轿车三轴变速器系统设计【轿车中间轴式五档变速器】
收藏
资源目录
压缩包内文档预览:(预览前20页/共32页)
编号:122571765
类型:共享资源
大小:6.78MB
格式:ZIP
上传时间:2021-04-20
上传人:221589****qq.com
认证信息
个人认证
李**(实名认证)
湖南
IP属地:湖南
40
积分
- 关 键 词:
-
轿车
变速器
系统
设计
中间
五档
- 资源描述:
-
轿车三轴变速器系统设计【轿车中间轴式五档变速器】,轿车,变速器,系统,设计,中间,五档
- 内容简介:
-
附录 A:在目前的环境和政治框架下,废气排放是制定任何动力总成控制战略的基本考虑因素。尽管如此,相对来说很少发表关于优化废气排放的工作。此外,燃油经济性不能被忽视,因为它仍将是衡量车辆效率的一个关键措施。伸耳报告称,经济线概念包括对废气排放的评价。经济路线法的主要缺陷是未能优化类似 t 的排放性能。理想操作线(IOL)入路。当对单个结果进行优化时,例如最小的油耗,就会产生真正的最优线路。如果每次投票都重复此过程说一句不同的话,每一种情况都是由于它们的形成机制不同而产生的。因此,不可能达到全球最佳线。为了解决这一难题,受管制的废气排放是 com。与燃油经济性在一个加权和,这是最小化的整个发动机的操作功率范围1-3。随着探索改善车辆性能、经济和排放的范围,车辆动力系统变得越来越复杂。经营英语可能会带来相当大的好处。INE 和传动一体化,使用单个控制器来解释驾驶员的愿望,并相应地指示发动机和传动控制器。对于这种成功至关重要系统是主要部件的基本规格,是动力总成控制策略的设计。无级变速传动(Cvt)可以提供更好的车辆传动性能。调整燃料消耗和驾驶性能4-5。迪肯等6实现了人工智能和更传统和直观的方法,以集成的柴油 CVT 动力系统和比较。现有控制器和等效手动变速器(MT)动力系统。底盘测功机的结果表明,新设计的控制器策略对汽车尾气有显著的影响。排放,而该软件的结构允许控制器的行动是高度可调和灵活的,以平衡车辆的驾驶要求与经济和排放目标。整体式传动系统控制的基本概念之一是理想工作点(IOP),它被定义为发动机的速度和负荷。每个控制器使用不同的 IOL 进行三次测试,以获得最佳的制动比燃油经济性(B 证监会)、最小氮氧化物(NOx)和最低碳氢化合物(HC)的混合线7。Carbone 等人 8 利用无级比 CVT 自动换挡,不需要摩擦离合器。带有无级变速器(IVT)的中型客车的性能被研究过。采用假设的仿真模型,对汽车油耗进行了评价,并考虑了 IVT 比转速的取值,使比油耗降至最低。我将 VT 的性能与传统的 VT 进行了比较。在 340 辆轻型车辆上收集了二次接一秒的发动机排放和尾管排放数据,并在“现有”条件下进行了测试。观测到 CO2、CO、HC 和 NOx 排放的变异性。各种驾驶模式。总结了利用引导验证方法进行初始统计分析和模型验证的方法。引导方法在模型 d 中被证明是一个很有价值的工具。本文在测量的基础上,研究了不同行驶周期对汽油中型轿车汽车排放和油耗率的影响。通过在标准底盘测功机上驾驶它。试验是在欧洲标准驾驶周期(ecc-15)的城市部分进行的,该车辆配备了综合汽油发动机。与 MT,自动变速器(AT)和 CVT 动力系统。摘要根据53已有的计算公式,给出了废气排放指数(EI)和 FCR 的估算方法及其效果。S 是通过测试验证的。采用中型轿车三菱兰瑟进行了试验研究.其最大功率为 122 马力在 4800 转/分,最大扭矩 167 纳米在 3600 转/分。原始配置车辆有 MT 动力系统。MT 由 AT 或 CVT 替代,并配以必要的固定附件。试验是在标准驾驶周期内进行的,在底盘测功机上执行。第四 e 变速箱的规格列于表 1。这辆车在新欧洲驾驶周期(NEDC)上进行了测试。这个循环是在城市周期之后立即进行的,包括 f 半稳态驾驶,加速,减速和一些空转。NEDC 由 ECE 15 和 EUDC 组成,按顺序对应于城市和公路的行驶条件。ECE 15 模拟 AveRAGE 速度为 18.9km/h,最高速度为 60 km/h。整个周期包括 4 个重复 780 秒的低速城市自行车,以获得足够的驾驶距离,如图 1 所示。图 1:欧洲驾驶周期欧洲经委会-15Fig. 1: European driving cycle ECE-15萨克森 TL-80 型底盘测功机模拟车辆车轮上施加的阻力功率。它由一个通过变速箱连接的测功机组成,驱动线路直接 c。连接到一组滚轮上,把车辆放在上面。可以调整滚子以模拟所需的驱动电阻15。因为试验是在底盘测功机上进行的对于车辆的单轴,它能够模拟车辆的道路荷载功率需求作为车速和惯性的函数。在使用驱动循环时,负载是相对的。由气动系统来驱动,该气动系统控制带有侧躺涡流制动器的轴负载到辊上,该辊在磨损测量系统上用作功率调查的信息资源。AH 根据不同的控制参数,包括车轮转速,设置控制装置对水流进行监测和改变。该试54验台配有自动过载保护装置。轮胎没有损坏。实验中使用了便携式红外气体分析仪。采用带有气体取样探头的 Homans 气体分析仪,从消声器中采集废气。气体是然后过滤和干燥,然后进入分析器。磁感应拾取换能器以公里/小时为单位测量车速。图 2 显示了实验室底盘动力的原理图。和仪器系统。为了进行排放试验,收集了稀释后的排气混合物和稀释空气的连续比例样品。气体分析仪是用来测量稀释后的废气 CO,O2,HC 和 CO2 的浓度。图 2试验装置和仪表系统示意图Fig.2: Schematic of test setup and instrumentation system对 MT、AT 和 CVT 动力系统进行了 100 km/h 的车辆试验,分别给出了实测道路功率(P)和道路扭矩(M)的响应。的功率和扭矩值增加的时间(加速模式)高达 32 秒,值 259 纳米和21 千瓦为 MT,对应值为 40 s,AT 值为 130 nm,12 kW;AT 值为 40.5 s,值为 150 Nm 。 40.5 千瓦用于无级变速器。减速模式描述了性能值的下降,MT 为 75s,AT 为 54s,CVT 为52.5s。路面扭矩对 MT 有一定的波动。图 3 至 5 展示的是测量时间(T)和距离(S),从这两个测量中分别计算加速度(A)对所考虑的传输。对于 MT,大约 18.34 秒,r 可以获得 145米的距离。瞬时速度为 105 km/h,加速度为 5.73m/s2,在 22.5 s 内可获得 360 m,瞬时速度为 4.49m/s2。对于 CVT,在 19.17 s 内可获得 100 m 的距离,瞬时速度为 101 km/h时,加速度为 5.27m/s2。55图 3车辆行驶速度和距离Fig. 3: Vehicle speed and distance for MT图 4AT 的车速和距离Fig. 4: Vehicle speed and distance for AT56图 5无级变速器的车速和距离Fig. 5: Vehicle speed and distance for CVT电子控制和系统集成等关键技术近年来取得了重大进展,并为自动机械传动基础(AMT)。形成了扎实的技术。AMT 是来自传统的手动变速器,结构紧凑,响应速度快且高机械效率。但质量差是制约其应用的主要因素。目前关于改进 AMT 变换质量的研究主要集中在选择不同形式的移位驱动装置,优化同步器的结构,制定更好的位移控制策略等。目前,自动机械传动的位移驱动装置可分为电子气动移位、电子液压移位、全电位移和直接驱动转换等,而这些形式的移位驱动装置已经实现了一些应用。同步器的性能是影响换挡质量的因素之一,同步器的结构优化是提高自动机械传动换挡质量的有效途径。研究小组研究了伺服同步器,其功能是自我激励,提高了系统的鲁棒性。初步实验表明,该方法能够降低控制系统的设计难度。以此为参考发明了防止移位二次冲击的同步器结构,在同步器套筒上有调整齿轮,防止同步器套筒内样条和目标齿轮的关节环齿轮之间的二次冲击。为了获得更好的转移控制策略,国内外研究机构完成了许多研究。另一方面,对变速箱、发动机和离合器协调控制的质量控制策略进行了调整和提出。并在参考文献中完成了基于模糊算法的系列齿轮过程控制器。应指出,该研究促进了 AMT 转移质量的提高,但仍有一定的改进空间。为了提高位移控制的精度,减少自动机械传动的位移冲击,因此提出了基于位移位移补偿的 AMT 位移控制策略。研究对象为国产 5 档手动变速箱,建立了基于 ABAQUS 的有限元分析模型,确定了平移驱动力与位移叉的变形之间的关系,并在制定57了相应的位移控制策略后,在系统原型上完成了相关研究。速度差信号是确定同步相位是否结束的条件之一,它可以防止位移驱动力的误差输出,但在试验研究中发现,移位装置的驱动力需要一定的响应时间。这将导致一个大输出功率损失的速度控制系统在等待的过程中速度差信号为零和扩展电源中断时,由于传动轴的扭转振动,保证速度差信号的准确性是很困难的。为了更好地解决移叉变形对位移控制精度的影响,提出了一种基于位移位移的移位控制策略。试验所用的试验台如图 1 所示,利用惯性模拟装置模拟不同车辆模型的同步部分的转动惯量,采用变频电机模拟不同位移条件下的输入和输出轴速度差。图 6 试验台Figure 6Test bed惯性值和输出轴,输入轴速度区别在同步设置在于测试之前,驱动变频电机的输入轴通过控制器,当速度传感器的反馈信号达到预定值时,关闭变频电机直接驱动设备开放。没有轴向位移改变执行机构的同步阶段,输入电流的闭环控制策略转变驱动装置,和控制致动器的输出力的波动,所以同步力法是获得满足的转变的需求冲击和同步器的生活。改变执行机构的轴向位移,控制策略在闭环 PID 控制算法的基础上,加快转变行政机制的最大加速度性能,缓冲和速度,当它达到最大速度,位移传感器的控制器接收反馈信号,并在两端的电压值的变化驱动装置是通过操作,实现实时控制的过程中转变。由于位移叉的变形,控制器接收到的位移传感器反馈信号不反映实际位移(同步器套位移),而非同步相位移控制中闭环 PID 控制策略的精度降低。因此,在位移叉分析的基础上,提出了基于位移位移的位移控制策略,如图 2 所示。58图 7 位移控制策略Fig.7 displacement control strategy实时位移信号接收的控制器是由变速叉变形补偿的,反映了实际的位移,然后转变驱动装置的控制精度提高,实现一个精确的和转移过程的实时控制和所有的传感器信号传输到主机通过 can 总线计算机分析处理59附录 B:In the current environmental and political framework, exhaust emissions are fundamental considerations in the development of any powertrain control strategy. Despite this there has been comparatively little published work concerning the optimization of exhaust emissions. Additionally, fuel economy must not be neglected as it will remain as a crucial measure of vehicle efficiency. Extending the earlier work reported, the economy line concept includes an evaluation of exhaust emissions. The major flaw of the economy line approach is the failure to optimize exhaust emissions performance similar to ideal operating line (IOL) approach. When optimizing for a single outcome, such as minimum fuel consumption, a true optimum line is simply generated. If this process is repeated for each of the pollutants a different line will be generated in each case owing to their differing formation mechanisms. Thus, it is not possible to arrive at a globally optimum line. To resolve this difficulty the regulated exhaust emissions are combined with fuel economy in a weighted sum, which is minimized across the operating power range of the engine 1-3.Vehicle powertrains are becoming increasingly complex as the scope offered to improve vehicle performance, economy and emissions is explored. Considerable benefit may be derived from operating the engine and transmission in an integrated manner, using a single controller to interpret the drivers wish and accordingly instruct the engine and transmission controllers. Crucial to the success of such system are the basic specification of major components and the design of overall powertrain control strategy. Continuously variable transmission (CVT) can provide a better performance of vehicle concerning the fuel consumption and driveability 4-5. Deacon et al 6 implemented artificial intelligence and more traditional and intuitive methods for an integrated diesel CVT powertrain and compared with an existing controller and equivalent manual transmission (MT) powertrain. Chassis dynamometer results show the newly designed controller strategies to have significant impact on vehicle exhaust emissions, while the structure of the software allows the controller action to be highly tuneable and flexible to balance the vehicle driveability requirements with economy and emissions targets.One of the fundamental concepts in the integrated driveline control is the ideal operating point (IOP) which is defined as the engine speed and load which delivers.Each controller was tested three times using different IOLs for best brake specific fuel economy (BSFC), minimum Nitrogen Oxide (NOx) and a mixed line for minimum Hydrocarbon (HC) 7. Carbone et al 8 utilized CVT with infinite ratio range for automatic gear change without the need of the friction60clutch. The performance of a mid passenger car provided with infinitely variable transmission (IVT) was studied. Vehicles fuel consumption was evaluated by means of a simulation model with the hypothesis to consider the value of IVTs ratio speed that minimizes the specific fuel consumption.Second-by-second engine-out and tail pipe emissions data were collected on 340 light duty vehicles, tested under “as is” conditions. Variability in emissions of CO2, CO, HC and NOx were observed over various driving modes. An initial statistical analysis and model validation using bootstrap validation methods were summarized. The bootstrap methodology was shown to be a valuable tool during model.In this work, the influence of various driving cycles on vehicle exhaust emissions and fuel consumption rate (FCR) of a gasoline midsize saloon vehicle was investigated based on the measurements obtained by driving it on a standard chassis dynamometer. The tests were carried out for urban part of the European standard driving cycle (ECE-15) for the vehicle equipped with an integrated gasoline engine with MT, automatic transmission (AT) and CVT powertrains. An estimation of emission index (EI) and FCR from the exhaust emissions based on well established formulae is provided and its effectiveness is verified through tests.The experimental tests were carried out using in-use midsize saloon vehicle Mitsubishi Lancer. Its maximum power is 122 HP at 4800 rpm and maximum torque 167 Nm at 3600 rpm. The original configuration of vehicle had MT powertrain. The MT was replaced by either AT or CVT with the necessary fixation accessories. The tests were performed over standard driving cycle executed on chassis dynamometer. The specifications of the transmissions are listed in Table 1. The vehicle was tested over the New European Driving Cycle (NEDC). This cycle is conducted immediately after the urban cycle and consists of half steady-speed driving with accelerations, decelerations and some idling. NEDC consists of ECE15 and EUDC which correspond to urban and highway driving conditions in order. ECE15 simulates an average speed of 18.9 km/h and a maximum speed of 60 km/h. The entire cycle includes 4 repeats of 780 seconds low speed urban cycle to obtain an adequate driving distance as shown in Fig. 1.61Fig. 1: European driving cycle ECE-15The chassis dynamometer type SAXON TL-80 simulates the resistive power imposed on the wheels of a vehicle. It consists of a dynamometer that is coupled via gearboxes to drive lines that are directly connected to a set of rollers upon which the vehicle is placed. The rollers can be adjusted to simulate the required driving resistance 15. As the tests were conducted on chassis dynamometer connected to a single-axle of the vehicle, it is able to simulate the vehicle road load power demand as a function of speed and the inertia of vehicle. During application of a driving cycle, the load is controlled by a pneumatic system that controls axle load with the side lying eddy current brake to the roll, which is used on a wear-measuring system as an information resource for power investigation. A handheld controller was set to monitor and change the water flow based on a variety of control parameters including wheel speed. The test rig is equipped with an automatic overload protection to prevent damage to the tire.Portable version of infrared gas analyzer is used during the experimental tests. A HOMANS gas analyzer equipped with gas sampling probe is used to collect the exhaust gas from the muffler. The gas is then filtered and dried before entering the analyzer. Magnetic inductivepickup transducer is used to measure the vehicle speed in km/h. Fig. 3 shows a schematic view of the laboratory chassis dynamometer and the instrumentation system. For emissions test continuously proportioned samples of diluted exhaust mixture and diluted air are collected. A gas analyzer is used to measure diluted exhaust contents of CO, O2, HC and CO2.62Fig. 2: Schematic of test setup and instrumentation systemFigs. 3 to5 depict responses of measured road power (P) and road torque (M) from vehicle tests at 100 km/h for MT, AT and CVT powertrains respectively. The values of power and torque increases for an increase in the time (acceleration mode) up to 32 s with values of 259 Nm and 21 kW for MT. The corresponding values of 40 s with values of 130 Nm and 12 kW for AT; and 40.5 s with values of 150 Nm and 40.5 kW for CVT. The deceleration mode depicted a decrease in performance values till 75 s for MT, 54 s for AT and 52.5 s for CVT. The road torque exhibited some fluctuations for MT. show the measurements of time (T) and distance (S) from which acceleration (A) is calculated for the considered transmissions respectively. For MT, a distance of 145 m can be gained in about 18.34 s, resulting in an acceleration of 5.73 m/s2 at instantaneous speed of 105 km/h. For AT, a distance of 360 m can be gained in about 22.5 s resulting in an acceleration of 4.49 m/s2 at instantaneous speed of 101 km/h. For CVT, a distance of 100 m can be gained in about 19.17 s resulting in acceleration of 5.27 m/s2 at instantaneous speed of 101 km/h.63Fig.3: Vehicle speed and distance for MTFig. 4: Vehicle speed and distance for AT64Fig.5: Vehicle speed and distance for CVTThe key technologies such as electronic control and systems integration have made significant progress in recent years, and they have established a solid technological foundation for Automated Mechanical Transmission (AMT). AMT is derived from the traditional manual transmission, it has compact structure, fast response speed and high mechanical efficiency. But the poor shift quality is the main factor forrestricting its application. The current research about improving the shift quality of AMT is focused on selecting different forms of shift drive device, optimizing the structure of synchroniser and formulating the better shift control strategy, etc.At the present stage, the shift drive devices of automated mechanical transmission can be divided into electronic pneumatic shift, electronic hydraulic shift, all-electrical shift and direct-drive shift, and these forms of shift drive devices have achieved some applications. Synchronizers capability is one of the factors to affect the shift quality, and the structure optimisation of synchronizer is an effective approach to improve the shift quality of automated mechanical transmission. Studying team invited a servo synchronizer with the function of self-energizing and improved the shifting system robustness of the previous research.Preliminary experiments have shown that it can reduce the design difficulty of the control system. Reference invented a synchronizer structure of preventing shift secondary shock, and there is alignment gear on the synchronizer sleeve to prevent shift secondary shock between internal spline of synchronizer sleeve and the joint ring gear of target gear.In order to obtain a better shift control strategy, many studies were completed by domestic and foreign research institutions.On the other hand, Refs and put forward shift quality control strategy about transmission, engine and clutch65coordination control. And the series gear process controller based on fuzzy algorithm was completed in Ref. It should be pointed out that the study promotes the improvement of the AMT shift quality, but still have some room to improve.To improve the shift control accuracy and reduce the shift shock of Automated Mechanical Transmission, AMT shift control strategy based on shift displacement following compensation is proposed. The research object is a domestic type 5-speed manual transmission, establish the finite element analysis model based on ABAQUS, determine the relationship between shift driving force and the deformation of shift fork, and after formulating a appropriate shift control strategy,related research is completed on the system prototype.The speed difference signal is one of the conditions to determine whether the synchronization phase is over and it can prevent the error output of the shift driving force, but in test study, it is found that the driving force of the shift device needs a certain response time. So it will cause a great output power loss for the speed control system in the process of waiting for the speed difference signal to zero and extend the time of the power interruption, and because of the torsional vibration of the transmission shaft, the accuracy of the speed difference signal is difficult to guarantee.In order to solve the influence of shift fork deformation on shift control accuracy better, a shift control strategy based on shift displacement following compensation considering shift fork stiffness is proposed. The test bench used in the test is shown in Fig. 1, the inertia simulation device is used to simulate the rotating inertia of the synchronous part of different vehicle models, the variable frequency motor is used to simulate the input and output shaft speed difference under different shift conditions.66Figure 6 Test bedThe inertia value and the speed difference between the output shaft and the input shaft before the synchronous are set before testing, drive the input shaft of the variable frequency motor through the controller, when the feedback signal of the speed sensor reaches a predetermined value, turn off the variable frequency motor and open the direct dri
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。