计算书封面.doc

QTZ125塔式起重机总体 臂架、变幅机构设计(63m吊臂)【12张PDF图纸+CAD制图+文档】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图
编号:122393429    类型:共享资源    大小:64.83MB    格式:ZIP    上传时间:2021-04-19 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
QTZ125塔式起重机总体 臂架、变幅机构设计(63m吊臂)【12张PDF图纸+CAD制图+文档 QTZ125 塔式起重机 总体 臂架 机构 设计 63 吊臂 12 PDF 图纸 CAD 制图 文档
资源描述:

喜欢这套资料就充值下载吧。。。资源目录里展示的都可预览。。。下载后都有,,请放心下载,,文件全都包含在内,,【下载后加 QQ:1064457796或1304139763,免费领CAD格式图纸】 ================================================= 喜欢这套资料就充值下载吧。。。资源目录里展示的都可预览。。。下载后都有,,请放心下载,,文件全都包含在内,,【下载后加 QQ:1064457796或1304139763,免费领CAD格式图纸】

内容简介:
QTZ125最大起重量10 t独立高度 47.3 m最大高度 200 m最大臂长 63 m河北建筑工程学院毕业设计(论文)任务书课题名称QTZ125塔式起重机总体、臂架、变幅机构设计 系 别: 机械工程系 专 业: 机械设计制造及其自动化 班 级: 机094 姓 名: 范永田 学 号: 2009307411 起迄日期: 2013年2月20日 2013年 6月30日 设计(论文)地点: A10 指导教师: 张永清 发任务书日期: 2013年 2月 20日 1、毕业设计(论文)目的:本次毕业设计是对机械专业学生在毕业前的一次全面训练,目的在于巩固自己所学知识并把所学知识运用到实际设计当中,真正明白知识如何应用。训练学生综合运用所学知识分析和解决问题的能力。将所学知识应用与实际培养独立工作能力。毕业设计要求每个学生在工作过程中,要独立思考,刻苦钻研,有所创新、解决相关技术问题。通过毕业设计,使学生掌握塔式起重机的总体设计、塔身的设计、整体稳定性计算等内容,为今后步入社会、走上工作岗位打下良好的基础。2、毕业设计(论文)任务内容和要求(包括原始数据、技术要求、工作要求等):(1) 设计任务: 总体参数的选择(QTZ125级别) 结构形式(2) 总体设计 主要技术参数性能 设计原则 平衡重的计算 塔机的风力计算 整机倾翻稳定性的计算(3)变幅机构的设计和计算 建立变幅机构的数学模型 钢丝绳的选择和校核 卷筒的设计和绕绳系统的计算 验算实际变幅速度 电动机的选择 蜗轮蜗杆减速器的设计(4) 臂架的设计和计算 分析单双吊点的优缺点 吊点位置的选择 臂架结构参数选择 臂架主参数选择与计算(5)变幅的设计和计算(6) 要求 主要任务:学生应在指导教师指导下独立完成一项给定的设计任务,编写符合要求的设计说明书,并正确绘制机械与电气工程图纸,独立撰写一份25003500字毕业设计小论文,并绘制有关图表。 知识要求:学生在毕业设计工作中,应综合运用多学科的理论、知识与技能,分析与解决工程问题。通过学习、钻研与实践,深化理论认识、扩展知识领域、延伸专业技能。 能力培养要求:学生应学会依据技术课题任务,完成资料的调研、收集、加工与整理,正确使用工具书;培养学生掌握有关工程设计的程序、方法与技术规范,提高工程设计计算、图纸绘制、编写技术文件的能力;培养学生掌握实验、测试等科学研究的基本方法;锻炼学生分析与解决工程实际问题的能力。 综合素质要求:通过毕业设计,学生应掌握正确的设计思想;培养学生严肃认真的科学态度和严谨求实的工作作风;在工程设计中,应能树立正确的生产观、经济观与全局观。 设计成果要求:1) 凡给定的设计内容,包括说明书、计算书、图纸等必须完整,不得有未完的部分,不应出现缺页、少图纸现象。2) 对设计的全部内容,包括设计计算、机械构造、工作原理、整机布置等,均有清晰的了解。对设计过程、计算步骤有明确的概念,能用图纸完整的表达机械结构与工艺要求,有比较熟练的认识图纸能力。对运输、安装、使用等亦有一般了解。3) 说明书、计算书内容要精练,表述要清楚,取材合理,取值合适,设计计算步骤正确,数学计算准确,各项说明要有依据,插图、表格及字迹均应工整、清楚、不得随意涂改。制图要符合机械机械制图标准,且清洁整齐。小论文要符合论文书写规范。4) 对国内外塔式起重机情况有一般的了解,对各种塔式起重机有一定的分析、比较能力。其他各项应符合本资料有关部分提出的要求。3、毕业设计(论文)成果要求(包括图表、实物等硬件要求): 计算说明书一份 内容包括:设计任务要求的选型、设计计算内容、毕业实习报告等。作到内容完整,论证充分(包括经济性论证),字迹清楚,插图和表格正规(分别进行统一编号)、批准,字数要求不少于2万字;撰写中英文摘要;提倡学生应用计算机进行设计、计算与绘图。 图纸一套1) 总图一张(0号)2) 变幅机构图一张(0号)3) 臂架图一张(0号)4) 零件图至少三张(2,3,4号) 3000字左右的毕业设计小论文一篇4、主要参考文献:要求按国标GB 771487文后参考文献著录规则书写。1 哈尔滨建筑工程学院主编.工程起重机.北京:中国建筑工业出版社2 董刚、李建功主编.机械设计.机械工业出版社3 机械设计手册.化学工业出版社(5册)4 GB/T94621999 塔式起重机技术条件5 GB/T137521992 塔式起重机设计规范6 GB51441994 塔式起重机安全规程7 濮良贵、纪名刚主编.机械设计(第八版).高等教育出版社5、毕业设计(论文)课题工作进度计划:起 迄 日 期工 作 内 容2013.2.25-2013.3.102013.3.11-2013.3.242013.3.25-2013.4.72013.4.8-2013.4.142013.4.15-2013.4.282013.4.29-2013.5.122013.5.13-20013.6.3-2013.6.92013.6.10-2013.6.132013.6.14-2013.6.29外文翻译熟悉整理资料毕业实习撰写开题报告及任务书方案选择及总体设计绘制总图变幅机构设计及其图纸绘制臂架设计及其图纸绘制完成毕业设计小论文准备论文及答辩教研室审查意见:教研室主任签字: 年 月 日系审查意见: 系主任签字: 年 月 日河北建筑工程学院毕业设计(论文)开题报告课题名称QTZ125塔式起重机总体、臂架、变幅机构设计系 别: 机械工程系 专 业: 机械设计制造及其自动化 班 级: 机094 学生姓名: 范永田 学 号: 2009307411 指导教师: 张永清 课题来源导师课题课题类别工程设计一、论文资料的准备 1.塔式起重机简介塔式起重机(tower crane)简称塔机,亦称塔吊,起源于西欧。我国的塔机行业于20世纪50年代开始起步,相对于中西欧国家由于建筑业疲软造成的塔机业的不景气, 我国的塔机业正处于一个迅速的发展时期。国外塔机发展的主要代表性国家或地区有欧洲、日本、澳大利亚。从20世纪90年代开始欧洲塔机行业缓慢复苏目前欧洲生产塔机的国家有德国、法国、英国、意大利、俄罗斯、西班牙、瑞典、丹麦等主要厂家有法国Potain德国Liebherr、Peiner、Wolff意大利。 2. 塔式起重机发展状况我国的塔机行业于20世纪50年代开始起步,相对于中西欧国家由于建筑业疲软造成的塔机业的不景气, 我国的塔机业正处于一个迅速的发展时期。20世纪50年代为满足国家经济建设的需要引进了苏联以及东欧一些国家的塔式起重机并进行仿制。1954年仿制民主德国设计的建筑师-型塔式起重机在抚顺试制成功了我过第一台TQ2-6型塔式起重机。随后又仿制苏联样机研制了15t与25t塔式起重机这个时期我国生产与使用的塔式起重机的数量都较少。到了20世纪60年代我国开始进入了自行设计与制造塔式起重机的阶段。随后我国又自行设计制造了TQ-6型等塔式起重机至1965年全国已有生产厂10余家生产塔式起重机 360 多台。这些塔式起重机都是下回转动臂式可整体拖运能满足六层以下民用建筑施工的需要。20世纪70年代起由于建筑施工的需要我国塔式起重机进入了技术提高、品种增多的新阶段。1972年我国第一台下回转的轻型轮胎式轨道两用起重机问世。这一时期还先后开发了ZT100、ZT120、Z80型等小车变幅自升式塔式起重机、Q 4-20小车变幅内爬式塔式起重机QTL16、TQ40、TQ45、TD25、QTG40、QTG60下回转动臂自行架设快装塔式起重机等其年产量最高超过900台标志着我国塔式起重机行业进入一个新的阶段。进入20世纪80年代我国塔式起重机相继出现了不少新产品主要有QT80A、QTZ100、QTZ120等自升式塔式起重机QT60、QTK60、QT25HK 等下回转快装塔式起重机和QT90上回转动臂下顶升接高塔式起重机等。这些产品在性能方面已接近国外70年代水平。这一时期的最高年产量达1400台。与此同时随着改革开放和国际技术交流的增多为满足建筑施工的需要也从国外引进了一些塔式起重机其中有联邦德国的Liebherr、法国的Potain以及意大利的Edilmac等公司的产品。由于这些塔式起重机制造质量较好技术性能比较先进极大地促进了我国塔式起重机产品的设计制造技术的进步。 进入20世纪90年代以后我国塔式起重机行业随着全国范围建筑任务的增加而进入了一个新的兴盛时期年产量连年猛翻而且有部分产品出口到国外。全国塔式起重机的总拥有量也从20世纪50年代的几十台截止2000年约为6万台。至此无论从生产规模应用范围和塔式起重机总量等角度来衡量我国均堪称塔式起重机大国。但是产品结构不合理 品种型号大同小异制造技术不适应 没有形成规模工业有制约着我国塔式起重机的发展。国外塔机发展的主要代表性国家或地区有欧洲、日本、澳大利亚。从20世纪90年代开始欧洲塔机行业缓慢复苏目前欧洲生产塔机的国家有德国、法国、英国、意大利、俄罗斯、西班牙、瑞典、丹麦等主要厂家有法国Potain德国Liebherr、Peiner、Wolff意大利。二、本课题的目的(重点及拟解决的关键问题)本课题针对QTZ125塔式起重机的总体设计、臂架、变幅机构进行了重点研究。目的在于阐明QTZ125塔式起重机的工作原理,总体设计时根据塔机的结构形式分析,对塔式起重机进行工作仿真,为进一步分析研究塔式起重机的总体、臂架、变幅机构提供证据。塔式起重机主要由起升机构、顶升机构、回转机构、变幅机构四大部分组成,其结构的合理性直接影响到塔式起重机的工作性能、可靠性和安全性。因此,塔式起重机的设计和研究就显得非常重要。利用CAD对设计的模型进行仿真操作,在模拟真实环境中的工作状况并对其进行分析和判断,让设计者尽早发现设计的缺陷和潜在的失败可能并及时修改与优化,这样既能缩短产品的设计周期、提高产品的可靠性,又能实现产品的优化设计,从而减少后期修改付出的昂贵代价。利用此软件能够进行快速正确的分析计算,形象直观、操作简单,当改变参数时只要在计算机的有关界面上简单操作就能达到修改的目的,从而实现减少用户的工作强度。同时对产品进行运动仿真,能够形象生动地进行产品的运动模拟,使仿真运动更加清晰地展现在设计人员和用户面前,对于挖掘机的研究有非常重要意义。三、主要内容、研究方法、研究思路主要内容:1.塔机总体方案设计。 2.总体设计整体稳定性校核计算。 3.选择变幅机构。 4.起重臂结构设计强度及稳定性校核。 5.绘制塔机总图、变幅机构部装图、起重臂装配图和单节臂结构图等。 6.编写设计计算说明书。研究方法:塔式起重机主要有起升机构、回转机构、顶升机构、变幅机构组成,可通过计算的方法算出一个工况的工作参数,然后通过编程算出各个工况的工作参数。 首先用已知数据计算出一个工况的合理性之后,再运用软件CAD模拟出各个工况的工作参数曲线,以验证所设计的变幅机构的参数是合理的。最后通过合理的设计分析,选择最优的工作参数,使得所设计的塔式起重机能够适合多种复杂的工况,低功耗,高功率并结合建筑施工和制造厂生产实际收集数据、查找资料设计出结构合理、性能稳定可靠、操作舒适、维护方便的新型塔式起重机。研究思路:在指导老师的帮助下去塔机生产厂进行实习了解塔机的各种生产工艺环节最后完成设计任务。四、总体安排和进度(包括阶段性工作内容及完成日期)2013.2.25-2013.3.10 英文资料翻译2013.3.11-2013.3.24 熟悉整理资料2013.3.25-2013.4.7 毕业实习 2013.4.8-2013.4.14 撰写开题报告及任务书2013.4.15-2013.4.28 方案选择及总体设计2013.4.29-2013.5.12 绘制总图2013.5.13-2013.6.2 变幅机构设计及其图纸绘制 2013.6.3-2013.6.9 臂架设计及其图纸绘制2013.6.10-2013.6.13 完成毕业设计小论文2013.6.14-2013.6.29 准备论文及答辩五、主要参考文献1 哈尔滨建筑工程学院主编.工程起重机.北京:中国建筑工业出版社2 董刚、李建功主编.机械设计.机械工业出版社3 机械设计手册.化学工业出版社(5册)4 GB/T94621999 塔式起重机技术条件5 GB/T137521992 塔式起重机设计规范6 GB51441994 塔式起重机安全规程7 濮良贵、纪名刚主编.机械设计(第八版).高等教育出版社8 吴永平等.工程机械设计机 北京 化学工业出版社 2007. 9 吴庆鸣 何小新 工程机械设计 武汉 武汉大学出版社 2006.10 杨国平 现代工程机械技术 北京 机械工业出版社 2006.11 工程机械设计 12 吴宗泽、罗圣国机械设计课程设计手册高等教育出版社,2006.5 13 濮良贵、纪名刚机械设计高等教育出版社,2000.12 14 吴宗泽主编. 机械设计师手册机械工业出版社,200215 孔德文等.液压挖掘机-工程机械设计与维修丛书M.北京化学工业出版社2007.1 指导教师意见: 指导教师签名: 日期:教研室意见:教研室主任签名: 日期:系意见: 系领导签名: 日期:系盖章河北建筑工程学院毕业实习报告系 别 机械工程系 专 业 机械设计制造及其自动化 班 级 机094 姓 名 范永田 学 号 2009307411 指导教师 张永清 实习成绩 毕业实习总结2013年3月30号至4月2号,我在山西太原工程机械厂进行了为期3天的毕业实习。这次我们主要是通过现场的实际参,知道塔机的组成结构及作业情况,对塔式起重机有了一个感性认识,对塔式起重机四大机构和生产工艺流程进行了解并了解塔式起重机的发展情况,加深对塔机的认识。接下来的毕业设计做好准备。山西省工程机械厂创建于1953年,是国家住建部塔式起重机、施工升降机的专业生产企业,属建筑机械设备制造的大型骨干企业。在国内同行业中,率先通过ISO9002国际质量体系认证,取得国家质量监督检验检疫总局核发的特种设备制造许可证资质。目前,我厂取得起重设备安装工程专业承包壹级资质,是山西省唯一取得该项资质的企业。“晋塔”为企业的注册商标。山西省工程机械厂以法国波坦、瑞典阿利玛克等国外先进技术为依托,开发适合国内外施工需要的系列产品,拥有7项企业自主知识产权和国家专利技术。企业主要产品为:塔式起重机F1系列、QTZ系列、C系列共34种不同型号的产品,施工升降机SC系列产品,建筑、桥梁模板与模架体系,全部通过国家建筑城建机械质量监督检验中心检测。企业产品性能先进,质量优良,结构合理,外形美观,便于运输、安装和拆卸;选用国内外一流的配套件进行配置,确保了产品整机优越的技术性能和安全性能。山西省特种设备监督检验所长期驻厂,对产品的零部件、整机装配进行全方位质量监督检验。企业拥有一流的大型钢结构厂房、现代化的加工设备和生产线,拥有完备的销售网络和强大的服务。实习内容3月31号中午12点经过9个小时的车程我们来到了山西太原。在指导老师的带领下我们进入旅店休息并决定于明天进场参观实习。4月1号我们在指导老师的带领下进入了山西太原工程机械厂。在厂里的会议室我们受到了厂里张科长的接待并在张科长的带领下进入了生产车间参观实习。为了我们的安全在进入车间前我们都佩戴了安全帽。首先参观的是顶升部分,张科长详细的给我讲解了顶升机构的工作原理和工作程。(上图为拍摄的顶升机构)接下来给我们看的是旋转机构的组成。按照回转部分装设的位置不同,可分为:上回转塔式起重机和下回转塔式起重机; 上回转塔式起重机是指回转支承装在塔机的上部的塔式起重机。其特点是塔身不转动,在回转部分与塔身之间装有回转支承装置。按照回转支承构造形式,上回转部分的结构可分为塔帽式、转柱式、平台式和塔顶式几种。下回转塔式起重机是指回转部分设置在塔机的下部,吊臂装在塔身顶部,塔身、平衡重和所有的机构等均装在转台上,并与转台一起回转塔式起重机。它的特点是重心低、稳定性好、塔身受力较有利。因平衡重放在下部,能做到自行架设,整体搬运。(上图为拍摄的旋转机构)然后我们又参观了机身的标准节如此近距离的观察我们感觉收获很大,而且张科长给我讲解了一些细节布置及其原因如钢材的选择、内部的焊接的加固钢、机身连接处的处理等,感觉机身设计真的很科学既保证了强度又尽量节省了钢材才。(上图是我们拍摄的标准节)接下来我们来的了正在工作的塔机下,仔细的观察塔机线路的走向。塔式起重机金属结构部分由:塔身、塔头或塔帽、起重臂架、平衡臂架、回转支承架、底架、台车架等主要部件组成。一般来说塔机按各部分的功能可以分为:基础、塔身、顶升、回转、起升、平衡臂、起重臂、起重小车、塔顶、司机室、变幅等部分。任何一台塔式起重机,不论其技术性能还是构造上有什么差异,总可以将其分解为金属结构、工作机构和驱动控制系统三部分。并了解起起升机构的原理 。(上图为拍摄的塔机)并在张科长的带领下看了他们厂起升机构所用的电机。(起升机构所用电机)最后我们来到了内车间看见了变幅机构。按照塔机变幅方式不同,可分为动臂变幅,小车变幅与综合变幅塔式起重机; 动臂变幅塔式起重机是指通过臂架俯仰运动进行变幅的塔式起重机。幅度的改变是利用变幅卷扬机和变幅滑轮组系统来实现的,优点是臂架受力状态良好,自重较轻。 小车变幅式塔式起重机是指通过起重小车沿起重臂运行进行变幅的塔式起重机。这类塔机的起重臂架始终处于水平位置,变幅小车悬挂于臂架下弦杆上,两端分别和变幅卷扬机和钢丝绳连接。综合变幅塔式起重机是指根据作业的需要臂架可以弯折的塔式起重机。它同时具备动臂变幅和小车变幅的功能,从而在起升高度与幅度上弥补了上述两种塔式起重机使用范围的局限性。(上图为变幅小车)( 变幅电动机及机身固定处)最后我们看到了厂子里新产品无塔帽塔式起重机,这种新型的塔式起重机可以用于多机同时作业,应用前景很大。下图是我们拍摄的新型塔机(无塔帽式塔机)实习结果塔式起重机,又称“塔机”或“塔吊”,是工业与民用建筑施工中,完成预制构件及其他建筑材料与工具等吊装工作的一种起重设备,是常见的建筑机械之一,因样子像铁塔一样,因而得名为“塔式起重机”。 塔式起重机塔式起重机塔式起重机塔式起重机的的的的型号及表示方法型号及表示方法型号及表示方法型号及表示方法 通过这按国家标准分类,塔式起重机的型号标准是QT,其中的“Q”就代表的是“起重机”,“T”代表的是“塔式”的。一般国内的标准称号都是这样子的,当然,由于我们国家学习德国利渤海尔和法国波坦的技术制造塔式起重机,有的厂家也按国外的编码法则来定义型号名称。 根据建设部ZBJ04008-88建筑机械与设备产品型号编制方法的规定,塔式起重机的型号组成如下: QTZ 80H QTZ-组、型、特性代号 80-最大起重力矩(kNm) H-更新、变型代号 塔式起重机是起(Q)重机大类的塔(T)式起重机组,故前两个字母为QT;特征代号看你强调什么特征,如快装式用K,自升式用Z,固定式用G,下回转式用X等等。 例如有: QTZ 上回转自升式塔式起重机 QTX 下回转式塔式起重机 QTK 快速安装式塔式起重机 QTP 内爬升式塔式起重机 QTG 固定式塔式起重机 QTQ 汽车式塔式起重机 QTL 轮胎式塔式起重机 QTU 履带式塔式起重机 另外,现在有的塔机厂家,根据国外标准,用塔机最大臂长(m)与臂端(最大幅度)处所能吊起的额定重量(KN)两个主参数来标记塔机的型号,这个数据往往更能明确表达一台塔机的工作能力。次毕业实习,我发收获很大看到了老式起重机和新型起重机,感觉技术不断创新改革会使塔式起重机的发展逐步完善。但这次实习我发现塔式起重机具有一定的危险性属于事故多发性的机种之一。所以安全装置是塔式起重机必不可少的关键设备,其作用是避免由于误操作或违章操作等所致的恶果。例如因超载而引起的倒塔,塔身弯折;因夹轨器失灵,使塔式起重机在大风作用下走至轨道尽头遇到挡板而翻车等重大事故。常用的安全装置有:起升高度限位器,起重量限制器,幅度指示器,起重力矩限制器,夹轨器,锚定装置以及各种行程限位开关等。并且塔式起重机的安装和操作要严格按照安全规程来进行。实习总结毕业实习是大学教育中一个极为重要的实践性教学环节。因为毕业设计做的是塔式起重机,所以我和同组的同学在指导老师的带领下来到太原工程机械厂,因为厂里的塔式起重机很多,可以近距离的观察。通过这几天的实习,我对塔式起重机有了一个比较感性和直观的认识。第一次对塔式起重机有了具体的概念感,以前也看到一些塔式起重机,但由于观看距离较远从没有认真观察过。对于塔式起重机的印象基本上只停留在课本上几个简单的图片上。通过本次实习,使我在实际生活中接触与塔式起重机相关的知识,增强感性认识,对塔式起重机有了一个相对全面的基本认识,培养和锻炼我综合运用课本所学的基础理论、基本技能和专业知识,去独立分析和解决实际问题的能力,把理论和实践结合起来,为接下来的毕业设计打下一个良好的基础,也为我毕业后走上工作岗位打下一定的基础。同时也为自己以后能顺利与社会接轨做准备。 通过实习,我认识到对于塔式起重机的认识还很贫乏,以前所学过的知识也没有很好的掌握,接下来要努力巩固专业知识把理论和实际联系起来。接下来还要不断的学习,不断的进步,不断的创新。 +河 北 建 筑 工 程 学 院本科毕业设计(论文)题目QTZ125塔式起重机结构设计(63m吊臂)学 科 专 业 机械设计制造及其自动化 班 级 机094 姓 名 刘竞争 指 导 教 师 张永清 辅 导 教 师 摘要塔式起重机就是动臂装在高耸塔身上部的旋转起重机。其作业空间大,主要用于房屋建筑施工中物料的垂直和水平输送及建筑构件的安装。本次设计的题目是QTZ125塔式起重机总体、塔身、臂架及起升系统的设计。本设计书主要包括四部分:第一部分主要是对现今国内外塔式起重机的发展现状、趋势以及QTZ125塔式起重机特点、应用场合,做了一个简要的概述;第二部分是QTZ125塔式起重机总体方案的选择及总体设计;第三部分是塔身设计和校核、第四部分是顶升机构液压系统设计及套架校核计算。总体设计根据塔式起重机设计规范制定总体设计原则及选择主要性能技术参数,然后综合考虑塔机的强度、刚度、稳定性、各种工况下的外载荷以及塔机的经济性,从而选出合理的设计方案。按塔身受载最小的原则确定平衡重的质量;再计算塔机风力和抗倾覆稳定性。塔身设计包括塔身标准节选取、塔身受力分析、塔身及连接校核。塔身由竖向的立柱和斜向腹杆构成,立柱主要承担竖向的荷载,腹杆则主要配合立柱受力,它主要在塔身承受扭转时发挥作用。塔身受力分工作和非工作两种状态,两种状态分析方法相同。本设计的塔身为独立式塔身,其力学模型可看作是一端独立一端自由的压弯杆件。起升机构顶的设计主要包括电动机、联轴器、制动器的选择,卷筒、吊钩、钢丝绳的选择。起升机构的主要作用是起升重物。关键词:塔式起重机 塔身 臂架 起升机构、ABSTRACTTower crane boom is mounted on top of tall rotating tower crane. The work of space and it is mainly used for housing construction in the vertical and horizontal transport of materials and building components of the installation. The design of the overall topic is QTZ125 tower crane, tower and lifting system. The design of the book consists of four parts: the first is mainly about the current status of the development of tower crane at home and abroad, trends and characteristics of QTZ125 tower crane, applications, made a brief summary; second part of the overall tower crane QTZ125 program selection and design; The third part is the tower design and verification, the fourth part of the lifting body aircraft hydraulic system design and set of checking calculation. Design under the design of tower crane to develop design principles and selection of technical parameters of the main performance, comprehensive consideration of tower crane and the strength, stiffness, stability, different conditions of external load and the tower of the economy, thereby select a reasonable design. According to the principles of the tower to determine the minimum set by the weight of the mass balance; then calculate the wind tower and anti-overturning stability. Section of the tower design includes standard tower selection, tower stress analysis, the tower and connection check. Tower from the vertical column and oblique abdominal pole structure, the vertical column is mainly responsible for the loading, belly bar with the column is the main force, it is mainly when the tower to withstand reverse play. Tower Subjected to work two jobs and non-state, two states of the same way. The design of the tower as a separate tower, the mechanical model can be seen as bending the free end of one end of the independent bar. Lifting body design includes hydraulic system design, selection of hydraulic components and systems check, set frame design check. The design of the QTZ125 tower crane and lifting with the section increases in height, type of hydraulic mechanism with the central top. Keywords: Tower Crane lifting body aircraft hydraulic system Set rack摘要(三号、黑体、居中)(不少于400字)关键词(五号、黑体): (五号)1496IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART A: SYSTEMS AND HUMANS, VOL. 42, NO. 6, NOVEMBER 2012Using Machine Vision and Hand-Motion Controlto Improve Crane Operator PerformanceKelvin Chen Chih Peng, William Singhose, and Purnajyoti BhaumikAbstractThe payload oscillation inherent to all cranes makesit challenging for human operators to manipulate payloadsquickly, accurately, and safely. Manipulation difficulty is alsoincreased by nonintuitive crane-control interfaces. This paperdescribes a new interface that allows operators to drive a craneby moving a hand-held device (wand or glove) freely in space.A crane-mounted camera tracks the movement of the hand-helddevice, the position of which is used to drive the crane. Two controlarchitectures were investigated. The first uses a simple feedbackcontroller, and the second uses feedback and an input shaper.Two operator studies demonstrate that hand-motion crane controlis faster and safer than using a standard push-button pendentcontrol.IndexTermsControlinterface,cranes,inputshaping,machine vision, oscillation.I. INTRODUCTIONCRANES PLAY a key role in maintaining the economicvitality of modern-day industry. Their importance can beseen at shipyards, construction sites, and warehouses and ina wide variety of material-handling applications. The effec-tiveness of crane manipulation is an important contributor toindustrial productivity, low production costs, and worker safety.Oneinherentpropertyofcranesthatisdetrimentaltoefficientoperation is the natural tendency for the payload to oscillate likeapendulum, adoublependulum 1,orwitheven morecomplexoscillatory dynamics 2. Significant effort has been made todevelop control schemes to reduce the oscillatory responsefrom both issued commands and external disturbances 39.There has also been research in controlling cranes that containrotational joints, which adds an extra level of complexity dueto their nonlinear dynamics 1013. Operators who manip-ulate a crane using traditional interfaces such as push-buttonpendents benefit from oscillation-suppression technology. Theygenerate safer (less collisions with obstacles) and more efficientcrane motions (faster task completion times and less operatorbutton pushes) than operators without such compensation 10,1416.Manuscript received September 26, 2010; revised April 7, 2011, June 10,2011, and February 9, 2012; accepted April 6, 2012. Date of publicationJune 8, 2012; date of current version October 12, 2012. This work wassupported in part by Siemens Industrial Automation, by the ManufacturingResearch Center, Georgia Institute of Technology, and by Boeing Research andTechnology. This paper was recommended by Associate Editor E. J. Bass.The authors are with the Woodruff School of Mechanical Engineering,Georgia Institute of Technology, Atlanta, GA 30332 USA (e-mail: kccpeng; Singhose; pjbhaumik).Color versions of one or more of the figures in this paper are available onlineat .Digital Object Identifier 10.1109/TSMCA.2012.2199301Fig. 1.Standard push-button pendent crane control.In addition to facing the challenges of controlling large-amplitude lightly-damped payload swing, operators must alsomaster nonintuitive control interfaces. Fig. 1 shows the pendentcontrol of a typical overhead crane. The operator must be adeptin the cognitive process of transferring the desired manipulationpath into a sequence of button presses that will produce thedesired crane motion. For example, if the operator wants todrive the crane through a cluttered workspace, then the desiredpath must be mapped into a sequence of events where the“forward (F),” “backward (B),” “left (L),” and “right (R)”buttons are pushed at the correct time and in the correct se-quence. Furthermore, as operators move through the workspaceto drive the crane and monitor its progress, they may rotatetheir bodies and change the direction they are facing. In suchcases, the “forward” button causes motion to the left, right,or even backward. As an additional challenge, the operatorcan only directly drive the overhead trolley, not the payload.Therefore, the operator must account for the time lag betweenthe commanded motion of the trolley, which can be manymeters overhead, and the delayed oscillatory response of thepayload.While significant strides have been made to improve theoperational efficiency of cranes by controlling the dynamicresponse to issued commands, relatively little consideration hasbeen given to the way in which operators issue those commands17. It has been proven that interfaces that are tailored to thecognitive processes associated with specific control systemshave beneficial effects 1820. For example, in the fieldof laparoscopic surgery, medical robots such as the da Vinciimprove on the traditional procedure by allowing surgeons tooperate in a more ergonomic manner and with less cognitiveload 21, 22. The controls move in the same direction asthe end effectors for da Vinci, unlike traditional laparoscopic1083-4427/$31.00 2012 IEEEPENG et al.: USING MACHINE VISION AND MOTION CONTROL TO IMPROVE CRANE OPERATOR PERFORMANCE1497procedures where surgeons have to reverse map the controlsdue to the instruments pivot point at the point of insertion.This paper presents a novel control interface that allows anoperator to drive a crane by moving a hand-held device inspace. Machine vision is used to track the position of the device(a wand or a glove), which is then used to generate thecommand signal to drive the crane. The hand-motion controlinterface is well tailored to the task of driving a crane througha cluttered workspace because it eliminates the cognitive map-pingprocessthatisnecessarywithtraditionalcontrolinterfaces.Asaresult,operatorsnolongerneedtoaccount forthedirectionin which they are facing. The manual dexterity required forsafe and efficient operation is also reduced. Additionally, thecontrol algorithm minimizes payload swing without signifi-cantly slowing the system response. Therefore, the burden ofmanually reducing payload oscillation is removed. This allowsthe operator to concentrate solely on the path planning and finalpositioning of the payload.Hand-motion control offers other cognitive advantages overtraditional interfaces. There are two primary divisions of cogni-tive control: analytic problem solving and perceptual process-ing 23. Perceptual processing tends to be faster and can beperformed in parallel, while analytic processing takes longerand typically progresses serially. Analytic problem solving alsotends to be more prone to error 23, 24. The results of manystudies also suggest that people prefer, and adopt, perceptualprocessing when possible 16, 23, 25, 26. From thisperspective, hand-motion control helps operators by loweringthe cognition level required to drive the crane. Operators nolonger need to think analytically about the sequence of buttonsto push or to account for the swinging payload; they only needto move the hand-held device to the desired position or alonga desired path. This allows the operators to perform simplerperceptual processing.Themajorcontributionofthispaperisthenovelhand-motioncontrol interface. The benefits of this interface are validated byhuman operator studies. Section II describes the novel inter-faces (the wand and glove). The control algorithms that are usedin conjunction with the interfaces are discussed in Section III.This is followed by the operator studies in Section IV andconclusions in Section V.II. INTERFACES FORHAND-MOTIONCRANECONTROLThe application investigated in this paper is for a single-pendulum point-mass payload that is suspended from a motor-ized overhead crane. The 10-ton industrial bridge crane showninFig.2wasusedforexperimentalverifications.Abridgecraneconsists of a fixed overhead runway, a bridge that travels alongthe runway, and a trolley that runs along the bridge. Laserrange sensors measure the trolley position along the runwayand the bridge. The hook, which represents the payload, issuspendedfromthetrolleybycables.ASiemensprogrammablelogic controller is used to control the motor drives and actsas the central control unit. Commands to the crane can beissued with a push-button control pendent, the wand or glovefor hand-motion control, or other devices 17. A downward-pointing Siemens Simatic VS723-2 camera mounted on theFig. 2.Typical bridge crane.Fig. 3.Driving a crane by moving a reflective wand.trolley measures the position of the hook. Reflectors mountedon the topside of the hook aid vision-detection algorithms 27.There are two hand-held devices for hand-motion cranecontrol: 1) The wand, shown in Fig. 3, is a reflective ballmounted to the end of a hand-held pole, and 2) the glove,shown in Fig. 4, has a circular reflector attached to the backside.Fig. 5 shows a schematic diagram of hand-motion controlusing machine vision. The crane-mounted camera is used toconcurrentlytrackthepositionsofthewand/gloveandthehook.Because all reflectors appear as bright blobs in the cameraimage, a K-means clustering algorithm is used to distinguishthe wand/glove reflectors from the hook reflectors 28. Thecamera refresh rate is approximately 140 ms. The position ofthe wand/glove relative to the crane is used to generate an errorsignal to drive the overhead trolley.1498IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART A: SYSTEMS AND HUMANS, VOL. 42, NO. 6, NOVEMBER 2012Fig. 4.Driving a crane by moving a reflective glove.Fig. 5.Schematic of hand-motion crane control.III. HAND-MOTIONCRANECONTROLLERSThree control architectures were investigated. First, the stan-dard push-button pendent controller was used as the baselinefor performance comparisons. Then, a proportionalderivative(PD) feedback controller was investigated for its suitability inhand-motion crane control. Finally, an input shaper was addedto the PD controller in order to reduce payload swing.Note that, from the perspective of the control architecture,the wand and the glove are identical. Both devices are used tocommunicate the operators desired position to the controller.For this reason, there is no distinction between the wand andglove in the simulation and experimental verification resultsthat are presented in this section. However, in terms of er-gonomics during operation, the wand has a greater reach andcan drive the crane toward tight spaces, such as corners. On theother hand, the glove sacrifices range of reach for a smaller sizeand ease of use.Fig. 6.Standard pendent controller.Fig. 7.Standard push-button pendent control response.Fig. 8.PD hand-motion controller.A. Standard Push-Button Pendent ControlThe block diagram for standard pendent control is shownin Fig. 6. The operator analyzes the workspace, considers therequired manipulation goal, and then decides on a course ofaction. This plan is then implemented by pushing buttons onthe control pendent. These buttons send energy to the motorsand move the overhead crane trolley. The suspended payload ismoved indirectly by the motion of the trolley.Computer-simulated responses for point-to-point movementsof approximately 2 and 3 m using the pendent controller areshown in Fig. 7. Pressing a pendent button for a certain amountof time issues a trapezoidal velocity command to the cranemotors. Due to the pendulum-like nature of the payload, thistype of trolley movement will, in general, induce significantpayload oscillations.B. PD Hand-Motion ControlThe well-known and popular PD controller represents one ofthe simplest forms of feedback control. It is the most commonlyused feedback method in industry and has been applied to thecontrol of cranes 29, 30. It provides a realistic choice forhand-motion crane controllers. The PD hand-motion controlblock diagram is shown in Fig. 8. The position of the wandor glove is compared to the position of the overhead crane(neglecting the vertical height difference) to generate the errorsignal e. The command generator converts the error signal(a positional measurement) into a velocity command that canbe sent to the motor drives. If e is within the designed rangespecified by e0and e100, then the command generator linearlyPENG et al.: USING MACHINE VISION AND MOTION CONTROL TO IMPROVE CRANE OPERATOR PERFORMANCE1499Fig. 9.Simulated PD controller with low gains.scales e. Otherwise, the command generator outputs either 0%or 100%. The values for e0and e100were 0.25 and 1.0 m.These were selected based on comfortable distances at whichthe crane followed the operator. The command generator isdescribed asCommand =?0%: e e0100% ee0e100e0: e0 e e100100%: e e100.(1)A PD control law is then applied, and the result is passedthrough a saturator to ensure that crane velocity and accel-eration limits are not exceeded. Note that the position of thecrane trolley, rather than of the payload, is used for feedback.This is because, in practice, sensing the position of the trolley(using laser range sensors) is much more reliable than sensingof the payload (using machine vision). Furthermore, the single-pendulum payload is an inherently stable plant: The payloadwill always come to rest directly beneath a stationary crane.Therefore, correct final positioning of the crane trolley ensurescorrect final positioning of the payload.1) Simulation Verification: A crucial design challenge is theselection of PD gains. Computer simulations were constructedto aid the gain-selection process. Hand-motion trajectories werespecified as ramps in position with gradients equivalent to themaximum velocity of the 10-ton industrial crane (0.3577 m/s).This is approximately the speed of a slow walk and mimics thetypical hand-motion trajectories from a human operator.Figs. 9 and 10 show the simulation results for PD hand-motion controllers with low and high feedback gains, respec-tively. These two figures show the inherent tradeoff in using thePD controller: With low gains, the crane was slow to respond,but the payload oscillation was small; with high gains, the cranemoved quickly but at the expense of large payload oscillations.2) Experimental Verification: The hand-motion control sys-tem was implemented on the 10-ton bridge crane. Thewand/glove trajectories produced by human operators weresimilar to those used in the simulations. The ramp gradientwas approximately equivalent to the maximum velocity of thecrane, and the move distance was approximately 2 m for thetests reported here.Fig. 11 shows an operator using hand-motion control to startand stop the crane. To start moving, the operator can exposeFig. 10.Simulated PD controller with high gains.Fig. 11.Starting and stopping with hand-motion control.Fig. 12.Experimental PD controller with low gains.the wand/glove to the camera at some distance away from thecrane. When the crane approaches the desired position, theoperator lowers the wand/glove, which becomes undetectableby the camera. When the camera is unable to locate the positionof the wand/glove, e is set to zero. Because the position of thewand/glove may be unknown at certain times, there are breaksin the curves that are labeled “Wand/Glove” in the experimentalresponse plots.Figs. 12 and 13 show the experimental results for PD hand-motion controllers with low and high feedback gains usingthe glove interface, respectively. The experimental data re-inforce the results that were established by the simulations:Low gains produced slow crane movements and small payloadoscillations, while high gains yielded fast crane movementsbut large payload oscillations. For safety reasons, minimizingpayload oscillation is normally a higher priority than fast crane1500IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART A: SYSTEMS AND HUMANS, VOL. 42, NO. 6, NOVEMBER 2012Fig. 13.Experimental PD controller with high gains.Fig. 14.PD with input shaper hand-motion controller.movements. Therefore, practical implementations of PD hand-motion controllers should only use low gains.C. PD With Input Shaper Hand-Motion ControlSection III-B demonstrated the inherent weakness in usingPD hand-motion controllers (the tradeoff between low and highgains). However, performance can be improved with the addi-tion of an input shaper that modifies the shape of the commandsignal to reduce oscillation. Fig. 14 shows the new controlblock diagram that shows an input shaper inserted between thesaturator and the crane blocks.1) Input Shaping: Input shaping is a technique that reducesthe residual vibration of flexible systems by properly shapingthe commands. This is accomplished by convolving the base-line input command with a series of impulses, known as aninput shaper. The result is a shaped command that will reduceresidual vibration.In order to determine the impulse amplitudes and time loca-tions of an input shaper, certain design constraints must be sat-isfied. The primary design constraint is a limit on the amplitudeof vibration caused by the shaper. The normalized percentageresidual vibration (PRV) amplitude of an underdamped second-order system from a sequence of n impulses is given by 31PRV = V (,) = etn?C(,)2+ S(,)2(2)whereC(,) =n?i=1Aieticos(ti?1 2)(3)S(,) =n?i=1Aietisin(ti?1 2)(4)Fig. 15.Simulated PD with input shaper controller.Fig. 16.Experimental PD with input shaper controller. is the natural frequency of the system, is the dampingratio, and Aiand tiare the ith impulse amplitude and time,respectively.Equation (2) gives the ratio of vibration with input shapingto that without input shaping. A constraint on residual vibrationamplitude can be formed by setting (2) less than or equal to atolerable level of residual vibration at the modeled natural fre-quency and damping ratio 32. For the simplest zero vibration(ZV) shaper, the tolerable amount of vibration is set to zero.This results in a shaper of the form 31, 33ZV =?Aiti?=?11+KK1+K012?(5)whereK = e12.(6)2) Simulation and Experimental Verifications: The goal ofcombining high-gain PD feedback with a ZV input shaperis to obtain fast crane response and low-amplitude payloadoscillations. The hand-motion controller in this section useshighPDgains (identicaltotheonesfromSectionIII-B)tomovethe crane trolley quickly, combined with a ZV input shaper tocancel payload oscillations.Figs. 15 and 16 show the simulated and experimental re-sponses of the controller, respectively. The experimental datawere obtained using the glove interface. Clearly, the craneresponse was fast, yet with very little payload oscillation.PENG et al.: USING MACHINE VISION AND MOTION CONTROL TO IMPROVE CRANE OPERATOR PERFORMANCE1501Fig. 17.Overhead view of obstacle course 1.Fig. 18.Obstacle course 1 completion times.Furthermore, the lag in rise time introduced by the input shaperwas hardly noticeable. The crane responds with nearly identicalspeeds with or without input shaping. Therefore, this version ofthe hand-motion controller is free to use high PD gains becausethe input shaper eliminates payload oscillations.IV. OPERATORSTUDIESThis section presents the results from two studies that wereconducted to compare the operating efficiency of pendent con-trol versus hand-motion control. In each study, the goal was tomove the payload (i.e., the crane hook) from start to finish asquickly as possible without collisions with obstacles.A. PD Hand-Motion ControlAn overhead view of the obstacle course is shown in Fig. 17.The start and end zones are indicated by the rectangle andcircle, respectively. The obstacles are arranged such that thefastest route required diagonal crane movements (simultaneousmovement in both the trolley and bridge axes). Twelve noviceoperators completed the obstacle course using the followingcontrol interfaces:1) standard push-button pendent;2) wand control with low PD gains and no input shaping(recall that practical implementations of PD hand-motioncontrollers must use low gains to avoid large amplitudepayload oscillations).Fig. 19.Obstacle course 1 collisions.Fig. 20.Overhead view of obstacle course 2.Fig. 21.Exemplary obstacle course 2 payload responses.Fig. 18 shows the course completion times for each operator.The average completion time using the pendent was 97 s. Theaverage completion time using the wand was only 46 s, whichis a 53% improvement. A one-way repeated-measure analysis-of-variance (ANOVA) test indicates that the improvementin completion time was statistically significant (F = 17. 67;P = 0. 00148).Fig. 19 plots the number of collisions that occurred duringeach trial. Using pendent control, all operators suffered at leastone collision, and the average number of collisions was 5.1.Using wand control, the average number of collisions was only0.92, which is an 81% improvement. A one-way repeated-measure ANOVA test indicates that the reduction in collisionswas statistically significant (F = 19. 81; P = 0. 00098).1502IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICSPART A: SYSTEMS AND HUMANS, VOL. 42, NO. 6, NOVEMBER 2012Fig. 22.Obstacle course 2 completion times.Fig. 23.Obstacle course 2 collisions.B. PD With ZV Shaper Hand-Motion ControlThe obstacle course used in this study is shown in Fig. 20.The start and end zones are indicated by the rectangle and cir-cle, respectively. Ten novice operators completed the obstaclecourse using the following control interfaces:1) standard pendent control;2) glove control with high PD gains and ZV input shaper;3) wand control with high PD gains and ZV input shaper.Fig. 21 shows an overhead view of typical payload responsesfor a single operator using the pendent and glove. Comparedto using the pendent, using the glove significantly reduced thepayload swing and allowed the operator to move the payloadmore efficiently.Fig. 22 shows the course completion times for each operator.The average completion time using the pendent was 77 s. Theaverage completion time using the glove was 24 s (68.8%improvement over the pendent), and that using the wand was30s(61%improvementoverthependent).Aone-wayrepeated-measure ANOVA test indicates that there were statistically sig-nificant differences in the completion times of the three controlmethods (F = 63. 88; P . 0001). A 95%-confidence-intervalTukey test indicated that there were statistically significantdifferences between the pendent and wand (P . 0001) andbetween the pendent and glove (P . 0001). However, therewas no significant difference between the wand and the glove(P = 0. 46).Fig. 23 plots the number of collisions that occurred duringeach trial. Using pendent control, many operators collided thepayload with the obstacle. The average number of collisionswas 0.9. However, all operators were able to avoid the obstacleusing the glove and wand, corresponding to 100% improve-ments over the pendent. A one-way repeated-measure ANOVAtest indicates that there were statistically significant differencesin the number of collisions using the three control methods(F = 10. 57; P = 0. 00092). A 95%-confidence-interval Tukeytest indicated that there were statistically significant differencesbetween the pendent and wand (P = 0. 0024) and between thependent and glove (P = 0. 0024).V. CONCLUSIONCrane controllers based on operator hand motion were suc-cessfully installed on an industrial bridge crane. A crane-mounted camera tracks the position of a hand-held device (awand or a glove), which is moved by the operator throughthe desired trajectory. The crane then follows the wand/glove.Three types of controllers have been investigated: 1) standardpendent control (for baseline comparisons); 2) PD hand-motioncontrol; and 3) PD with input-shaping hand-motion control.Two operator studies based on driving the crane through ob-stacle courses were conducted. The first study showed that PDcontrol using the wand had a 53% improvement in completiontime and an 81% improvement in obstacle avoidance overstandard pendent control. The second study compared pendentcontrol to PD and input-shaping hand-motion control. Usingthe wand and glove, operators demonstrated better than 60%improvements in completion time and 100% improvements inavoiding obstacles compared to using the pendent.REFERENCES1 W. Singhose, D. Kim, and M. Kenison, “Input shaping control ofdouble-pendulum bridge crane oscillations,” J. Dyn. Syst., Meas., Control,vol. 130, no. 3, pp. 034504-1034504-7, May 2008.2 J. Yoon, W. Singhose, J. Vaughan, G. Ramirez, M. Kim, and S. Tawde,“Dynamics and control of crane payloads that bounce and pitch duringhoisting,” in Proc. IDETC/CIE, San Diego, CA, 2009.3 Y. Sakawa and Y. Shindo, “Optimal control of container cranes,”Automatica, vol. 18, no. 3, pp. 257266, May 1982.4 G. P. Starr, “Swing-free transport of suspended objects with a path-controlled robot manipulator,” J. Dyn. Syst., Meas., Control, vol. 107,no. 1, pp. 97100, Mar. 1985.5 D. Strip, “Swing-free transport of suspended objects: A generaltreatment,” IEEE Trans. Robot. Autom., vol. 5, no. 2, pp. 234236,Apr. 1989.6 N. Singer, W. Singhose, and E. Kriikku, “An input shaping controllerenabling cranes to move without sway,” in Proc. ANS 7th Top. MeetingRobot. Remote Syst., Augusta, GA, 1997, vol. 1, pp. 225231.7 K.-S. Hong, J. H. Kim, and K.-I. Lee, “Control of a container crane:Fast traversing, residual sway control from the perspective of controllingan underactuated system,” in Proc. Amer. Control Conf., 1998, vol. 2,pp. 12941298.8 Y.-S. Kim, H.-S. Seo, and S.-K. Sul, “A new anti-sway control scheme fortrolley crane system,” in Conf. Rec. 36th IEEE IAS Annu. Meeting, 2001,vol. 1, pp. 548552.9 Z. Masoud and M. Daqaq, “A graphical approach to input-shaping con-trol design for container cranes with hoist,” IEEE Trans. Control Syst.Technol., vol. 14, no. 6, pp. 10701077, Nov. 2006.10 G. Parker, K. Groom, J. Hurtado, J. Feddema, R. Robinett, and F. Leban,“Experimental verification of a command shaping boom crane controlsystem,” in Proc. Amer. Control Conf., San Diego, CA, 1999, pp. 8690.PENG et al.: USING MACHINE VISION AND MOTION CONTROL TO IMPROVE CRANE OPERATOR PERFORMANCE150311 O. Sawodny, A. Hildebrandt, and K. Schneider, “Control design for therotation of crane loads for boom cranes,” in Proc. IEEE ICRA, 2003,vol. 2, pp. 21822187.12 J. Neupert, T. Mahl, O. Sawodny, and K. Schneider, “A nonlinearcontrol strategy for boom cranes in radial direction,” in Proc. ACC, 2007,pp. 2530.13 C. Ko, J. Chiou, C. Y. Gau, S. Lee, and W. Chang, “Tower crane vibrationsuppression using generalized input shaping,” Int. J. Fuzzy Syst., vol. 6,no. 1, pp. 3843, Mar. 2004.14 A. Khalid, J. Huey, W. Singhose, and J. Lawrence, “Human operatorperformance testing using an input-shaped bridge crane,” J. Dyn. Syst.,Meas., Control, vol. 128, no. 4, pp. 835841, Dec. 2006.15 D. Kim and W. Singhose, “Performance studies of human operators driv-ing double-pendulum bridge cranes,” Control Eng. Pract., vol. 18, no. 6,pp. 567576, Jun. 2010.16 J. Vaughan, A. Smith, S. J. Kang, and W. Singhose, “Predictive graphicaluser interface elements to improve crane operator performance,” IEEETrans. Syst., Man, Cybern. A, Syst., Humans, vol. 41, no. 2, pp. 323330,Mar. 2011.17 K. L. Sorensen, J. B. Spiers, and W. E. Singhose, “Operational effects ofcrane interface devices,”
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:QTZ125塔式起重机总体 臂架、变幅机构设计(63m吊臂)【12张PDF图纸+CAD制图+文档】
链接地址:https://www.renrendoc.com/paper/122393429.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!