任务书.doc

专用转塔车床回转盘部件设计

收藏

压缩包内文档预览:
预览图 预览图 预览图
编号:122565956    类型:共享资源    大小:2.28MB    格式:ZIP    上传时间:2021-04-20 上传人:221589****qq.com IP属地:湖南
40
积分
关 键 词:
专用 车床 回转 部件 设计
资源描述:
专用转塔车床回转盘部件设计,专用,车床,回转,部件,设计
内容简介:
分 类 号 密 级 宁设计专用转塔车床回转盘部件设计所在学院专 业班 级姓 名学 号指导老师 年 月 日诚 信 承 诺我谨在此承诺:本人所写的毕业论文专用转塔车床回转盘部件设计均系本人独立完成,没有抄袭行为,凡涉及其他作者的观点和材料,均作了注释,若有不实,后果由本人承担。 承诺人(签名): 年 月 日摘 要科学技术和社会生产力的迅速发展,对机械产品的质量和生产率提出了越来越高的要求。机械加工工艺过程的自动化成为实现上述要求的最重要的措施之一。它不仅能够提高产品的质量、提高生产率、降低生产成本,还能够极大地改善生产者的劳动条件。而数控转塔刀架回转盘就是为了解决生产上的效率问题,如何设计合理快捷高效的回转盘机构是本文的重点研究问题,本文针对回转盘机构进行了一番合理的探索和研究。关键词:车床,刀架设计,转塔刀架,回转盘25AbstractScience and technology and the rapid development of social productivity, the productivity and the quality of mechanical products put forward more and more requirements. Machining process to achieve the above requirements of automation has become one of the most important measures. It can not only improve the quality of products, improve productivity, reduce the production cost, but also can greatly improve the production of labor conditions. The CNC turret rotary disc is to solve production efficiency problems, how to design reasonable and efficient rotary disk mechanism is the focus of this problem, this paper according to the rotary disc mechanism for a reasonable exploration and research.Key Words: lathe, design of turret, turret, a rotary disk目 录摘 要1Abstract2目 录3第1章 绪论41.1数控车床的概念41.2国外数控机床状况分析51.3 国内数控机床状况分析71.3.1国内数控机床现状71.3.2国内数控机床的特点91.3.3经济型数控车床9第2章 课题任务和要求9第3章 回转盘部件设计103.1 插销的设计计算103.2 预定位机构与反靠机构123.3 精定位机构多齿盘的设计123.4 弹簧的设计计算193.5轴的校核21结 论23致 谢24参 考 文 献25第1章 绪论1.1数控车床的概念机床是人类进行生产劳动的重要工具,也是社会生产力发展水平的重要标志。 普通机床经历了近两百年的历史。随着电子技术、计算机技术及自动化,精密机械与测量等技术的发展与综合应用,生产了机电一体化的新型机床一一数控机床。数控机床一经使用就显示出了它独特的优越性和强大生命力,使原来不能解决的许多问题,找到了科学解决的途径。 数控机床是一种通过数字信息,控制机床按给定的运动轨迹, 进行自动加工的机电一体化的加工装备,经过半个世纪的发展,数控机床已是现代制造业的重要标志之一,在我国制造业中,数控机床的应用也越来越广泛,是一个 企业综合实力的体现。 数控车床是数字程序控制车床的简称,它集通用性好的万能型车床、加工精度高的精密型车床和加工效率高的专用型车床的特点于一身,是国内使用量最大,覆盖面 最广的一种数控机床。要学好数控车床理论和操作,就必须勤学苦练,从平面几何,三角函数,机械制图,普通车床的工艺和操作等方面打好基础。 因此,必须首先具有普通车工工艺学知识然后才能从掌握人工控制转移到数字控制方面来,另一方面,若没有学好有关数学、电工学、公差与配合及机械制造等深内容,要学好数控原 理和程序编制等,也会感到十分困难。熟悉零件工艺要求,正确处理工艺问题。由于数控机床加工的特殊性,要求数控机床加工工人既是操作者,又是程序员,同时 具备初级技术人员的某些素质,因此,操作者必须熟悉被加工零件的各项工艺(技术)要求,如加工路线,刀具及其几何参数,切削用量,尺寸及形状位置公差。只 有熟悉了各项工艺要求,并对出现的问题正确进行处理后,才能减少工作盲目性,保证整个加工工作圆满完成。1.2国外数控机床状况分析机床作为工业发展所必须之复杂生产工具,属生产资料、固定资产,其订货需求与经济发展兴衰密切相关。当前世界经济处於波浪式曲线上升时期,总体上世界机床市场需求比较旺盛。20032007年5年间,世界机床总产值连续上升,已从2003年的 367.8亿美元上升至2007年的 697.8亿美元(估计数字尚未公布),年均增幅约15%。 当今世界,工业发达国家对机床工业高度重视,竞相发展机电一体化、高精、高效、高自动化先进机床,以加速工业和国民经济的发展。长期以来,欧、美、亚在国际市场上相互展开激烈竞争,已形成一条无形战线,特别是随微电子、计算机技术的进步,数控机床在20世纪80年代以后加速发展,各方用户提出更多需求,早已成为四大国际机床展上各国机床制造商竞相展示先进技术、争夺用户、扩大市场的焦点。 数控机床出现至今的50多年,随科技、特别是微电子、计算机技术的进步而不断发展。美、德、日三国是当今世上在数控机床科研、设计、制造和使用上,技术最先进、经验最多的国家。因其社会条件不同,各有特点。 美国的特点是,政府重视机床工业,美国国防部等部门不断提出机床的发展方向、科研任务和提供充足的经费,且网罗世界人才,特别讲究“效率”和“创新”,注重基础科研。因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。由於美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。当今美国不仅生产宇航等使用的高性能数控机床,也为中小企业生产廉价实用的数控机床(如Haas、Fadal公司等)。其存在的教训是,偏重於基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,於1982年被后进的日本超过,并大量进口。从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。 德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。特别讲究“实际”与“实效”,坚持“以人为本”,师徒相传,不断提高人员素质。在发展大量大批生产自动化的基础上,於1956年研制出第一台数控机床后,一直坚持实事求是,讲求科学精神,不断稳步前进。德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对用户产品、加工工艺、机床布局结构、数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。尤其是大型、重型、精密数控机床。德国特别重视数控机床主机及配套件之先进实用,其机、电、液、气、光、刀具、测量、数控系统、各种功能部件,在质量、性能上居世界前列。如西门子公司之数控系统和Heidenhain公司之精密光栅,均为世界闻名,竞相采用。 日本政府对机床工业之发展异常重视,通过规划、法规(如“机振法”、“机电法”、“机信法”等)引导发展。在重视人才及机床元部件配套上学习德国,在质量管理及数控机床技术上学习美国,甚至青出於蓝而胜於蓝。日本也和美、德两国相似,充分发展大量大批生产自动化,继而全力发展中小批柔性生产自动化的数控机床。自1958年研制出第一台数控机床后,1978年产量(7,342台)超过美国(5,688台),至今产量、出口量一直居世界首位(2001年产量46,604台,出口27,409台,占59%)。战略上先仿后创,先生产量大而广的中档数控机床,大量出口,占去世界广大市场。在上世纪80年代开始进一步加强科研,向高性能数控机床发展。在策略上,首先通过学习美国全面质量管理(TQC),变为职工自觉群体活动,保产品质量。进而加速发展电子、计算机技术,进入世界前列,为发展机电一体化的数控机床开道。日本在发展数控机床的过程中,狠抓关键,突出发展数控系统。日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。该公司现有职工3,674人,科研人员超过600人,月产能力7,000套,销售额在世界市场上占50%,在国内约占70%,对加速日本和世界数控机床的发展起了重大促进作用。1.3 国内数控机床状况分析1.3.1国内数控机床现状2007年世界GDP增长约 5.2%,而中国独为11.4%,远高出其他国家(地区)。机床市场也呈现出空前繁荣,企业任务饱满,供不应求,甚至难以按期交货。2007年金属加工机床(金属切削和成形)产值达111.9亿美元(中国公布),比上年70亿美元增长59.8%,产值居世界第三位,仅次於日本、德国,成为机床产值超百亿美元的世界机床生产大国。2007年中国机床消费额(产值进口额出口额)达166.1亿美元(中国公布),世界机床总产值697.8亿美元之24%,比上年129.4亿美元增28.4%,连续第六年成为世界最大的机床消费国。2007年,中国的机床消费额,约为第二消费大国日本之2倍,世界老牌机床消费国美国的2.5倍,德国的3倍。 数控技术及装备是发展新兴高新技术产业和尖端工业的使能技术和最基本的装备。世界各国信息产业、生物产业、航空、航天等国防工业广泛采用数控技术,以提高制造能力和水平,提高对市场的适应能力和竞争能力。工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅大力发展自己的数控技术及其产业,而且在高精尖数控关键技术和装备方面对我国实行封锁和限制政策。因此大力发展以数控技术为核心的先进制造技术已成为我国加速经济发展、提高综合国力和国家地位的重要途径。 而在数控机床中数控车床又占主导地位。我国数控车床发展 ,始于 20世纪70年代 ,通过 30多年的发展 ,我国生产的数控车床,按中国需求的特色,形成经济型卧式数控车床(平床身卧式数控车床)、普及型数控车床 (斜床身数控卧式车床和数控立式车床)和中高档数控车床(3轴控制以上)三种形式。经济型卧式数控车床 ,普遍采用平床身结构和立轴四 工位方 刀架 ,约 占数控车床产量90%。普及型数控车床生产量不到数控车床产量的10% 。中高档数控车床 ,即车削中心和车铣复合中心 ,约占数控车床产量的 0.02%。经济型数控车床 ,价格低廉 ,售价仅10万元左右 ,不到普及型数控车床的1/3,设备费用投入较少 ,可以广泛地满足企业发展初期的需要 ,特别是受到民营经济企业的欢迎 ,仍是我国当前数控车床的主流产品。我国已有十余家企业生产规模达到年产千台以上。普及型数控车床 ,即 2轴控制的卧式数控车床 斜床身 和立式数控车床,国产产品得到了用户认可 ,基本可以满足用户需要。车削中心等3 轴控制以上的中高档数控车床 ,国内用户选购的大部分是进口产品或合资、独资企业如大连因代克斯、宁夏小巨人、杭州友佳、上海哈挺等机床有限公司生产的产品,国产机床市场占有率较低。近几年 ,虽然我国开发不少中高档数控车床新品种 ,如具有Y轴功能的车削中心 、双主轴双刀架一车削中心 、倒置顺置主轴立式车削单元 、车铣复合中心等等,但是,高级型数控车床的重点是要进一步开发市场,取得国内用户广泛认可“十五”期间国产数控机床发展很快。从技术上看,数控车床技术比较成熟,通过技术引进和合作生产、消化吸收和自主创新,我国已掌握了数控车床设计和制造技术。从产品水平上看,我国自已能自行开发设计各种中高档数控车床 , 国际上最热门的、水平最高的双主轴、双刀架 轴控制车铣复合中心 ,我国已有多家企业开发试制成功,有的已被国内用户选购和出口国外。从品种上看 ,我国生产的数控车床品种比较齐全 ,每年都有多个数控车床新品种,可供各方面用户选用。从生产规模上看 ,国产经济型数控车床已形成规模生产 ,有十余家企业生产规模达到年产千台以上。1.3.2国内数控机床的特点 (1).新产品开发有了很大突破,技术含量高的产品占据主导地位。(2).数控机床产量大幅度增长,数控化率显著提高。2001年国内数控金切机床产量已达1.8万台,比上年增长28.5%。金切机床行业产值数控化率从2000年的17.4%提高到2001年的22.7%。(3).数控机床发展的关键配套产品有了突破。近年来通过政府的支持,数控机床配套生产得到了快速发展。如北京航天机床数控系统集团公司建立了具有自主知识产权的新一代开放式数控系统平台。 1.3.3经济型数控车床经济型数控机床就是指价格低廉、操作使用方便,比较适合国内国情的,在普通机床上加装数控系统的高级自动化机床。经济型数控车床。对于保证和提高被加工零件的精度,主要依靠两方面来实现:一是系统的控制精度;二是机床本身的机械传动精度。数控车床的进给传动系统,由于必须对进给位移的位置和速度同时实现自动控制,所以,数控车床与普通卧室车床相比,应具有更好的精度,以确保机械传动系统的传动精度和工作稳定性。第2章 课题任务和要求该专用转塔车床用于加工煤电钻端盖上的三组孔和有关的外圆及端面,采用多刀、多工位的加工方法,实现自动循环。工件在一次安装内可完成三组孔的加工,并可借助于转位机构和回转盘,使工件自动变换加工位置。本课题拟完成回转盘部件设计。1、 做必要的运动学和动力学计算,并运用机械设计基础理论知识进行盘丝车床总床头箱部件设计系统分析计算及结构设计。根据设计结构完成机械系统设计装配草图。2、 根据装配草图,完成自制零件的结构设计,并进行强度、刚度的计算校核,最后完成装配图和自制零件的计算机绘图工作。第3章 回转盘部件设计3.1 插销的设计计算刀盘反靠时,刀盘与定位销受到定位槽的阻止,转速突然变为0,定位销受冲击载荷。可以用能量法近似计算插销的直径。下图给出的插销的力学模型。图4-2 插销的力学模型为反靠冲击载荷;为所引起的销子的弹性变形;II为销子伸出长度;I为销子的销孔内的长度。对直径为D的圆柱形销,有,冲击时刀盘的动能:,冲击过程中,销子获得的弹性变形能:,令,并且,即;可得:。式中:I 刀盘转动惯量; 冲击瞬间刀盘角速度;E 插销材料弹性摸量; J 插销截面惯性矩;W 插销截面抗弯摸数; 插销材料许用应力。最后可得:选取最小的定位超程角: 刀盘反靠时,角速度愈小,收冲击也愈小。根据预定定位盘槽的几何形状与尺寸,利用调整检测元件可获得很小的定位超程角,从而减小反向启动后的加速时间,明显减小。设定定位超程角与插销长度:当销子处于反靠定位状态时,即反靠销与定位分别插入各自的槽中,若此时刀盘进行反转,则在惯性力矩作用下反靠销极易沿周向滑动,使刀盘不能与反靠盘同步转动。所以应严格设定超程角。的大小应保证换向时定位销不在定位槽内。则插销尺寸应满足:反靠销长度,:定位销长度,L:反靠盘与预定位盘的间距,h:销槽与预定位槽的深度。其中I1式中各尺寸的制造公差及上下两盘装配的平行度公差可按一般精度IT8,补偿间隙,用修配可获得。3.2 预定位机构与反靠机构 预定位销中间采用弹簧,使之与销配合起来起定位作用。同时,预定位销的头部采用单斜面,由斜面作用使预定位销从槽中脱出。预定位销倾角 所以预定位盘的 槽的倾角也是,与之相配。 反靠盘上槽两边都有倾角,这是为了使反靠销能从两个方向脱出。 预定位盘和反靠盘的结构尺寸由零件图给出。3.3 精定位机构多齿盘的设计1)原理与特点:多齿盘定位由两个齿数和齿形相同的端面齿盘啮合而成。通常,一个齿盘固定不动。另一个齿盘与分度回转部件固定连接。分度时,动齿盘抬起,与定位盘脱开,然后转位,当转位至要求位置后,动齿盘与定齿盘啮合并压紧。 本设计中,我们将定齿盘在刀体外壳上之固定,而动齿盘和丝杆,刀盘装在一起,丝杆移动时,动齿盘随之脱开啮合,刀盘同时也移动,齿盘转位。到位后刀盘不再回转,往相反方向移动,从而夹紧工位。 图 4-3 多齿盘原理2)设计计算: 设计多齿盘装置的主要依据是分度工位数,定位精度,结构位置大小和工作载荷。 转化到齿盘上的工作载荷有扭矩Mn,倾覆力矩Mr,轴向离,径向力。 结构参数 、 、多齿盘的结构参数有齿形角,齿数 ,齿盘直径,模数,齿根槽宽和槽深等。、图4-4 多齿盘的结构(a)齿形角 当槽面间隙EF一定时,齿形角越小,EG越小,即定位精度夜高。但过小会削弱齿部刚性。通常=。(b)齿数Z 齿数应是分度工位数的倍数,或所有需要的工位数的最小公倍数。齿数越多,分度精度越高。但加工夜复杂。(c)齿盘直径D 齿盘直径可按扭矩Mn估算。一般D宜取大些,以提高定位精度和稳定性。(d)模数m 齿盘的模数m=D/Z,它仅起到表示齿形大小的作用,不须选取标准值。 M的常用范围为26mm.(e)齿宽按载荷大小选取,一般为825mm,B太大不利于提高分度定位精度。(f ) 齿根槽宽b 一般取b0.81mm。其他有关几何参数按以下公式计算: (4-25) (4-26)表4-1 具体参数如下表:序号名称符号确定原则或计算公式结果1齿盘外径D按扭矩Mn估算D,D应根据结构取大些,以利于提高分度定位精度。1752齿宽BB大利于提高齿盘承载能力,但不利于提高分度精度。103齿数ZZ是工位数的倍数,精度要求高时宜放大,但加工困难724模数MM=V/Z,常用26。25外径上节矩TT=716齿形角载荷小精度高时宜取小值。607理论齿高H见公式088齿根槽宽B见公式1.359齿顶角2见公式10齿顶高见公式3.3811齿顶倾角见公式 夹紧力计算夹紧力应保证在最大工作载荷下仍能保持两齿盘的紧密啮合,但过大的夹紧力会引起齿盘变形。夹紧力W可按下式计算: (4-27)式中:W 为夹紧力(N) Mn 为齿盘承受的扭矩(Nm) Mr 为齿盘承受的倾覆力矩(Nm) Fr 为齿盘承受的径向力(N) 为齿盘承受的轴向力(N),方向与W相同时,式中取“-”号,与W相反时取“+”. D 为齿盘直径(m) 为齿形角() 为摩擦角(), 一般取 S 为安全系数,一般取S=11.5图4-5 夹紧力切削力F=1000kgf,其分力,可得,所以,所以,F=1000kgf =259.2kgf, =965.8kgf倾覆力矩又,可得 , 驱动力矩安全系数S取1.3所以, 验算齿面挤压应力齿面挤压应力的验算公式: (4-28) 式中,为齿面挤压应力(Pa) 为计算齿数,0.5Z B为齿宽(m) 为齿的啮合高度 W 为夹紧力(N) S 为安全系数,去S=1.3 为许用挤压应力(Pa),齿面淬硬的取= 所以,满足要求 材料选择:齿盘的齿面要求有较高的硬度,内部有一定的韧性,要求材料的热变形较小,精密齿盘要求尺寸稳定性好,齿盘材料选用40Cr,热处理齿部D0.3700 技术要求:(a) 相邻齿矩误差和累积误差:按回转部件的分度精度要求确定,根据刀具的精度要求,相邻齿矩误差和累积误差不(b)安装基准孔轴线分度中心的位置度:精密齿盘应该在0.01mm以内。(c)安装基准端面对分度平面的平行度:精密齿盘应在0.005mm以内。()齿面接触精度:齿面接触精度不仅影响风度精度,而且影响刚性,承载能力及稳定度。齿矩误差同时影响接触最小齿数和接触齿的分布。齿形半角影响高的方向的接触率;齿向误差影响齿宽方向的接触率。齿倾误差对齿高和齿宽方向的接触率均有影响。因为接触精度能综合标志上述各项误差的影响,实践中通常作为主要精度检验项目。 推荐指标为: 齿宽接触率:接触宽度为齿宽的50%(精密齿盘为70%以上)。 齿高接触率:接触高度为啮合高度的75%以上(精密齿盘为90%以上)。 接触齿数及分布:两齿盘在任意位置啮合时的接触齿数应在85%以上(精密齿盘应在90%以上)。接触不良的齿不应比连。 ()面光洁度:精密齿盘为0.2,一般经磨齿和研齿的为0.4。但考虑到实际加工条件,本设计采用0.8,在研齿过程中,总是误差最大的齿首先接触研磨。结果使误差逐渐减小并均化。因此,研磨的齿不仅可以提高齿面光洁度,同时还可以提高精度。3.4 弹簧的设计计算(1)材料的选择:根据弹簧的工作情况,选择类型符合弹簧,选用碳素弹簧钢,强度高,性能好,适用于做的弹簧。(2)计算弹簧钢的直径: :最大工作载荷 查表得:假定绕旋比c=59, 取c=7 (曲度系数) (4-29)按强度确定弹簧丝直径:, 取d=2mm有效圈数:,G切变模量 查表得:G=80000Mpa-最大工作负载下的变形量, -最小工作负荷弹簧刚度:, (4-30)总圈数:自由高度:当时,节距:,取标准值:35压并高度:压并变形量:螺旋角:,满足的要求。(3)验算: (a)高径比:,满足要求。 (b)疲劳强度:, -弹簧材料的脉动疲劳极限,查表:当时,所以满足要求。(c)验算共振: 弹簧的自振频率为:,-强迫机械振动频率, ,此弹簧适用。3.5轴的校核图4-6 轴弯矩图电机转速n=1400r/min P=120W 设电机与连接的传动功率为0.95,则,由引起的在a处的弯矩为:由引起的在a处的弯矩为:由引起的在a处的弯矩为:所以在垂直面内a处引起的弯矩为: 在a处引起的总弯矩:查表可知:,所以轴的强度在a处满足要求,在b、c 处只受扭矩。所以该轴满足要求。结 论 刀架回转盘在数控车床中占有重要地位,回转刀架如果转位不到位或又很大误差,会使加工的工件报废。因此在设计时除了结构的合理之外,还综合考虑了精度等。(1)刀架的回转精度用步进电机控制,因此选用的步进电机的步距角是受刀架精度影响的。(2)刀架的转位有正传和反转,为了解决反转带来的侧隙误差,选用双导程,从而刀架转位的时候按就近原则转位换刀致 谢毕业设计是对我们的一次综合训练,在此过程中,不但需要我们独立设计思考,而且也需要老师和同学的关心帮助。从一开始本人就很重视毕业设计,也在此次设计中有很大的收获。此次设计将近一个学期,从无从下手到所有任务的完成,培养了我们独立进行设计的能力,查找资料、搜集材料的能力,提高了控制技术应用的能力和机械几何精度等方面的知识。在设计过程中,XX老师无私的挤出时间来细心的指导我们的毕业设计,耐心的告所我们设计中的错误。并提供电脑给我们进行毕业设计。使我能较顺利的完成毕业设计。同时感谢同组的同学们,在设计攻关时帮助我借书并一起探讨设计方案,在每次有关于毕业设计的通知或消息时,都及时的告所我。在此表示感谢。诚挚祝福她们身体健康,万事如意。同时,感谢大学期间各位教师的悉心教导。参 考 文 献1郑玉华,秦四成主编.典型机械(电)产品构造.北京:科学出版社.20032周希章,周全主编.如何正确选用电动机.北京:机械工业出版社.3余英良主编.机床数控改造设计与实例.北京:机械工业出版社.1998.4陈绍廉主编.数控机床改造技术.北京:航空工业出版社.1989.5寇尊权主编.机械设计课程设计.长春:吉林科学技术出版社.1999.6于骏一,邹青主编.机械制造技术基础.北京:机械工业出版社.2003.7王爱玲主编.现代数控机床结构于设计.北京:兵器工业出版社.2000.8张宝林主编.数控技术.北京:机械工业出版社.9徐灏主编.机械设计手册.北京:机械工业出版社.10林其骏主编.机床数控系统.北京:中国科学技术出版社.11熊光华主编.数控机床.北京:机械工业出版社.12明兴祖主编.数控机床于系统.北京:中国任命大学出版社.13高春甫主编. 电控制系统设计. 长春:吉林大学出版社. 200114James V.Valentino, Joseph Goldenberg. Introduction to Computer Numerical Control.2nded. R.R.Donnelley&Sons Company,2000.459.附表4:任务书所在学院专业班级学生姓名学号指导教师题 目专用转塔车床回转盘部件设计一、毕业设计(论文)工作内容与基本要求: 主要任务与目标:1、 翻译2篇与课程相关的最新英文文献,文献翻译要求在2000字以上;2、 查阅和整理文献并提交一篇反映课题内容的文献综述,文献综述在3000字以上;3、 独立完成专用转塔车床回转盘部件设计,提交一份开题报告。4、 按照开题报告的进度计划,独立进行结构设计所需的数据计算,结合相关课程中涉及的经验公式与经验数据,撰写论文,论文正文不少于10000字。研究途径与方法:1、 结合所学专业课程,通过查阅相关资料,温习相关制图软件,完成毕业设计;2、 与指导老师和小组同学进行传动方案和运动方案的讨论,在大体设计方向明确的情况下,正确选择确定专用转塔车床回转盘部件的设计方案。3、 做必要的运动学和动力学计算,并运用机械设计基础理论知识进行盘丝车床总床头箱部件设计系统分析计算及结构设计。根据设计结构完成机械系统设计装配草图。4、 根据装配草图,完成自制零件的结构设计,并进行强度、刚度的计算校核,最后完成装配图和自制零件的计算机绘图工作。5、 整理设计资料,完成设计计算说明书。推荐资料、参考文献:1 周志平. 标准中心孔的改进J. 机械工人(冷加工), 2003, (2): 23-24.2 徐志鹏. 一种基于运动控制卡的数控专用机床J. 微计算机信息, 2008, 24(6-1): 188-272.3 周桦林. 精镗圆锥孔专用机床进给机构的设计J. 机电工程技术, 2006, 35(8): 81-154.4 Gan Sze-Wei, Lim Han-Seok, M. Rahman et al. A fine tool servo system for global position error compensation for a miniature ultra-precision lathe J. International Journal of Machine Tools & Manufacture, 2007 (47): 1302-1310.5 Hasan Gokkaya, Muammer Nalbant. The effects of cutting tool geometry and processing parameters on the surface roughness of AISI 1030 steel J. Materials & Design, 2007, (28): 717-721.设计技术要求:该专用转塔车床用于加工煤电钻端盖上的三组孔和有关的外圆及端面,采用多刀、多工位的加工方法,实现自动循环。工件在一次安装内可完成三组孔的加工,并可借助于转位机构和回转盘,使工件自动变换加工位置。本课题拟完成回转盘部件设计。注意事项:1、 零件图需要有图框、零件尺寸标注需规范并符合制图标准;2、 要求2D图总量折合为2张A0图的量以上;3、最终稿2D图需转成PDF形式保荐并提交电子文档;5、英文翻译需注明原文出处,并附上PDF格式原文。二、毕业论文进度计划1、接受任务,熟悉内容,完成外文翻译、文献综述、开题报告;2、完成设计图样和说明书初稿;3、 修改图样、说明书,完成二稿;4、修改、检查全部资料,打印、上交资料;5、准备论文答辩。毕业设计(论文)时间:2011年 6 月 20 日至2011年 11 月 30 日计 划 答 辩 时 间: 2011 年 12 月 日三、专业(教研室)审批意见:审批人(签字):工作任务与工作量要求:原则上查阅文献资料不少于12篇,其中外文资料不少于2篇;文献综述不少于3000字;文献翻译不少于2000字;毕业论文1篇不少于8000字,理工科类论文或设计说明书不少于6000字(同时提交有关图纸和附件),外语类专业论文不少于相当6000汉字。 提交相关图纸、实验报告、调研报告、译文等其它形式的成果。毕业设计(论文)撰写规范及有关要求,请查阅宁波大红鹰学院毕业设计(论文)指导手册。备注:学生一人一题,指导教师对每一名学生下达一份毕业设计(论文)任务书。Keynote Speech W Modeling and Control of Magnetic Bearing Systems Professor Zongli Lm Senior Member, IEEE The University of Vi USA Abstract Magnetic bearings take radial loads or b s t los by utilizing a magnetic field to support the shaft rather than a m e c h a n i c a l forces as in fluid f i l m or rolling elements. The advantages of magnetic bearings include very long life, elimination of oil supply, low weight, reduction of fire hazard, vibration control and diagnostic capabfity. These advantages motivate many applications of magnetic bearings. In particular, the long l i f e , low weight, and vibration controllability nature of magnetic bearings motivate their applications in suspending energy stmage high speed flywheels. Their advantages of long life and elimination of oil supply motivate the applications of magnetic bearings in the aaificial heat pumps. The applications of magnetic bearings also pose sig&icant challenges in control design. This talk aims to to share some of our experieuce in meeting these challenges. About author: Zongli Lin w a s bom in Fuqing, Fujian, China on February 24, 1964. He received his B.S. degree in mathematics and computer science f r o m Xiamen University, Xiamen, China, in 1983, his Master of Engineering degree in automatic control f r o m Chinese Academy of Space Technology, Beijing, China, in 1989, and his Ph.D. degree in electrical and computer engineering f r o m Washington State University, Pulhnan, Washington, in May 1994. From July 1983 to July 1986, Dr. Lm worked as a control engineer at Chinese Academy of Space Technology. In January 1994, he joined the Department of Applied Mathematics and Statistics, State University of New York a t Stony Brook as a visiting assistant professor, where be became an assistant professor in September 1994. Since July 1997, he has been with the Department of Eleceical and Computer Engineering at University of Viginia, where his is currently an associate professor. His current research interests include nonlinear control, robust control, and control of magnetic bearing systems. In these areas he has published several papers. He is also the author of the b o o k Low Gain Feedback (Springer-Verlag. London, 1998) and a co-author (with Tingshu Hu) of the recent book, Control Systems with Actuator Saturation: Analysis and Design, (Birkhauser, Boston, 2001). A senior member of LEEE, Dr. Lm was an associate editor on,the Conference Editorial Board of the EEE Control Systems Society and currently serves as an Associate Editor of IEEE Transactions on Automatic Control. He is also a member of the IEEE Control Systems Societys Technical Committee. on Nonlinear Systems and Control and heads its Working Group on Control with Constraints. He is the recipient of a US Oflice of Naval Research Young Investigator Award. He was also a member of a team winner of the libbets Award f r o m the White House for their workon control of magnetic bearing systems. -17- Nonlinear control of an active magnetic bearing with bias currents:experimental studyThomas R. Grochmal and Alan F. LynchAbstractThis paper presents an experimental comparisonof position tracking controllers for a five degree-of-freedomactive magnetic bearing system. Two variations of a nonlineardesign are presented, each subject to a different actuatingconstraint: Constant Current Sum (CCS) uses bias currents andCurrent Almost Complementary (CAC) avoids bias currents.While both designs achieve accurate tracking for a non-rotatingshaft, a comparison of unbalance responses show that voltagesaturation can limit the dynamic response of the CAC-baseddesign. Performance of the nonlinear designs is also comparedto a decentralized PID controller.I. INTRODUCTIONActive Magnetic Bearings (AMBs) continue to receiveattention due to their unique characteristics. Contact freesuspension can lead to improved reliability and performanceover rolling-element bearings. AMBs provide variable stiff-ness and damping characteristics which allows for vibrationcompensation, force measurement, and precision motioncontrol 1.Linear feedback designs for AMBs have traditionallyutilized bias currents. These bias currents provide an op-erating point for the models linearization. Bias currents alsoprovide a higher dynamic force response 2. A number ofresearchers have considered zero- and low-bias controllers inan effort to minimize ohmic losses and reduce heating 3.Similar notions based on flux bias have been investigatedin 4 and 5. Time-varying, adaptive, and optimal bias ap-proaches have also been introduced to achieve a compromisebetween performance and low loss objectives 6, 7, 8.Nonlinear control techniques have been widely applied toAMBs and naturally lead to zero- and low-bias schemes9, 10, 11. In 10 L evine et al. design a nonlinearcontrol based on the flat property of the system and intro-duce the Current Almost Complementary (CAC) condition.This approach was experimentally validated for a machiningapplication in 12. Although the CAC condition can leadto low power losses, it can potentially require large inputvoltages 10. A variation of the flatness-based design usinga Constant Current Sum (CCS) bias condition is introducedin 13. This last work provides experimental validation ona five degree-of-freedom (DOF) system.This paper provides an experimental comparison betweenCAC and CCS-based nonlinear controllers. These designs areThis work was partially supported by the Natural Sciences and Engineer-ing Research Council of Canada (NSERC) under grant number 249681-02.Alan F. Lynch is with the Department of Electrical & ComputerEngineering, University of Alberta, Edmonton AB, T6G 2V4, CThomas R. Grochmal is a Ph.D. student under the supervision of A.F.Lynch.grochmalece.ualberta.cayzOFb,y,nFc,zFf,y,nFb,y,pFb,z,pFf,z,nFc,yFb,z,nxFf,z,pFf,y,pFx,pFx,nFig. 1.Shaft assembly, motor coupling, and radial bearing stators for a 5DOF AMB system.further compared to a decentralized PID controller. All threedesigns are implemented on a test stand manufactured bySKF Magnetic Bearings (Calgary, AB) that is interfaced tocontroller hardware developed at the University of Alberta.The contribution of this paper is to experimentally show thebenefits of a CCS-based nonlinear controller in providingaccurate trajectory tracking and robust stabilization underlow voltage limits.This paper is presented as follows. In Section II a dynamicmodel of the system is described. In Section III we identifythe parameters of the models magnetic force expressions.In Section IV the nonlinear feedback is formulated underthe CAC and CCS conditions. Finally, in Section V thetest bench is described, and in Section VI an experimentalcomparison of the controllers is provided.II. MODELINGThe five DOF AMB system consists of a horizontal shaftassembly coupled to a DC motor via a helical coupling.Figure 1 shows the shaft assembly and radial bearing stators.Figure 2 shows a cross section of the system. Assuming arigid shaft, the dynamic equations are 14m x = Fxm y = Fb,y+ Ff,y+ Fc,y+ mgym z = Fb,z+ Ff,z+ Fc,z+ mgzJz = (lb,a x)Fb,z+ (lf,a+ x)Ff,z Jx + lcFc,zJy = (lb,a x)Fb,y (lf,a+ x)Ff,y+ Jx lcFc,y(1)where x,y,z denote the coordinates of the center of masscmrelative to the origin O of the inertial frame. When theshaft is centered in all three bearings we have (x,y,z) = 0.The angles , denote the angular displacement of a bodyProceedings of the 2006 American Control ConferenceMinneapolis, Minnesota, USA, June 14-16, 2006FrA11.21-4244-0210-7/06/$20.00 2006 IEEE4558lb,alf,alb,slf,sW24b,yxyxaxial statorW13f,ycmOposition sensorposition sensorix,pix,nib,y,nif,y,nib,y,pif,y,nFig. 2.Cross section of Figure 1 in the x y plane. Motor coupling notshown.frame relative to the inertial frame. The angular velocityof the shaft about the x-axis is denoted by = and isassumed to be constant. The y- and z-axis components of thegravitational field are denoted by gyand gzrespectively. Theorientation of the radial bearings are such that gy= gz. Theshaft of mass m has principle moments of inertia denotedby Jx,Jy,Jz, and by the shafts symmetry Jy= Jz= J.The distances from the drive-end (subscript f) and non-drive-end (subscript b) stators to O are denoted lf,aand lb,arespectively. The motor coupling forces are denoted Fc,y/z1and are modeled as linear springsFc,y= K(y lc)Fc,z= K(z + lc)The distance from cmto the point at which Fc,y/zact is lc.The coupling spring constant is K. The axial bearing forceis denoted Fxand the drive-end and non-drive-end radialbearing forces are denoted Fb/f,y/z. Each of these forcesare the summation of positive (subscript p) and negative(subscript n) components generated by opposing coils. Theforce expressions areFx= Fx,p Fx,n=xi2x,p(x x)2xi2x,n(x+ x)2(2a)Ff/b,y/z= Ff/b,y/z,p Ff/b,y/z,n=f/b,y/zi2f/b,y/z,p( f/b,y/z)2f/b,y/zi2f/b,y/z,n( +f/b,y/z)2(2b)where (respectively x) is the nominal air gap betweenthe rotor and the radial (respectively axial) bearing stator.The bearing force constants are x,f/b,y/z, andf/b,y/zdenote the offset displacements of the shaft in the planesx = lb,aand x = lf,a(see Section III for further details onthis offset). The axial and radial bearing coils are driven bycurrents ix,p/n,if/b,y/z,p/nwhich we assume to be control1The shorthand expression Fc,y/zrefers to Fc,yand Fc,zinputs. In practice, an inner-loop current controller ensuresthe currents track their reference values sufficiently fast.III. FORCE PARAMETER IDENTIFICATIONIn this section we describe the identification of the radialbearing force parameters f/b,y/z. We also introduce mag-netic offsets f/b,y/zwhich represent the distances betweenthe center of the rotors and the center of the stators when(x,y,z,) = 0 15. When the position sensors arecalibrated the shaft is aligned to the center of the touchdownbearings and not the centers of the stators. If the touchdownbearings are not concentrically aligned to the stators, thenmagnetic offset results. See Figure 3. Mathematically, thisoffset enters asf/b,y/z= f/b,y/z+f/b,y/zwhere f/b,y/zare the displacements of the shaft in the planes x = lb,aandx = lf,a.Ob,yb,ystatorxytouchdown bearingbmagnetic centerFig. 3.Schematic of magnetic bearing system with magnetic offset.To obtain f/b,y/z,f/b,y/zwe consider the non-rotatingshaft decoupled from the motor and assume the system is inequilibrium with x, and equal to zero. Therefore model(1) becomes0 = Fx0 = Fb,y+ Ff,y+ mgy0 = Fb,z+ Ff,z+ mgy0 = lf,aFf,z lb,aFb,z0 = lb,aFb,y lf,aFf,ySolving for the equilibrium forces we obtainFb,y= Fb,z= mgy?lf,alb,a+ lf,a?= mbgy(3a)Ff,y= Ff,z= mgy?lb,alb,a+ lf,a?= mfgy(3b)where we have introduced effective masses mf/bsupportedby each radial bearing. For brevity, we present only the casefor the drive-end y-axis. From x = = = 0 we obtainf,y= y and substitute this into (2b). We impose the CCScondition where each coil is provided with a bias current anda differential current is added and subtracted to opposing4559coils. Therefore, the sum of currents from opposing coilsalways adds up to twice the bias current 1. We haveif,y,p= ib+ if,yif,y,n= ib if,ywhere ibis a constant bias and if,yis a differential current.Hence, we get the force expressionFf,y=f,y(ib+ if,y)2( f,y y)2f,y(ib if,y)2( + f,y+ y)2(4)and by combining (4) with (3b) we obtainmfgy=f,y(ib if,y)2( + f,y+ y)2f,y(ib+ if,y)2( f,y y)2Data is collected over a range of y and corresponding if,y.Defining the cost function?k(f,y,f,y) =f,y(ib if,y)2( + f,y+ y)2f,y(ib+ if,y)2( f,y y)2+ mfgywhere (ikf,y,yk),1 ? k ? N denotes the data set, we solvethe nonlinear least squares problemmin(f,y,f,y)UN?k=12kwhere U =?(x1,x2) R2: 0 x1, x2 0), both coils areenergized to prevent unbounded voltages at the zero forcepoint. For the x-axis the CAC condition isix,p=(x x)?FxxFx? (x x)?Fx+P2(Fx)x Fx 0Fx ix,n=0Fx? (x+x)xP(Fx) Fx (x+ x)?FxxFx The polynomial Pis chosen to ensure a smooth transitionat the switching instances Fx= 10.C. Constant Current Sum Condition (CCS)An alternate approach to inverting the force expressions(2a)-(2b) is to impose the CCS condition. For the axialbearing we express the force model asFx=x(ib+ ix)2(x x)2x(ib ix)2(x+ x)2(7)where ixis a differential current. Inversion of (7) gives thecontrol lawix=?x(x2+2x)ibx(x22x)Fxxx/x+i2b2xxxx ?= 0Fx2x/(4xib)x = 0(8)The expression for ixwhen x = 0 is determined by apply-ing lH opitals Rule. To ensure a non-negative discriminantin (8), it is sufficient to impose the limits4xi2b(x+ x)2 Fx4xi2b(x x)2This inequality is satisfied provided|ix| ibIn practice each coil is limited to a maximum current of Is.Setting ib= Is/2 provides the full range for ix,p/n.dSPACEmodularsystemCoil PWMamplifiers andsensor circuitryAMB test standSignalacquisitionFig. 4.Experimental setup.V. EXPERIMENTAL SETUPThe experimental setup is shown in Figure 4. The MBRo-tor Research Test Stand, available from SKF Magnetic Bear-ings, is used with the 305 mm long shaft configuration 15.The systems maximum rotational speed is 15000 rpm underno load. See Table III for bearing specifications.Specificationradial bearingaxial bearingstatic load cap.76 N205 Nsaturation current3.0 A2.8 Anominal gap525 m783 mstator ID35.1 mm38.6 mmstator OD82.8 mm71.4 mmstator length12.7 mm13.5 mmrotor OD34.3 mm66.0 mmTABLE IIIMAGNETIC BEARING SPECIFICATIONSBoth the position and current control loops are im-plemented using a modular dSPACE hardware system. AdSPACE DS1005 board performs real-time computations forcontrol at 10 kHz. Three DS2001 high-speed ADC boardssample ten coil currents and rotor displacement along fiveaxes. A DS3002 encoder board measures the rotationalvelocity of the shaft. A DS5101 board generates PWMwaveforms that drive the current control loops. The PWMswitching frequency is 10 kHz. A host PC provides a MAT-LAB/Simulink development platform and logs real-time datafrom the dSPACE system.VI. EXPERIMENTAL RESULTSA. Rotational StabilizationFigure 5 presents drive-end and non-drive-end orbitalplots of the shaft rotating at 14000 rpm. A comparison ismade between CCS-based nonlinear, CAC-based nonlinear,and PID control schemes. We remark that the unmodeledeffect of mass unbalance is significant because the shaftis manually assembled and no measures are taken to me-chanically balance it. For all controllers the feedback gainsare tuned to achieve a comparable performance over theoperating range of shaft speed. The controller gains are4561-50-40-30-20-1001020304050-50-40-30-20-1001020304050V13 mW13 mPIDCCS CAC -50-40-30-20-1001020304050-50-40-30-20-1001020304050V24 mW24 mPIDCCS CAC Fig. 5.Drive-end (left) and non-drive-end (right) orbital plot comparisonat 14000 rpm.00.0050.010.0150.00.811.21.4time scurrent ANonlinear CAC00.0050.010.0150.02-25-20-15-10-50510152025time svoltage VNonlinear CAC00.0050.010.0150.01.8time scurrent ANonlinear CCS00.0050.010.0150.02-4-20246810time svoltage VNonlinear CCS00.0050.010.0150.0200.511.522.5time scurrent APID00.0050.010.0150.02-20-15-10-50510152025time svoltage VPIDFig. 6.Non-drive-end z-axis currents ib,z,p(dashed line), ib,z,n(solidline) and voltages ub,z,p(dashed line), ub,z,n(solid line) for CAC (top),CCS (middle) and PID (bottom).given in Table IV along with the values of iband .From Figure 5 we observe the nonlinear tracking controllersprovide robust stabilization. They perform as well or betterthan PID which is often used for stabilization of high speedAMB applications 18. Figure 6 shows representative datak2s1k1s2k0s3 NCAC2501500001000000.1k2s1k1s2k0s3ibACCS3001500001000001.0kpA/mkiA s/mkdA/(m s)ibAPID800010000131.0TABLE IVFEEDBACK GAINS AND BIAS PARAMETERSfor the associated currents and voltages at 14000 rpm. Itis interesting to note that in the case of CAC, satisfactorystabilization performance may be achieved without biascurrents. This results in reduced power consumption, but theswitching action of opposingcoils requires high bandwidthinthe current controller output. Therefore, higher voltages arerequired by CAC in order to achieve the same stabilizationperformance as CCS. While the CCS achieves stability witha maximum voltage of approximately 10 V (not shown),we see that CAC coil voltages exceed 20 V. Therefore,lower voltage limits can limit the performance of zero-biasschemes. To further demonstrate the impact of low voltagelimits, Figure 7 shows the rotational performance of CACfor a voltage limit of 12 V. It is found that CAC is unableto stabilize the shaft for speeds greater than 5000 rpm. Thisresult cannot be improved by controller tuning. The tradeoffbetween biasing and maximum voltage requirements reflectsthe inductive nature of electromagnetic actuators which re-quire high voltages to achieve fast changes in current. Withvoltage limits zero-bias schemes are therefore generally lessrobust to disturbances than bias-based schemes due to currentslew rate limiting.9.81010.210.410.610.810050050100150y mtime s99.51010.500.511.522.5ib,y,p Atime s99.51010.500.511.522.5ib,y,n Atime s99.51010.515105051015ub,y,p Vtime s99.51010.515105051015ub,y,n Vtime sFig. 7.Destabilization at 5000 rpm using the CAC controller withsaturating voltage of 12 V. Top: shaft y coordinate. Middle: Non drive-end y-axis currents ib,y,p(left) and ib,y,n(right). Bottom: Correspondingvoltages ub,y,p(left) and ub,y,n(right).B. Tracking of a Non-rotating ShaftIn Figures 810 we demonstrate the tracking performanceof each controller to a time varying reference for the shaftscenter of mass. During these experiments the shaft speed is456200.00.25-100-50050100time sposition mZrefZYrefYX00.00.25-80-60-40-20020406080time sangle radFig. 8.Tracking performance of center of mass coordinates x,y,z (left)and , (right) for the CCS-based nonlinear controller.00.000.811.2time sif,y,p if,y,n A00.01.4time sif,y,p, if,y,n AFig. 9.Drive-end y-axis tracking currents for the CAC-based (left) andCCS-based (right) nonlinear controllers.zero, i.e., = 0. We use an elliptical trajectoryyr(t) = 50sin(20t) mzr(t) = 80cos(20t) mxr(t) = r(t) = r(t) = 0 mFigure 8 shows the performance of the CCS controller.Accurate tracking is observed: the tracking error of x,y,z isalways within 3 m and the angles , are stabilized towithin 45 rads. As expected, the tracking performance ofthe nonlinear controllers is unaffected by the choice of actu-ator condition, provided sufficient voltage head space exists.Figure 9 shows representative currents for each nonlineardesign. It is interesting to note that for CAC only the upperradial bearing coils need to be energized.Figure 10 shows the tracking performance for PID. De-centralized reference trajectories were generated using thetransformation (6). The performance is inadequate since theshaft overshoots its y and z coordinate trajectories and makescontact with the backup bearings. This contact accounts forthe distortion of the , signals. Varying the PID gains doesnot result in a noticeable improvement in performance.00.00.25-100-50050100time sposition mzrefzyrefyx00.00.25-80-60-40-20020406080time sangle radFig. 10.Tracking performance of center of mass coordinates x,y,z (left)and , (right) for the PID controller.VII. CONCLUSIONSThis paper presents an experimental study of nonlinearcontrol with and without bias currents. Under modest voltagelimits the nonlinear controller with bias demonstrates robuststabilization of a rotating shaft and tracks the position of anon-rotating shaft. By comparison, a zero-bias nonlinear de-sign
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:专用转塔车床回转盘部件设计
链接地址:https://www.renrendoc.com/paper/122565956.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!