only lower pairs are called planar linkages. Planar linkages only involve the use of revolute and prismatic pairsA spatial mechanism has no restrictions on the relative movement of the particles. Planar and spherical mechanisms are sub-sets of spatial mechanisms.Spatial mechanisms / linkages are not considered on this pageSpherical mechanisms has one point on each linkage which is stationary and the stationary point of all the links is at the same location. The motions of all of the particles in the mechanism are concentric and can be repesented by their shadow on a spherical surface which is centered on the common location.Spherical mechanisms /linkages are not considered on this pageMobilityAn important factor is considering a linkage is the mobility expressed as the number of degrees of freedom.The mobility of a linkage is the number of input parameters which must be controlled independently in order to bring the device to a set position.It is possible to determine this from the number of links and the number and types of joints which connect the links.A free planar link generally has 3 degrees of freedom (x , y, ). One link is always fixed so before any joints are attached the number of degrees of freedom of a linkage assembly with n links = DOF = 3 (n-1) Connecting two links using a joint which has only on degree of freedom adds two constraints. Connecting two links with a joint which has two degrees of freedom include 1 restraint to the systems. The number of 1 DOF joints = say j 1 and the number of joints with two degrees of freedom = say j 2. The Mobility of a system is therefore expressed as mobility = m = 3 (n-1) - 2 j 1 - j 2Examples linkages showing the mobility are shown below. A system with a mobility of 0 is a structure. A system with a mobility of 1 can be fixed in position my positioning only one link. A system with a mobility of 2 requires two links to be positioned to fix the linkage position.This rule is general in nature and there are exceptions but it can provide a very useful initial guide as the the mobility of an arrangement of links.Grashofs LawWhen designing a linkage where the input linkage is continuously rotated e.g. driven by a motor it is important that the input link can freely rotate through complete revolutions. The arrangement would not work if the linkage locks at any point. For the four bar linkage Grashofs law provides a simple test for this conditionGrashofs law is as follows: For a planar four bar linkage, the sum of the shortest and longest links cannot be greater than the sum of the remaining links if there is to be continuous relative rotation between two members.Referring to the 4 inversions of a four bar linkage shown below .Grashofs law states that one of the links (generally the shortest link) will be able to rotate continuously if the following condition is met. b (shortest link ) + c(longest link) a + dFour Inversions of a typical Four Bar LinkageNote: If the above condition was not met then only rocking motion would be possible for any link.Mechanical Advantage of 4 bar linkageThe mechanical advantage of a linkage is the ratio of the output torque exerted by the driven link to the required input torque at the driver link. It can be proved that the mechanical advantage is directly proportional to Sin( ) the angle between the coupler link(c) and the driven link(d), and is inversely proportional to sin( ) the angle between the driver link (b) and the coupler (c) .These angles are not constant so it is clear that the mechanical advantage is constantly changing.The linkage positions shown below with an angle = 0 o and 180 o has a near infinite mechanical advantage.These positions are referred to as toggle positions. These positions allow the 4 bar linkage to be used a clamping tools.The angle is called the transmission angle. As the value sin(transmission angle) becomes small the mechanical advantage of the linkage approaches zero. In these region the linkage is very liable to lock up with very small amounts of friction.When using four bar linkages to transfer torque it is generally considered prudent to avoid transmission angles below 450 and 500.In the figure above if link (d) is made the driver the system shown is in a locked position.The system has no toggle positions and the linkage is a poor design Freudensteins EquationThis equation provides a simple algebraic method of determining the position of an output lever knowing the four link lengths and the position of the input lever. Consider the 4 -bar linkage chain as shown below. The position vector of the links are related as follows l 1 + l 2 + l 3 + l 4 = 0 Equating horizontal distances l 1 cos 1 + l 2 cos 2 + l 3 cos 3 + l 4 cos 4 = 0 Equating Vertical distances l 1 sin 1 + l 2 sin 2 + l 3 sin 3 + l 4 sin 4 = 0 Assuming 1 = 1800 then sin 1 = 0 and cos 1 = -1 Therefore - l 1 + l 2 cos 2 + l 3 cos 3 + l 4 cos 4 = 0 and . l 2 sin 2 + l 3 sin 3 + l 4 sin 4 = 0 Moving all terms except those containing l 3 to the RHS and Squaring both sides l 32 cos 2 3 = (l 1 - l 2 cos 2 - l 4 cos 4 ) 2l 32 sin 2 3 = ( - l 2 sin 2 - l 4 sin 4) 2Adding the above 2 equations and using the relationshipscos ( 2 - 4 ) = cos 2 cos 4 + sin 2sin 4 ) and sin2 + cos2 = 1the following relationship results.Freudensteins Equation results from this relationship as K 1 cos 2 + K2 cos 4 + K 3 = cos ( 2 - 4 )K1 = l1 / l4 K2 = l 1 / l 2 K3 = ( l 32 - l 12 - l 22 - l 2 4 ) / 2 l 2 l 4 This equation enables the analytic synthesis of a 4 bar linkage. If three position of the output lever are required corresponding to the angular position of the input lever at three positions then this equation can be used to determine the appropriate lever lengths using three simultaneous equations. Velocity Vectors for LinksThe velocity of one point on a link must be perpendicular to the axis of the link, otherwise there would be a change in length of the link.On the link shown below B has a velocity of vAB = .AB perpendicular to A-B. The velocity vector is shown. Considering the four bar arrangement shown below. The velocity vector diagram is built up as follows: As A and D are fixed then the velocity of D relative to A = 0 a and d are located at the same point The velocity of B relative to a is vAB = .AB perpendicular to A-B. This is drawn to scale as shown The velocity of C relative to B is perpedicular to CB and passes through b The velocity of C relative to D is perpedicular to CD and passes through d The velocity of P is obtained from the vector diagram by using the relationship bp/bc = BP/BC The velocity vector diagram is easily drawn as shown. Velocity of sliding Block on Rotating LinkConsider a block B sliding on a link rotating about A. The block is instantaneously located at B on the link.The velocity of B relative to A = .AB perpendicular to the line. The velocity of B relative to B = v. The link block and the associated vector diagram is shown below. Acceleration Vectors for LinksThe acceleration of a point on a link relative to another has two components: 1) the centripetal component due to the angular velocity of the link. 2.Length 2) the tangential component due to the angular acceleration of the link The diagram below shows how to to construct a vector diagram for the acceleration components on a single link.The centripetal acceleration ab = 2.AB towards the centre of rotation. The tangential component bb = . AB in a direction perpendicular to the link. The diagram below shows how to construct an acceleration vector drawing for a four bar linkage. For A and D are fixed relative to each other and the relative acceleration = 0 ( a,d are together ) The acceleration of B relative to A are drawn as for the above link The centripetal acceleration of C relative to B = v 2CB and is directed towards B ( bc1 ) The tangential acceleration of C relative to B is unknown but its direction is known The centripetal acceleration of C relative to D = v 2CD and is directed towards d( dc2) The tangential acceleration of C relative to D is unknown but its direction is known. The intersection of the lines through c1 and c 2 locates c The location of the acceleration of point p is obtained by proportion bp/bc = BP/BC and the absolute acceleration of P = ap The diagram below shows how to construct and acceleration vector
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:连杆弹簧复位自动调偏装置设计
链接地址:https://www.renrendoc.com/paper/122388721.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!