卡簧切断-弯曲复合模的设计【电机磁钢卡簧零件冲压模具设计】
收藏
资源目录
压缩包内文档预览:(预览前20页/共33页)
编号:122562246
类型:共享资源
大小:1.89MB
格式:ZIP
上传时间:2021-04-20
上传人:221589****qq.com
认证信息
个人认证
李**(实名认证)
湖南
IP属地:湖南
40
积分
- 关 键 词:
-
卡簧
切断
弯曲
复合
设计
电机
磁钢
零件
冲压
模具设计
- 资源描述:
-
卡簧切断-弯曲复合模的设计【电机磁钢卡簧零件冲压模具设计】,卡簧,切断,弯曲,复合,设计,电机,磁钢,零件,冲压,模具设计
- 内容简介:
-
图1 电机磁钢卡簧零件设计题目:卡簧切断-弯曲复合模的设计设计要求:1.零件材料用弹簧钢 65Mn;2.设计出一个复合模具,完成以上卡簧零件的制作3采用后侧导柱窄形模架。4. 工作原理:就是一根钢丝进来,先由定位块定位,切断,然后弯曲,然后卸料就行了5.CAD画图的时候学校署名为,西南林业大学6、说明书字数8000以上。XXXX大学毕业设计说明书题 目:卡簧冲压工艺及模具设计年级、 专业: 姓 名: 学 号: 指 导 教 师: 完 成 时 间: 摘 要毕业设计是在模具专业理论教学之后进行的实践性教学环节。是对所学知识的一次总检验,是走向工作岗位前的一次实战演习。其目的是,综合运用所学课程的理论和实践知识,设计一副完整的模具训练、培养和提高自己的工作能力。巩固和扩充模具专业课程所学内容,掌握模具设计与制造的方法、步骤和相关技术规范。熟练查阅相关技术资料。掌握模具设计与制造的基本技能,如制件工艺性分析、模具工艺方案论证、工艺计算、加工设备选定、制造工艺、收集和查阅设计资料,绘图及编写设计技术文件等。本设计主要对卡簧冲压模具进行设计。结合公司实际生产要求和产品的特点,在厂原有的设计上,对模具进行了改进设计。本设计对卡簧加工工艺进行了分析,得出了最佳加工方案,在充分保证零件质量与精度的前提下,选择高生产率的加工工艺,降低生产成本,从而有效地节约了材料。本设计中使用计算机软件进行了辅助设计,在保证高精度的同时简化了传统的繁琐计算过程,使设计更为便捷。该卡簧从坯料到完全成形,以前是使用两套模具:剪料,弯曲,所设计的两套模具较为典型,也具有一定的代表性。本设计的重点与难点是多道工序的结合以及对凸、凹模刃口尺寸的计算,因为它将直接影响零件的质量。关键词 冲压模具;复合模;辅助设计;模具结构目 录摘 要II第章、绪论11.1.课题来源和研究意义11.2.国内外在该方向的研究现状及分析31.3.本课题研究的主要内容51.4.本章小结5第2章、卡簧加工工艺综合分析62.1.卡簧加工工艺要求62.2.零件图分析62.3.冲压件经济性和先进性分析62.4.工艺方案的确定72.5.本章小结7第3章、复合模的设计83.1.冲压件的工艺分析83.1.1.弯曲件回弹值的计算83.2.排样93.3.计算冲压力93.3.1.切断力93.3.2.弯曲力的计算193.3.3.弯曲力的计算2103.3.4.卸料力103.3.5.顶件力103.4.确定模具压力中心113.5.计算凸、凹模刃口尺寸123.5.1.切断凸、凹模刃口计算123.5.3.弯曲工作部分尺寸计算143.6.凸模、凹模的结构设计153.7.模具总体设计及主要零部件设计173.7.1.模具总休装配设计173.7.2.模柄设计193.7.3.模架设计193.7.4.垫板设计193.7.5.模具的闭合高度203.8.冲压设备的选择203.8.1.公称压力的选择203.8.2.行程次数213.8.3.滑块行程(S)213.8.4.模具闭合高度213.8.5.工作台面尺寸223.8.6.模柄孔尺寸223.9.模具的装配233.10.本章小结24结 论25设计心得26致 谢27参考文献2829第章、绪论1.1.课题来源和研究意义(1)冲压的概念冷冲压是在常温下利用冲模在压力机上对材料施加压力,使其产生分离或变形,从而获得一定形状、尺寸和性能的零件加工方法。它是一种压力加工方法,是机械制造中的先进加工方法之一。冲压模具是一个特殊的,一次性的一类精密工具,通过切割与塑形的方式使金属成为一个理想的形状或外形。大多数模具构造有几个基本组成部分,包括模板,防磨装置,模套,导向销,轴衬,垫块,垫板,螺钉,销钉,和螺栓。模具还需要冲孔模板,压力和冲压成型板,以及可用来保护它们-转子,肩螺栓,衔铁,保持架;和气体,线圈,或聚氨酯弹簧的工具。(2)冲压的优点冷冲压和线切割相比较,具有生产效率高、加工成本低、材料利用率高、产品尺寸精度稳定、操作简单容易实现机械化和自动化等一系列有点,特别适合于大批量生产。冲压模具成形作为现代工业中一种十分重要的加工方法,用以生产各种板料零件,具有很多独特的优势,其成形件具有自重轻、刚度大、强度高、互换性好、成本低、生产过程便于实现机械自动化及生产效率高等优点,是一种其它加工方法所不能相比和不可替代的先进制造技术,在制造业中具有很强的竞争力,被广泛应用于汽车、能源、机械、信息、航空航天、国防工业和日常生活的生产之中。 在吸收了力学、数学、金属材料学、机械科学以及控制、计算机技术等方面的知识后,已经形成了冲压学科的成形基本理论。以冲压产品为龙头,以模具为中心,结合现代先进技术的应用,在产品的巨大市场需求刺激和推动下,冲压成形技术在国民经济发展、实现现代化和提高人民生活水平方面发挥着越来越重要的作用。现代冲压模具生产是一种大规模继续作业的制造方式,由于高新技术的参与和介入,冲压生产方式由初期的手工操作逐步进化为集成制造。生产过程逐步实现机械化、自动化、并且正在向智能化、集成化的方向发展。实现自动化冲压作业,体现安全、高效、节材等优点,已经是冲压模具生产的发展方向。日常生活中人们使用的很多用具是用冲压方法制造的,例如不锈钢饭缸,它就是用一块圆形金属板料在压床上利用模具对圆形板料加压而冲出来的。可以看出,冷冲压是一种在常温(冷态)下利用冲模在压床上对各种金属(或非金属)板料施加压力使其分离或者变形而得到一定形状零件的金属压力加工方法。近几十年来,冲压技术有了飞速的发展,它不仅表现在许多新工艺与新技术在生产的广泛应用上,如:旋压成形、软模具成形、高能率成形等,更重要的是人们对冲压技术的认识与掌握的程度有了质的飞跃。本设计题目由实习单位提供,经系指导老师审核通过的。本设计题目涉及的主要内容是对冲压模的设计, 研究目的是在厂原有的基础上,对模具进行改进设计,提高产品质量与效益。在二十世纪中期甚至更早,国外就已经出现很多对模具及模具工业的高度评价与精辟的比喻。例如:“模具是美国工业的基石”(美国);“模具是促进社会繁荣富强的原动力”(日本);“模具工业是金属加工的帝王”(德国);“模具是黄金”(东欧)等。在二十世纪未,中国人才开始认识到其极端重要性,作出了科学的评价:“模具工业是现代工业之母”(中国)。21世纪的制造业,正从以机器为特征的传统技术时代,向着以信息为特征的技术时代迈进,即用信息技术改造和提升传统产业。经济全球化和世界市场一体化加速发展,不断加剧了制造商之间的竞争,提出了快速反应市场的要求,与之相适应,制造业对柔性自动化技术及装备的要求更加迫切而强烈。同时,微电子技术和信息通信技术的快速发展,为柔性自动化提供了重要的技术支撑,工业装备的数控化、自动化、柔性化呈现蓬勃发展的态势。现今,全世界模具工业年总产值约为650亿美元,其中亚洲地区占到全世界一半的总产值。而在亚洲,最高属于日本,年产值达200亿美元上下。美国的年产值为50亿美元。中国也在后来居上,现在已经达到70亿美元。然而,产值并不等同于技术质量。虽然我国冲压模具无论在数量上,还是在质量、技术和能力等方面都已有了很大发展,但与发展经济需求和世界先进水平相比,差距仍很大。一些大型、精度、复杂、长寿命的高档模具每年仍大量进口,特别是中高档轿车的覆盖件模具,目前仍主要依靠进口。而技术含量低的模具已供过于求,市场利润空间狭小。近五年来,平均每年进口模具约为11.2亿美元,2003年就进口了近13.7亿的模具,这还未包括随设备和生产线作为附件带进来的模具。这表示中国大陆模具业的发展潜力仍然很巨大。这就是这次研究的意义。1.2.国内外在该方向的研究现状及分析在世界上大多数国家和地区,模具及模具工业早已成为了一个行业,有专门的行业组织机构指导和推动模具工业的发展。比如日本有“型技术协会”,台湾地区有“台湾模具工业同业公会”,我国有“中国模具工业协会”,各省市均有其分会。模具行业已成为一个大行业,仅我国的模具企业已达到了数万家之多。近年来,我国冲压模具水平已有很大提高。大型冲压模具已能生产单套重量达50多吨的模具,中档轿车配套的覆盖件模具和多工位级进模也能生产了。模具精度达到12m,寿命2亿次左右。表面粗糙度达到Ra1.5m的精冲模、大尺寸(300mm)精冲模及中厚板精冲模国内也已达到相当高的水平。我国模具CAD/CAM技术的发展已有20多年历史。由原华中工学院和武汉733厂于1984年共同完成的精冲模CAD/CAM系统是我国第一个自行开发的模具CAD/CAM系统。华中工学院和北京模具厂等在1986年共同完成的冷冲模CAD/CAM系统是我国自行开发的第一个冲裁模CAD/CAM系统。上海交通大学开发的冷冲模CAD/CAM系统也于同年完成。21世纪开始,CAD/CAM技术逐渐普及,现在具有一定生产能力的冲压模具企业基本都有了CAD/CAM技术,其中部分骨干重点企业还具备各CAE能力。模具CAD/CAM技术能显著缩短模具设计与制造周期,降低生产成本,提高产品质量,已成为人们的共识。在“八五”、九五“期间,已有一大批模具企业推广普及了计算机绘图技术,数控加工的使用率也越来越高,并陆续引进了相当数量CAD/CAM系统。如美国EDS的UG,美国Parametric Technology公司的Pro/Engineer,美国CV公司的CADSS,英国DELCAM公司的DOCT5,日本HZS公司的CRADE及space-E, 以色列公司的Cimatron 还引进了AutoCAD CATIA 等软件及法国Marta-Daravision公司用于汽车及覆盖件模具的Euclid-IS等专用软件。国内汽车覆盖件模具生产企业普遍采用了CAD/CAM技术/DL图的设计和模具结构图的设计均已实现二维CAD,多数企业已经向三维过渡,总图生产逐步代替零件图生产。在冲压成型CAE软件方面,除了引进的软件外,华中科技术大学、吉林大学、湖南大学等都已研发了较高水平的具有自主知识产权的软件,并已在实践中得到成功应用,产生了良好的效益。快速原型(RP)传统的快速经济模具相结合,快速制造大型汽车覆盖件模具,解决了原来低熔点合金模具靠样件浇铸模具,模具精度低、制件精度低和制造难等问题,实现了以三维CAD模型作为制模依据的快速模具制造。它标志着RPM应用于汽车身大型覆盖件试制模具已取得了成功。围绕着汽车车身试制、大型覆盖件模具的快速制造,近年来也涌现出一些新的快速成型方法。例如,目前已开始在生产中应用的无模多点成型及激光冲击和电磁成型等技术。它们都表现出了降低成本、提高效率等优点。冲压模具成形作为现代工业中一种十分重要的加工方法,用以生产各种板料零件,具有很多独特的优势,其成形件具有自重轻、刚度大、强度高、互换性好、成本低、生产过程便于实现机械自动化及生产效率高等优点,是一种其它加工方法所不能相比和不可替代的先进制造技术,在制造业中具有很强的竞争力,被广泛应用于汽车、能源、机械、信息、航空航天、国防工业和日常生活的生产之中。1.3.本课题研究的主要内容1.卡簧冲裁工艺方案;2.卡簧模具总体方案设计;3.模具各零件尺寸计算;4.模具总装配图与零件图绘制。1.4.本章小结本章从国内外当今模具的发展状况这个角度介绍了课题的研究意义,在此基础上提出课题设计的任务。第2章、卡簧加工工艺综合分析2.1.卡簧加工工艺要求卡簧零件图如图2-1所示,材料为65Mn,弹簧钢,直径为2.5mm,已知年产量10万件,为大批量生产。要求表面无划痕、孔不允许严重变形、冲口无毛刺、弯曲无裂纹。设计其冲压模,确定冲压工艺方案。(65Mn材质的屈服强度是400MPa,抗拉强度约是750MPa,抗剪强度约是600MPa,具有良好的塑性,其冲裁、成形加工性较好。)图2-1 卡簧零件图2.2.零件图分析该件为弯曲零件,尺寸精度要求不高,由冲裁和弯曲即可成形。冲压难点在于多道工序在一副模具里实现,即采用复合冲压的方法,同时要保证产品不能变形。同时为模具收力均匀,这样既能提高生产效率,有能使模具稳定,沿长模具寿命。2.3.冲压件经济性和先进性分析冲压是该件最好的加工方法。由于批量较大,为提高生产率,宜采用复杂一点的组合工序。2.4.工艺方案的确定方案一:首先整体落料,再弯曲;方案二:先弯曲,再落料;方案三:切断弯曲复合模;上述三方案的综合比较见下表:表2-2 冲压工艺方案比较表项目方案一,二方案三模具数量二套一套制件质量有回弹,可控制形状尺寸精度较好,有回弹,可控制生产率较低较高模具寿命结构简单,寿命不长结构复杂,生产效率高,比较合理根据上表比较,选定方案三。由于冲压件弯曲尺寸精度均为IT14,方案三回弹可控制,对其影响不大。同时,采用这样的方案,在提高生产率的同时也很好地保证外形尺寸精度。2.5.本章小结本章分析了卡簧整体加工工艺性,对其工艺性进行审查,并对冲压件进行了经济性与先进性分析,最后确定工艺方案。第3章、复合模的设计3.1.冲压件的工艺分析该产品切断,弯曲等工序结合,结构较为简单,整个形状由直线与圆弧组成。由零件图可知,该件的经济精度为IT14,符合冲裁精度要求,精度要求能够在冲裁加工中得到保证,一次冲压成形。其尺寸要求、生产批量等情况,也均符合冲裁的工艺要求。材料为65Mn。该工件的弯曲内圆角半径为3mm,大于最小弯曲半径rmin=0.4t=0.42.5=1.5mm,故该工件形状、尺寸、精度均满足弯曲工艺的要求,可以采用弯曲工序加工。3.1.1.弯曲件回弹值的计算(1)时属于小变形程度,而时属于大变形程度。此零件的r/t=3/2.5=1.2,属于大变形程度,圆角半径回弹小,不必计算,只计算凸模角度。因为,由文献3,表5-1得到:=0.3计算凸模的中心角: 1=-2=45-20.3=44.4其中1-凸模的圆角部分的中心角,();-工件的中心角,()。(2)工件回弹问题的解决:当工件精度要求不高或校正弯曲时,生产中常采取调整凸、凹模间隙的方法解决工件回弹问题。3.2.排样根据产品中性层计算展开尺寸,结合实际生产情况,计算结果得,展开长度为99.01,设计中取整数99,在后期设计模具时,此尺寸需要调试,展开图如下:由文献3,表3-13可知:切断弯曲模是无废料冲压。工件间搭边值为0,所以一个进距的材料利用率为:100%3.3.计算冲压力3.3.1.切断力P1=nLt=12.52.5600=3750N=3.75KN (3-1)3.3.2.弯曲力的计算1弯曲力P2=cLt=750=3750N=3.75KN (3-2)式中P弯曲力c-系数,取0.5-0.8L-弯曲件长度(mm)t-板料厚度(mm)-材料抗拉强度(MPa)3.3.3.弯曲力的计算2弯曲力P3=cLt=750=3750N=3.75KN (3-3)式中P弯曲力c-系数,取0.5-0.8L-弯曲件长度(mm)t-板料厚度(mm)-材料抗拉强度(MPa)3.3.4.卸料力Pr=KrP1 (3-4)由文献3,表3-11:取Kr0.04,故Pr0.04(3.75+3.75+3.75)0.0411.25=0.45KN (3-05)3.3.5.顶件力由文献3,表3-11,取Kp0.045,故PtKp=0.045(3.75+3.75+3.75)=0.04511.25=0.51KN (3-06)冲压力P0P1P2P3PrPt11.25+0.45+0.51=12.21KN (3-07)初步选择400KN冲床。3.4.确定模具压力中心图3-2 冲裁力分析图以中间圆圆心为原点,建立如上图32所示坐标系XOY。采用解析法求压力中心,求YG,XGF1切断力 F1= Ltb ,得F1=3.75KNF2弯曲力 F2= cLt 得F2=3.75KNF3弯曲力 F3= cLt 得F3=3.75KNY1F1到X轴的力臂 Y1=0X1F1到Y轴的力臂 X1=44Y2F2到X轴的力臂 Y2=0X2F2到Y轴的力臂 X2=15Y3F3到X轴的力臂 Y3=0X3F3到Y轴的力臂 X3=-15根据合力距定理:YG=(Y1F1+ Y2F2+ Y3F3)/(F1+ F2+ F3)XG=(X1F1+ X2F2+ X3F3)/(F1+ F2+ F3)YGF冲压力到X轴的力臂;YG=0XGF冲压力到Y轴的力臂;XG=14.66在不影响冲裁精度与安全生产的前提下,本设计直接用冲压件中心来当做模具压力中心,方便设计。3.5.计算凸、凹模刃口尺寸3.5.1.切断凸、凹模刃口计算凸、凹模刃口尺寸计算原则设计落料模先确定凹模刃口尺寸,以凹模为基准,间隙取在凸模上;设计冲孔模先确定凸模刃口尺寸,以凸模为基准,间隙取在凹模上。间隙是影响模具寿命的各种因素中占最主要的一个。冲裁过程中,凸模与被冲的孔之间,凹模与落料件之间的均有磨檫,而且间隙越小,磨檫越严重。在实际生产中受到制造误差和装配精度的限制,凸模不可能绝对垂直于凹模平面,而且间隙也不会绝对均匀分布,合理的间隙均可使凸模、凹模侧面与材料间的磨檫减小,并缓减间隙不均匀的不利影响,从而提高模具的使用寿命。冲裁间隙对冲裁力的影响:虽然冲裁力随冲裁间隙的增大有一定程度的降低,但是当单边间隙介于材料厚度 5%20%范围时,冲裁力的降低并不明显(仅降低5%10%左右)。因此,在正常情况下,间隙对冲裁力的影响不大。冲裁间隙对斜料力、推件力、顶件力的影响:间隙对斜料力、推件力、顶件力的影响较为显著。间隙增大后,从凸模上斜、从凸模孔口中推出或顶出零件都将省力。一般当单边间隙增大到材料厚度的15%25%左右时斜料力几乎减到零。冲裁间隙对尺寸精度的影响:间隙对冲裁件尺寸精度的影响的规律,对于冲孔和落料是不同的,并且与材料轧制的纤维方向有关。通过以上分析可以看出,冲裁间隙对断面质量、模具寿命、冲裁力、斜料力、推件力、顶件力以及冲裁件尺寸精度的 影响规律均不相同。因此,并不存在一个绝对合理的间隙数值,能同时满足断面质量最佳,尺寸精度最佳,冲裁模具寿命最长,冲裁力、斜料力、推件力、顶件力最小等各个方面的要求。在冲压的实际生产过程中,间隙的选用主要考虑冲裁件断面质量和模具寿命这两个方面的主要因素。但许多研究结果表明,能够保证良好的冲裁件断面质量的间隙数值和可以获得较高的冲模寿命的间隙数值也是不一致的。一般说来,当对冲裁件断面质量要求较高时,应选取较小的间隙值,而当对冲裁件的质量要求不是很高时,则应适当地加大间隙值以利于提高冲模的使用寿命。根据冲模在使用过程中的磨损规律,设计落料模时,凹模基本尺寸应取接近或等于零件的最小极限尺寸;设计冲孔模时,凸模基本尺寸则取接近或等于冲孔件的最大极限尺寸。按冲件精度和模具可能磨损程度,凸、凹模磨损留量在公差范围内的0.5-1.0之间。磨损量用x表示,其中为冲件的公差值,x为磨损系数,其值在0.5-1.0之间,与冲件制造精度有关,可按下列关系选取:零件精度IT10以上X=1; 零件精度IT11- IT13X=0.75; 零件精度IT14X=0.5 。不管落料还是冲孔,冲裁间隙一律采用最小合理间隙值(Zmin)。选择模具制造公差时,一般冲模精度较零件高3-4级。对于形状简单的圆形、方形刃口,其制造偏差值可按IT6- IT7级选取;对于形状复杂的刃口尺寸制造偏差可按零件相应部位公差值的1/4来选取;对于刃口尺寸磨损后无变化的制造偏差值可取冲件相应部位公差值的1/8并冠以();若零件没有标注公差,则可按IT14级取值。零件尺寸公差与冲模刃口尺寸的制造偏差应按“入体”原则标注单向公差,即:落料件上偏差为零,只标注下偏差;冲孔件下偏差为零,只标注上偏差。如果零件公差是依双向偏差标注的,则应换算成单向标注。磨损后无变化的尺寸除外。对外轮廓的落料,由于形状简单,故采用单独的加工方法。其凸、凹模刃口部分尺寸计算如下:当以凹模为基准件时,凹模磨损后,刃口尺寸有的增大,有的减小。所以单边凹模尺寸为44,凸模减去冲裁间隙Z,即44-0.1=43.9 (3-08)3.5.3.弯曲工作部分尺寸计算(1)凸模圆角半径由于此件圆角半径(r=3mm)较小,相对产品的直径2.5,凸模圆角半径可取R=3, (2)凹模圆角半径凹模圆角半径不能过小,以免增加弯曲力,擦伤工件表面。此工件单边弯曲,属于不对称件,凹模圆角半径应取大小一致。凹模圆角半径一般按材料厚度t来选取。本设计中取1.0t=R1.5,同时工件属于对称件,产品弯曲时模具两边受力均匀,所以模具设计时比较合理。(3)凹模工作部分深度的设计计算凹模工作部分的深度将决定板料的进模深度,同时也影响到弯曲件直边的平直度,对工件的尺寸精度造成一定的影响。一般情况下,凹模工作部分深度可查相关设计资料即能满足弯曲件的要求。此弯曲直边高度为自然尺寸,经过计算大概在3.5-4.5毫米之间,板厚为2.5mm, 由文献3,表5-10得凹模工作部分深度20mm。(4)凸、凹模间隙弯曲模的凸凹模间隙是指单边间隙Z。间隙越小,则弯曲力越大,间隙过小,会使制件边部厚变薄,降低凹模寿命。间隙过大,则回弹大,降低制件精度。凸、凹模间隙Z可按下式计算Zt+Ct (3-09)式中 Z弯曲模凸、凹模单边间隙;t材料厚度(基本尺寸);C间隙系数;由文献3,表5-11得C0.02所以 Z2.50.0222.54mm (3-10)3.6.凸模、凹模的结构设计模具结构比较简单,产品是一钢丝,直径2.5,所以无需采用卸料板压住材料,可以使用刚性卸料装置,凸模,凸凹模等零件比较大,可以采用螺钉和销钉固定,也可以加一固定板。零件稍微大点的,可以用螺钉与模板连接,尺寸标注如下图3-3所示。凸凹模与上垫板螺钉和销钉固定,弯曲凸模采用固定板过盈配合,和下模板螺钉固定。图3-3 凸凹模零件图图3-4 弯曲凸模零件图凹模的刃口形式,考虑到生产批量较大,所以采用刃口强度较高的凹模,如图3-4所示的刃口形式。凹模的外形尺寸,由文献3,式4-7,式4-8计算:Hkb=0.3999=38.61mm,取H40mm,C=1-1.5H=40-60mm,尺寸标注如下图所示:图3-4 凹模零件图本模具为复合冲压模,凸模是本复合模中的关键零件。弯曲凸模通过过盈配合固定在凸模固定板上。由于变曲件圆角半径较小,所以凸模圆角半径取与弯曲件圆角半径相同,大于凸模最小圆角半径,符合生产实际要求。凸模宽度取比零件宽度尺寸稍大,为41.3mm,加上固定板厚度,所以凸模总高度取为59.3。凸模的材料选用与凹模材料相同,为Cr12MoV,工作部分热处理淬硬58 HRC 62HRC。3.7.模具总体设计及主要零部件设计3.7.1.模具总休装配设计该复合模将凹模安装在下模,凸模固定在固定板里,安装在下模上,为典型的倒装结构。定位板与凹模之间的槽控制钢条的送进导向,定位板的另一端控制送料的进距。卸料采用弹性卸料装置,弹性卸料装置由卸料块和弹簧组成。冲制的工件在最后的弯曲后在下模,可以用吸石取出,此设计属于无废料冲压。滑块带动上模回升时,卸料装置将卡在凸凹模里的产品卸下,人工将产品吸出,继续往前送料,这样,一个冲次就已经完成。1-下模座;2-内六角螺钉;3-圆柱销;4-内六角螺钉;5-下垫板;6-凸模固定板;7-弯曲凸模;8-落料凹模;9-定位板;10-凸凹模;11-卸料板;12-上垫板;13-上模板;14-内六角螺钉;15-圆柱销;16-弹簧;17-模柄;18-内六角螺钉;19-圆柱销;20-内六角螺钉;21-圆柱销;图3-6复合模装配图3.7.2.模柄设计模柄的作用是固定上模座于压力机滑块上时使模具的压力中心与压力机的压力中心保证一致。模柄的长度不得大于压力机滑块里模柄孔的深度,模柄直径应与模柄孔一致。本模具选用凸缘模柄,由镙钉将模柄与上模座连在一起。根据所选择的冲床为J23-40,由文献2,表1.4-22得,模柄孔尺寸为5070,由文献2,表5.2-26得:选用通用模柄40mm,在与机床配合时,模柄外面可以加上模柄套。则模柄A4060 JB/T 7646.6-1994,材料为45,技术条件按JB/T 7653-1994的规定。3.7.3.模架设计本复合模选用中等精度,中、小尺寸冲压件的后侧狭长型导柱模架、两导柱和导套分别装在上、下模座后侧,凹模面积是导套前的有效区域。送料及操作方便,纵向,横向送料。主要适用于一般精度要求的冲模,不宜用于大型模具,再根据凹模设计的结果,由文献2,表5.1-3得,选用5#狭长型后侧导柱模架270175179209 I GB/T 2851.3,技术条件按JB/T8050-1990的规定。所以:上模座:LBH=270mm175mm30mm下模座:LBH=270mm175mm40mm导 柱:dL=28mm160mm导 套:dLD=28mm100mm55mm3.7.4.垫板设计垫板的作用是直接承受和扩散凸模传来的冲压力,以减小上模板所承受的单位压力,保护凸模顶端面的上模板面不被凸模顶端压陷。垫板用45钢制造,淬火硬度为HRC4348,上下面须磨平,保证平行。本模具中,上垫板同时还起到固定凸凹模的作用,所以厚度取:25mm,长、宽尺寸相对凹模尺寸,可以适当取小,本设计中去18010025。下垫板厚度取:10mm,长、宽尺寸取与凹模长、宽一样。3.7.5.模具的闭合高度模具闭合高度是指冲床运行到最下点时模具工作状态的高度。故模具闭合高度为HHs+Hb+Hg+Ha+Hj+Hf+Hn=193mm (3-11)其中H模具闭合高度,mmHs上模板厚度,mmHb-上垫板厚度,mmHg凸模固定板厚度,mmHa凹模厚度,mmHj冲压件厚度,mmHf卸料板厚度,mmHn下模板厚度,mm3.8.冲压设备的选择3.8.1.公称压力的选择选择压力机时,要根据模具结构来确定,当施力行程较大时(50%60%)即冲压时工艺力的总和不能大于压力机公称压力的50%60%。校正弯曲时,更要使额定压力有足够的富余,一般压力机的公称压力要大于校正弯曲力的1.11.3倍。在此取了1.3倍,即公称压力P=1.312.21=15.873KN (3-12)初选压力机的公称压力为400KN,即J23-40型开式可倾压力机。3.8.2.行程次数选择用于弯曲的压力机的行程次数主要考虑以下因素:1.考虑操作方式(进、出料速度的快慢);2.弯曲时,金属变形需要过程限制了行程次数增加;3.该件为大批量生产,要以较大的行程次数来提高生产效率。J23-40型压力机的行程次数有45次/min和90次/min等,依据上述因素综合分析,选择了45次/min。3.8.3.滑块行程(S)滑块行程是指滑块的最大运动距离,即曲柄旋转一周,上死点至下死点的距离。其值为曲柄半径的两倍:S=2R。选择用于弯曲的压力机的滑块行程主要考虑以下因素:1.要保证毛坯放进和工件取出,应使滑块行程大于工件高度的两倍以上,。2.该件为大批量生产,需要以限制行程来增加行程次数,提高生产效率。J23-40型压力机的滑块行程为80mm,大于工件高度的两倍,满足连接板弯曲时的冲压行程。3.8.4.模具闭合高度压力机的闭合高度是指滑块在下死点时,滑块底面到工作台上平面之间的距离。 压力机的闭合高度可以通过调整连杆长度来改变其大小,将连杆调至最短时,闭合高度最大,称最大闭合高度;将连杆调至最长时,闭合高度最小,称最小闭合高度。J23-40型压力机的最大闭合高度为300mm,连杆调节量为65mm,故最小闭合高度为235mm; 当压力机工作台面上有垫板时,用压力机的闭合高度减去垫板厚度,就是压力机的装模高度,没有垫板的压力机,其装模高度与闭合高度相等; 模具的闭合高度是指压力机滑块在下止点位置时,模具上模座上平面至下模座下平面之间的距离。它与压力机的配合应该遵守下列关系 如果压力机上不设置垫板,本例所设计的模具闭合高度H在275325 mm之间,加上垫板,模具闭合高度H就减小。式中3.8.5.工作台面尺寸压力机工作台尺寸应大于下模周界5070mm。J23-40型的压力工作台尺寸(前后左右)为460mm700mm。那么,设计时模具的下模座(宽长)不要超过460mm700mm。3.8.6.模柄孔尺寸,那么,设计时模具的模柄尺寸要与模柄孔匹配。综上所述,选用开式双柱可倾压力机J23-40符合本模具设计,其具体各参数如下所示:公称压力:400KN 滑块行程:100mm 最大闭合高度:300mm 连杆调节量:65mm 工作台尺寸(前后左右):460700 模柄孔尺寸(直径mm深度mm):5070倾斜角度:3.9.模具的装配根椐复合模装配要点,选凹模作为装配基准件,先装下模,再装上模,并调整间隙、试冲、返修。序号工序工艺说明凸、凹模预配装配前仔细检查各凸模开关及尺寸以及凹模形孔,是否符合图纸要求尺寸精度、形状。将各凸模分别与相应的凹模孔相配,检查其间隙是否加工均匀。不合适者应重新修磨或更换凸模装配以凹模孔定位,将各凸模分别压入凸模固定板的形孔中,并挤紧牢固装配下模在上模座上划中心线,按中心预装凹模、固定板;在下模座、导料板上,用已加工好的固定板分别确定其螺孔位置,并分别钻孔,攻丝;将下模座、导料板、凹模、活动导销销、树脂装在一起,并用螺钉紧固,打入销钉装配上模在已装好的下模上放等高垫铁,再在凹模中放入 0.3mm的纸片,然后将凸模与固定板组合装入凹模;预装上模座,划出与凸模固定板相应螺孔、销孔位置并钻铰螺孔、销孔;用螺钉将固定板组合、垫板、上模座连接在一起,但不要拧紧;将卸料板装在已装入固定板的凸模上,装上橡胶 和卸料螺钉,并调节橡胶的预压量,使卸料板高出凸模下端约1mm;复查凸、凹模间隙并调整合适后,紧固螺钉;安装导料板、卸料板;切纸检查,合适后打入销钉试冲与调整装机试冲根椐试冲结果作相应调整3.10.本章小结本章分析了加工该卡簧冲压工序的安排,计算与模具结构的设计,根据零件的特点以及厂里的要求,设计计算并确定模具各零件尺寸,完成了模具总体设计,绘制出模具装配图。本章重点与难点是工艺方案,模具结构的确定以及凸模,凹模尺寸的计算,因为它将直接影响零件的质量和模具的合理性。结 论模具生产技术水平的高低,已成为衡量一个国家产品制造水平高低的重要标志,因为模具在很大程度上决定着产品的质量、效益和新产品的开发能力。经国务院批准,从1997年到2000年,对80多家国有专业模具厂实行增值税返还70%的优惠政策,以扶植模具工业的发展。所有这些,都充分体现了国务院和国家有关部门对发展模具工业的重视和支持。本设计就是本着这个思想对产品模具进行分析设计,力求设计出技术水平高、经济效益好的模具,同时也围绕着对新产品开发、新产品投入生产这个理念展开设计。卡簧零件形状较为简单,所以加工工艺也不复杂。通过对零件图的综合分析与实习单位的实际生产要求,设计出了最可行的加工方案。零件从坯料到完全成形,本设计共用到了一套模具,即:落料,弯曲等多工序的复合模。本模具有生产率高、精度高的特点,加工过程又不会影响制品尺寸,且下料部分与冲孔部分的毛头方向相同,这非常符合实习公司的实际生产要求,对单位能保持全国模具行业的领先地位也有一定的促进作用。整套模具的设计过程中使用了先进的CAD/CAM技术进行辅助设计,在保证模具高精度的同时简化了传统的繁琐计算过程,使得设计更为便捷。由此可以看到,在大型级进模、高精密、高复杂性、高技术含量先进模具的设计中,使用先进的CAD/CAE/CAM技术进行辅助设计会是一条必经之路。设计心得通过本次毕业设计,在理论知识的指导下,结合认识实习和生产实习中所获得的实践经验,在老师和同学的帮助下,认真独立地完成了本次毕业设计。在本次设计的过程中,通过自己实际的操作计算,我对以前所学过的专业知识有了更进一步、更深刻的认识,能够把自己所学的知识比较系统的联系起来。同时也认识到了自己的不足之处。到此时才深刻体会到,以前所学的专业知识还是有用的,而且都是模具设计与制造最基础、最根本的知识。本次毕业设计历时一个月左右,从最初的领会毕业设计的要求,到对拿到自己手上的冲压件的冲压性能的分析计算,诸如对冲压件结构的分析,对形状的分析等,不断地分析计算,对要进行设计的冲压件有了一个比较全面深刻的认识,并在此基础上综合考虑生产中的各种实际因素,最后确定本次毕业设计的工艺方案。然后是对排样方式的计算,直到模具总装配图的绘制,用时近一个月。在这段时间里,我进行了大量的计算:从材料利用率的计算,到工序压力的计算,再工作部分刃口尺寸及公差的计算,到各种零件结构尺寸的计算以及主要零部件强度刚度的核算。其间在图书馆翻阅了许多相关书籍和各种设计资料。因此从某种意义上讲,通过本次毕业设计的训练,也培养和锻炼了一种自己查阅资料,获取有价值信息的能力。总之,通过本次毕业设计的锻炼,使我对模具设计与模具制造的整个过程都有了比较深刻的认识和全面的掌握。使我接受了一个模具专业的毕业生应该有的锻炼和考查。我很感谢学校和各位老师给我这次锻炼机会。我是认认真真的做完这次毕业设计的,也应该认认真真的完成我大学三年里最后也是最重要的一次设计。但是由于水平有限,错误和不足之处再所难免,恳请各位指导老师批评指正,不胜感激。致 谢首先感谢学校及学院各位领导的悉心关怀和耐心指导,特别要感谢指导老师给我的指导,在设计和说明书的写作以及实物制作过程中,我始终得到他的悉心教导和认真指点,使得我的理论知识和动手操作能力都有了很大的提高与进步,对模具设计与制造的整个工艺流程也有了一个基本的掌握。在他身上,时刻体现着作为科研工作者所特有的严谨求实的教学风范,勇于探索的工作态度和求同思变、不断创新的治学理念。他不知疲倦的敬业精神和精益求精的治学要求,端正了我的学习态度,使我受益匪浅。另外,还要感谢和我同组的其他同学,他们在寻找资料,解答疑惑,实验操作、论文修改等方面,都给了我很大的帮助和借鉴。最后,感谢所有给予我关心和支持的老师和同学使我能如期完成这次毕业设计。谢谢各位老师和同学!感谢学校对我这两年的培养和教导,感谢学院各位领导各位老师三年如一日的谆谆教导!参考文献1 卢险峰模具学导论M北京:化学工业出版社,2007.72 肖祥苫,王孝培中国工程模具大典第4卷冲压模具设计M北京:电子工业出版社,2007.33 吴伯杰冲压工艺与模具M北京:电子工业出版4 王芳冷冲压模具设计指导M北京:机械工业出版社5 二代龙震工作室冲压模具设计基础(二版)M北京:电子工业出版社6 陈锦昌计算机工程制图M广州:华南理工大学出版社7 李柱互换性与测量技术M北京: 高等教育出版社8 周四新Pro/ENGINEER Wildfire 2.0 实例教程M北京:机械工业出版社2005.79 肖祥芷冲压模具设计M北京:电子工业出版社,2007.310 朱光力主编. 模具设计与制造实训.第1版. 北京:高等教育出版社. 2002. 13415611 吴诗 主编. 冲压工艺及模具设计 . 第1版. 西安:西北工业大学出版社. 2001. 404512 温松明主编. 互换性与测量技术基础. 第2版. 长沙:湖南大学出版社. 1998. 4513.冯炳尧 韩泰荣 殷振海 蒋文森编. 模具设计与制造简明手册. 第1版.上海:上海科学技术出版社. 1985. 1 8014.刘朝儒 彭福荫 高政一主编. 机械制图. 第3版. 北京:高等教育出版社.200115.施平主编. 机械工程专业英语. 第5版.哈尔滨:哈尔滨工业大学.2003 .34434516.张代东主编. 机械工程材料应用基础. 第1版.北京:机械工业出版社.2001.8510317.王卫卫主编. 材料成型设备. 第1版.北京:机械工业出版.2004. 474818.傅建军主编. 模具制造工艺. 第1版.北京:机械工业出版社.2005. 242519.王新华主编. 冲模设计与制造实用计算手册. 北京:机械工业出版社.2004年8月第1版. 2 1520.王新华 袁联富主编.冲模结构图册. 第1版. 北京:机械工业出版社. 2003. Int J Adv Manuf Technol (2002) 19:253259 2002 Springer-Verlag London LimitedAn Analysis of Draw-Wall Wrinkling in a Stamping Die DesignF.-K. Chen and Y.-C. LiaoDepartment of Mechanical Engineering, National Taiwan University, Taipei, TaiwanWrinkling that occurs in the stamping of tapered square cupsand stepped rectangular cups is investigated. A commoncharacteristic of these two types of wrinkling is that thewrinkles are found at the draw wall that is relatively unsup-ported. In the stamping of a tapered square cup, the effect ofprocess parameters, such as the die gap and blank-holderforce, on the occurrence of wrinkling is examined using finite-element simulations. The simulation results show that the largerthe die gap, the more severe is the wrinkling, and suchwrinkling cannot be suppressed by increasing the blank-holderforce. In the analysis of wrinkling that occurred in the stampingof a stepped rectangular cup, an actual production part thathas a similar type of geometry was examined. The wrinklesfound at the draw wall are attributed to the unbalancedstretching of the sheet metal between the punch head and thestep edge. An optimum die design for the purpose of eliminatingthe wrinkles is determined using finite-element analysis. Thegood agreement between the simulation results and thoseobserved in the wrinkle-free production part validates theaccuracy of the finite-element analysis, and demonstrates theadvantage of using finite-element analysis for stamping diedesign.Keywords: Draw-wall wrinkle; Stamping die; Stepped rec-tangular cup; Tapered square cups1.IntroductionWrinkling is one of the major defects that occur in the sheetmetal forming process. For both functional and visual reasons,wrinkles are usually not acceptable in a finished part. Thereare three types of wrinkle which frequently occur in the sheetmetal forming process: flange wrinkling, wall wrinkling, andelastic buckling of the undeformed area owing to residualelastic compressive stresses. In the forming operation of stamp-ing a complex shape, draw-wall wrinkling means the occurrenceCorrespondence and offprint requests to: Professor F.-K. Chen, Depart-ment of Mechanical Engineering, National Taiwan University, No. 1Roosevelt Road, Sec. 4, Taipei, Taiwan 10617. E-mail: fkchen?.twof wrinkles in the die cavity. Since the sheet metal in the wallarea is relatively unsupported by the tool, the elimination ofwall wrinkles is more difficult than the suppression of flangewrinkles. It is well known that additional stretching of thematerial in the unsupported wall area may prevent wrinkling,and this can be achieved in practice by increasing the blank-holder force; but the application of excessive tensile stressesleads to failure by tearing. Hence, the blank-holder force mustlie within a narrow range, above that necessary to suppresswrinkles on the one hand, and below that which producesfracture on the other. This narrow range of blank-holder forceis difficult to determine. For wrinkles occurring in the centralarea of a stamped part with a complex shape, a workablerange of blank-holder force does not even exist.In order to examine the mechanics of the formation ofwrinkles, Yoshida et al. 1 developed a test in which a thinplate was non-uniformly stretched along one of its diagonals.They also proposed an approximate theoretical model in whichthe onset of wrinkling is due to elastic buckling resulting fromthe compressive lateral stresses developed in the non-uniformstress field. Yu et al. 2,3 investigated the wrinkling problemboth experimentally and analytically. They found that wrinklingcould occur having two circumferential waves according totheir theoretical analysis, whereas the experimental results indi-cated four to six wrinkles. Narayanasamy and Sowerby 4examined the wrinkling of sheet metal when drawing it througha conical die using flat-bottomed and hemispherical-endedpunches. They also attempted to rank the properties thatappeared to suppress wrinkling.These efforts are focused on the wrinkling problems associa-ted with the forming operations of simple shapes only, suchas a circular cup. In the early 1990s, the successful applicationof the 3D dynamic/explicit finite-element method to the sheet-metal forming process made it possible to analyse the wrinklingproblem involved in stamping complex shapes. In the presentstudy, the 3D finite-element method was employed to analysethe effects of the process parameters on the metal flow causingwrinkles at the draw wall in the stamping of a tapered squarecup, and of a stepped rectangular part.A tapered square cup, as shown in Fig. 1(a), has an inclineddraw wall on each side of the cup, similar to that existing ina conical cup. During the stamping process, the sheet metalon the draw wall is relatively unsupported, and is therefore254F.-K. Chen and Y.-C. LiaoFig. 1. Sketches of (a) a tapered square cup and (b) a steppedrectangular ne to wrinkling. In the present study, the effect of variousprocess parameters on the wrinkling was investigated. In thecase of a stepped rectangular part, as shown in Fig. 1(b),another type of wrinkling is observed. In order to estimate theeffectiveness of the analysis, an actual production part withstepped geometry was examined in the present study. Thecause of the wrinkling was determined using finite-elementanalysis, and an optimum die design was proposed to eliminatethe wrinkles. The die design obtained from finite-element analy-sis was validated by observations on an actual production part.2.Finite-Element ModelThe tooling geometry, including the punch, die and blank-holder,weredesignedusingtheCADprogramPRO/ENGINEER. Both the 3-node and 4-node shell elements wereadopted to generate the mesh systems for the above toolingusing the same CAD program. For the finite-element simul-ation, the tooling is considered to be rigid, and the correspond-ing meshes are used only to define the tooling geometry andFig. 2. Finite-element mesh.are not for stress analysis. The same CAD program using 4-node shell elements was employed to construct the meshsystem for the sheet blank. Figure 2 shows the mesh systemfor the complete set of tooling and the sheet-blank used in thestamping of a tapered square cup. Owing to the symmetricconditions, only a quarter of the square cup is analysed. Inthe simulation, the sheet blank is put on the blank-holder andthe die is moved down to clamp the sheet blank against theblank-holder. The punch is then moved up to draw the sheetmetal into the die cavity.In order to perform an accurate finite-element analysis, theactual stressstrain relationship of the sheet metal is requiredas part of the input data. In the present study, sheet metalwith deep-drawing quality is used in the simulations. A tensiletest has been conducted for the specimens cut along planescoinciding with the rolling direction (0) and at angles of 45and 90 to the rolling direction. The average flow stress ?,calculated from the equation ? ? (?0? 2?45? ?90)/4, for eachmeasured true strain, as shown in Fig. 3, is used for thesimulations for the stampings of the tapered square cup andalso for the stepped rectangular cup.All the simulations performed in the present study were runon an SGI Indigo 2 workstation using the finite-element pro-gram PAMFSTAMP. To complete the set of input data requiredFig. 3. The stressstrain relationship for the sheet metal.Draw-Wall Wrinkling in a Stamping Die Design255for the simulations, the punch speed is set to 10 m s?1and acoefficient of Coulomb friction equal to 0.1 is assumed.3.Wrinkling in a Tapered Square CupA sketch indicating some relevant dimensions of the taperedsquare cup is shown in Fig. 1(a). As seen in Fig. 1(a), thelength of each side of the square punch head (2Wp), the diecavity opening (2Wd), and the drawing height (H) are con-sidered as the crucial dimensions that affect the wrinkling.Half of the difference between the dimensions of the die cavityopening and the punch head is termed the die gap (G) in thepresent study, i.e. G ? Wd? Wp. The extent of the relativelyunsupported sheet metal at the draw wall is presumably dueto the die gap, and the wrinkles are supposed to be suppressedby increasing the blank-holder force. The effects of both thedie gap and the blank-holder force in relation to the occurrenceof wrinkling in the stamping of a tapered square cup areinvestigated in the following sections.3.1Effect of Die GapIn order to examine the effect of die gap on the wrinkling,the stamping of a tapered square cup with three different diegaps of 20 mm, 30 mm, and 50 mm was simulated. In eachsimulation, the die cavity opening is fixed at 200 mm, and thecup is drawn to the same height of 100 mm. The sheet metalused in all three simulations is a 380 mm ? 380 mm squaresheet with thickness of 0.7 mm, the stressstrain curve for thematerial is shown in Fig. 3.The simulation results show that wrinkling occurred in allthree tapered square cups, and the simulated shape of thedrawn cup for a die gap of 50 mm is shown in Fig. 4. It isseen in Fig. 4 that the wrinkling is distributed on the drawwall and is particularly obvious at the corner between adjacentwalls. It is suggested that the wrinkling is due to the largeunsupported area at the draw wall during the stamping process,also, the side length of the punch head and the die cavityFig. 4. Wrinkling in a tapered square cup (G ? 50 mm).opening are different owing to the die gap. The sheet metalstretched between the punch head and the die cavity shoulderbecomes unstable owing to the presence of compressive trans-verse stresses. The unconstrained stretching of the sheet metalunder compression seems to be the main cause for the wrink-ling at the draw wall. In order to compare the results for thethree different die gaps, the ratio ? of the two principal strainsis introduced, ? being ?min/?max, where ?maxand ?minare themajor and the minor principal strains, respectively. Hosfordand Caddell 5 have shown that if the absolute value of ? isgreater than a critical value, wrinkling is supposed to occur,and the larger the absolute value of ?, the greater is thepossibility of wrinkling.The ? values along the cross-section MN at the samedrawing height for the three simulated shapes with differentdie gaps, as marked in Fig. 4, are plotted in Fig. 5. It is notedfrom Fig. 5 that severe wrinkles are located close to the cornerand fewer wrinkles occur in the middle of the draw wall forall three different die gaps. It is also noted that the bigger thedie gap, the larger is the absolute value of ?. Consequently,increasing the die gap will increase the possibility of wrinklingoccurring at the draw wall of the tapered square cup.3.2Effect of the Blank-Holder ForceIt is well known that increasing the blank-holder force canhelp to eliminate wrinkling in the stamping process. In orderto study the effectiveness of increased blank-holder force, thestamping of a tapered square cup with die gap of 50 mm,which is associated with severe wrinkling as stated above, wassimulated with different values of blank-holder force. Theblank-holder force was increased from 100 kN to 600 kN,which yielded a blank-holder pressure of 0.33 MPa and 1.98MPa, respectively. The remaining simulation conditions aremaintained the same as those specified in the previous section.An intermediate blank-holder force of 300 kN was also usedin the simulation.The simulation results show that an increase in the blank-holder force does not help to eliminate the wrinkling thatoccurs at the draw wall. The ? values along the cross-sectionFig. 5. ?-value along the cross-section MN for different die gaps.256F.-K. Chen and Y.-C. LiaoMN, as marked in Fig. 4, are compared with one another forthe stamping processes with blank-holder force of 100 kN and600 kN. The simulation results indicate that the ? values alongthe cross-section MN are almost identical in both cases. Inorder to examine the difference of the wrinkle shape for thetwo different blank-holder forces, five cross-sections of thedraw wall at different heights from the bottom to the line MN, as marked in Fig. 4, are plotted in Fig. 6 for both cases.It is noted from Fig. 6 that the waviness of the cross-sectionsfor both cases is similar. This indicates that the blank-holderforce does not affect the occurrence of wrinkling in the stamp-ing of a tapered square cup, because the formation of wrinklesis mainly due to the large unsupported area at the draw wallwhere large compressive transverse stresses exist. The blank-holder force has no influence on the instability mode of thematerial between the punch head and the die cavity shoulder.4.Stepped Rectangular CupIn the stamping of a stepped rectangular cup, wrinkling occursat the draw wall even though the die gaps are not so significant.Figure 1(b) shows a sketch of a punch shape used for stampinga stepped rectangular cup in which the draw wall C is followedby a step DE. An actual production part that has this typeof geometry was examined in the present study. The materialused for this production part was 0.7 mm thick, and the stressstrain relation obtained from tensile tests is shown in Fig. 3.The procedure in the press shop for the production of thisstamping part consists of deep drawing followed by trimming.In the deep drawing process, no draw bead is employed onthe die surface to facilitate the metal flow. However, owingto the small punch corner radius and complex geometry, asplit occurred at the top edge of the punch and wrinkles werefound to occur at the draw wall of the actual production part,as shown in Fig. 7. It is seen from Fig. 7 that wrinkles aredistributed on the draw wall, but are more severe at the corneredges of the step, as marked by AD and BE in Fig. 1(b).The metal is torn apart along the whole top edge of the punch,as shown in Fig. 7, to form a split.In order to provide a further understanding of the defor-mation of the sheet-blank during the stamping process, a finite-element analysis was conducted. The finite-element simulationwas first performed for the original design. The simulatedshape of the part is shown from Fig. 8. It is noted from Fig.8 that the mesh at the top edge of the part is stretchedFig. 6. Cross-section lines at different heights of the draw wall fordifferent blank-holder forces. (a) 100 kN. (b) 600 kN.Fig. 7. Split and wrinkles in the production part.Fig. 8. Simulated shape for the production part with split and wrinkles.significantly, and that wrinkles are distributed at the draw wall,similar to those observed in the actual part.The small punch radius, such as the radius along the edgeAB, and the radius of the punch corner A, as marked in Fig.1(b), are considered to be the major reasons for the wallbreakage. However, according to the results of the finite-element analysis, splitting can be avoided by increasing theabove-mentioned radii. This concept was validated by theactual production part manufactured with larger corner radii.Several attempts were also made to eliminate the wrinkling.First, the blank-holder force was increased to twice the originalvalue. However, just as for the results obtained in the previoussection for the drawing of tapered square cup, the effect ofblank-holder force on the elimination of wrinkling was notfound to be significant. The same results are also obtained byincreasing the friction or increasing the blank size. We concludethat this kind of wrinkling cannot be suppressed by increasingthe stretching force.Since wrinkles are formed because of excessive metal flowin certain regions, where the sheet is subjected to large com-pressive stresses, a straightforward method of eliminating thewrinkles is to add drawbars in the wrinkled area to absorb theredundant material. The drawbars should be added parallel tothe direction of the wrinkles so that the redundant metal canbe absorbed effectively. Based on this concept, two drawbarsare added to the adjacent walls, as shown in Fig. 9, to absorbthe excessive material. The simulation results show that theDraw-Wall Wrinkling in a Stamping Die Design257Fig. 9. Drawbars added to the draw walls.wrinkles at the corner of the step are absorbed by the drawbarsas expected, however some wrinkles still appear at the remain-ing wall. This indicates the need to put more drawbars at thedraw wall to absorb all the excess material. This is, however,not permissible from considerations of the part design.One of the advantages of using finite-element analysis forthe stamping process is that the deformed shape of the sheetblank can be monitored throughout the stamping process, whichis not possible in the actual production process. A close lookat the metal flow during the stamping process reveals that thesheet blank is first drawn into the die cavity by the punchhead and the wrinkles are not formed until the sheet blanktouches the step edge DE marked in Fig. 1(b). The wrinkledshape is shown in Fig. 10. This provides valuable informationfor a possible modification of die design.An initial surmise for the cause of the occurrence of wrink-ling is the uneven stretch of the sheet metal between the punchcorner radius A and the step corner radius D, as indicated inFig. 1(b). Therefore a modification of die design was carriedout in which the step corner was cut off, as shown in Fig.11, so that the stretch condition is changed favourably, whichallows more stretch to be applied by increasing the step edges.However, wrinkles were still found at the draw wall of thecup. This result implies that wrinkles are introduced becauseof the uneven stretch between the whole punch head edge andthe whole step edge, not merely between the punch corner andFig. 10. Wrinkle formed when the sheet blank touches the steppededge.Fig. 11. Cut-off of the stepped corner.the step corner. In order to verify this idea, two modificationsof the die design were suggested: one is to cut the whole stepoff, and the other is to add one more drawing operation, thatis, to draw the desired shape using two drawing operations.The simulated shape for the former method is shown in Fig.12. Since the lower step is cut off, the drawing process isquite similar to that of a rectangular cup drawing, as shown inFig. 12. It is seen in Fig. 12 that the wrinkles were eliminated.In the two-operation drawing process, the sheet blank wasfirst drawn to the deeper step, as shown in Fig. 13(a). Sub-sequently, the lower step was formed in the second drawingoperation, and the desired shape was then obtained, as shownin Fig. 13(b). It is seen clearly in Fig. 13(b) that the steppedrectangular cup can be manufactured without wrinkling, by atwo-operation drawing process. It should also be noted that inthe two-operation drawing process, if an opposite sequence isapplied, that is, the lower step is formed first and is followedby the drawing of the deeper step, the edge of the deeper step,as shown by AB in Fig. 1(b), is prone to tearing because themetal cannot easily flow over the lower step into the die cavity.The finite-element simulations have indicated that the diedesign for stamping the desired stepped rectangular cup usingone single draw operation is barely achieved. However, themanufacturing cost is expected to be much higher for the two-operation drawing process owing to the additional die cost andoperation cost. In order to maintain a lower manufacturingcost, the part design engineer made suitable shape changes,and modified the die design according to the finite-elementFig. 12. Simulated shape for the modified die design.258F.-K. Chen and Y.-C. LiaoFig. 13. (a) First operation and (b) second operation in the two-operation drawing process.simulation result to cut off the lower step, as shown in Fig.12. With the modified di
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。