基于Solidworks的抓物机器车机构设计及运动仿真【三维SW】【包含PDF图纸+CAD制图+文档】
收藏
资源目录
压缩包内文档预览:
编号:122656480
类型:共享资源
大小:17.84MB
格式:ZIP
上传时间:2021-04-21
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
三维SW
基于
Solidworks
机器
机构
设计
运动
仿真
三维
SW
包含
PDF
图纸
CAD
制图
文档
- 资源描述:
-
喜欢这套资料就充值下载吧。。。资源目录里展示的都可预览。。。下载后都有,,请放心下载,,文件全都包含在内,,【下载后加 QQ:1064457796或1304139763,免费领CAD格式图纸】
- 内容简介:
-
毕业设计(论文)中期检查表(指导教师)指导教师姓名: 彭晓楠 填表日期:2014 年 4 月 17 日学生学号1000110130学生姓名韦子亮题目名称基于Solidworks的抓物机器车机构设计及运动仿真已完成内容1、收集关于抓物机器车产品的相关知识,了解现有抓物机器车产品的结构2、熟悉抓物机器车的工作原理及过程3、完成开题报告4、完成与课题相关,不少于四万字符的指定英文资料翻译(附英文原文)5、系统方案设计并比较、优化,确定最终方案 检查日期:2014年4月22日完成情况全部完成按进度完成滞后进度安排存在困难由于三月到四月出去实习了一个月,而且在实习中没有网络,没法查到相关的资料,因此进度落后了很多。液压系统中元件的选择和布置特殊零件的选用和设计。如中央回转接头、分配阀等链轮的设计解决办法 加快设计的步伐,同时要了解液压的计算、元件的选用等。对于那些特殊零件,则要上网查找资料,了解原理和设备,然后在根据实际得到需要的尺寸。对于链轮,不仅要知道链轮的设计还要知道跟链轮相关的部件的设计预期成绩优 秀良 好中 等及 格不及格建议 教师签名: 教务处实践教学科制表说明:1、本表由检查毕业设计的指导教师如实填写;2、此表要放入毕业设计(论文)档案袋中;3、各院(系)分类汇总后报教务处实践教学科备案。编号: 毕业设计(论文)任务书题 目: 基于Solidworks的抓物机 器车机构设计及运动仿真 学院: 机电工程学院 专 业: 机械制造及其自动化 学生姓名: 韦子亮 学 号: 1000110130 指导教师单位: 桂林电子科技大学 姓 名: 彭晓楠 职 称: 副教授 题目类型:理论研究 实验研究 工程设计 工程技术研究 软件开发 2013年12月13日一、毕业设计(论文)的内容 机器人是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。 本课题通过应用CAD软件技术对抓物机器车进行结构设计,使其能实现抓物运动,可以在地形复杂或恶劣、危险的环境里完成物体的搬运或者障碍的清除等工作。另一方面是进一步提升专业技能,为踏上工作岗位做好准备。本课题的主要工作内容有以下几点:1、收集关于抓物机器车产品的相关知识,了解现有抓物机器车产品的结构;2、熟悉抓物机器车的工作原理及过程;3、查阅相关资料,熟悉机械产品设计、机械设计基础、机械零件的加工工艺、工程力学、工程制图等与本毕业设计课题相关的知识内容;4、熟练掌握计算机辅助设计软件(Solidworks);5、对抓物机器车设计方案进行详细规划及分析,反复对方案进行论证,逐步进行修改及优化;6、利用计算机及Solidworks软件完成抓物机器车的结构设计;7、利用计算机及Solidworks软件完成抓物机器车相关机构的各种参数计算和分析;8、完成抓物机器车相关零件材料的选用及其工艺分析;9、利用计算机及Solidworks软件完成抓物机器车产品零件及装配部件的3D和2D工程图的绘制;10、利用计算机及Solidworks 软件完成抓物机器车的运动仿真;二、毕业设计(论文)的要求与数据 本毕业设计课题需要掌握机械产品设计、机械设计基础、机械零件加工工艺、工程力学、工程制图等相关知识及计算机辅助设计技能。本课题需要提交的数据资料及要求主要有以下几点:1、设计方案的规划及分析对比必须在毕业设计说明书中体现出来;2、抓物机器车产品结构设计要合理,提交合理、完整的3D模型;3、抓物机器车相关机构的各种参数计算和分析(如抓取零件的最大重量、最大最小尺寸、抓取夹紧力及机械手受力情况的等),并提供结果;4、零部件装配正确合理,并提供干涉分析结果;5、2D工程图要整洁规范,必须符合国家标准,并提交规范完整图纸;6、机构运动仿真及零件拆、装过程视频动画分辨率不小于720*480 px,并提交AVI格式视频文件;7、外文资料翻译和毕业设计说明书(论文)的内容及字符要符合“毕业设计任务书”的要求;8、毕业设计说明书的格式必须符合 “2014年毕业设计说明书统一格式”的要求;9、各个文件资料所需填写的时间必须符合“2014年毕业设计(论文)管理办法”的要求;10、答辩PPT课件能清晰体现毕业设计课题的设计思路,并且版面简介;三、毕业设计(论文)应完成的工作1、完成开题报告及进度计划表的撰写;2、完成中期检查表的填写;3、完成二万字左右的毕业设计说明书(论文);在毕业设计说明书(论文)中必须包括详细的300-500个单词的英文摘要;4、独立完成与课题相关,不少于四万字符的指定英文资料翻译(附英文原文);5、完成抓物机器车产品零件及装配部件的3D和2D工程图的绘制;6、完成工作量折合A0图纸3张以上,其中必须包含两张A3以上的计算机绘制图纸;7、完成零件拆、装过程及运动仿真视频动画的制作;8、完成答辩PPT课件的制作;四、应收集的资料及主要参考文献1 曹惟庆等.机构设计M.北京:机械工业出版社,19932 成大先.机械设计手册M.北京:化学工业出版社,20043 机械设计手册联合编写组.机械设计于册-下册M.北京:化学工业出版社,19894 张彪,叶军等.一种丝杆螺母机构型机械手的设计J.中国西部科技,2010,(15):31-32.5 孙恒,陈作模.机械原理(第六版)M.北京:高等教育出版社,20016 詹友刚. SolidWorks快速入门教程(2012中文版)M.北京:机械工业出版社,20047 ASHBY, M. F. (1998). Engineering Materials (2nd ed.) (2 vols.)/Volume 1 - An Introduction to t heir Properties and Applications Engineering_Materials_2E_VOLUME1五、试验、测试、试制加工所需主要仪器设备及条件所需主要仪器设备及条件如下:1、计算机一台2、CAD设计软件(SolidWork)任务下达时间:2013年12月17日毕业设计开始与完成时间:2013年12月17日至 2014年05 月26日组织实施单位:桂林电子科技大学机电工程学院教研室主任意见:签字: 2013年12月14日院领导小组意见:签字: 2013 年12月16日编号: 毕业设计(论文) 开题报告题 目: 基于Solidworks的抓物机 器车机构设计及运动仿真 学院: 机电工程学院 专 业: 机械制造及其自动化 学生姓名: 韦子亮 学 号: 1000110130 指导教师单位: 桂林电子科技大学 姓 名: 彭晓楠 职 称: 副教授 题目类型:理论研究 实验研究 工程设计 工程技术研究 软件开发 2013年12月13日1毕业设计的主要内容、重点和难点等现在在很多场合,人们都用机器来取代人力来工作,例如生产业、建筑业,或是危险的工作。抓物机器车的作用就是使其能抓物运动,可以在地形复杂或恶劣、危险的环境里替人完成物体的搬运或者障碍的清除等工作。本设计的抓物机器车采用了丝杆螺母型机械手来抓住物体,从而实现物体的搬运。本次设计的主要内容、重点和难点如下:1、主要内容:(1)分析捉物机器车的运动要求,完成抓物机器车的整体结构规划和设计; (2)进行方案论证,进行结构设计与仿真;(3)提出系统结构设计方案,并优化;(4)满足力学要求,充分的设计计算、理论强度和结构受力分析;2、重点:(1)实现捉物机器车的整体结构设计;(2)提出多个结构设计方案,选择最优的结构,并且优化结构,使其更加接近实际应用;(3)零件参数计算和理论分析;(4)整个装置结构合理、外观精致并符合要求、应用二维画出平面图,并且用三维软件模拟出产品样品;3、难点:(1)机构工作时的受力分析;(2)机构运动的传动(3)整个机构的运动仿真分析; 2准备情况(查阅过的文献资料及调研情况、现有设备、实验条件等)1、调研情况:通过在网络、图书馆查阅资料及社会调研了解到,抓物机器车机构主要是实现抓住物体,然后再通过车子和手臂的移动来完成物体的转移。实际中,很容易实现抓物的动作,但在移动的过程中要保证物体不掉落,这就是一个难点。如果用步进电机来实现抓物的话,那在移动的过程中,步进电机会一直工作,这就损坏了步进电机,不利于电机的使用寿命。这次设计使用了丝杆螺母来实现抓物动作,在移动过程中,利用自锁了保证物体的不掉落。2、现有设备:电脑及机械设计专业软件。3、试验条件:电脑机房4、查阅的文献:1 曹惟庆等.机构设计M.北京:机械工业出版社,19932 成大先.机械设计手册M.北京:化学工业出版社,20043 机械设计手册联合编写组.机械设计于册-下册M.北京:化学工业出版社,19894 张彪,叶军等.一种丝杆螺母机构型机械手的设计J.中国西部科技,2010,(15):31-32.5 孙恒,陈作模.机械原理(第六版)M.北京:高等教育出版社,20016 詹友刚. SolidWorks快速入门教程(2012中文版)M.北京:机械工业出版社,20047 ASHBY, M. F. (1998). Engineering Materials (2nd ed.) (2 vols.)/Volume 1 - An Introduction to t heir Properties and Applications Engineering_Materials_2E_VOLUME13、实施方案、进度实施计划及预期提交的毕业设计资料1、实施方案:(1)通过查阅资料文献和相关手册,了解抓物机器车设计背景、现状及工作原理;(2)制定出详细的设计方案及设计过程规划,反复对设计方案进行论证;(3)学习三维绘图软件;(4)使用三维绘图软件完成结构设计;(5)使用软件完成相关参数的计算及结构、受力等分析;(6)使用软件完成零件及装配二维图的绘制;(7)使用软件完成机构运动仿真及运动仿真分析;(8)完成毕业设计说明书的撰写;2、进度计划:(1)2013.12.1712.23:收集关于抓物机器车产品的相关知识,了解现有机械式六档变速器产品的结构;(2)2013.12.2412.30:熟悉抓物机器车的工作原理及过程;(3)2013.12.31-2014.1.6:完成开题报告;(4)2014.1.7-1.13:完成与课题相关,不少于四万字符的指定英文资料翻译(附英文原文);(5)3.4-3.10:系统方案设计并比较、优化,确定最终方案;(6)3.11-3.17:主要零部件结构计,参数计算、理论分析,并进行方案论证;(7)3.18-3.24:机构的参数化设计;(8)3.25-3.31:相关零件材料的选用及其工艺分析;(9)4.01-4.07:零件三维数字模型设计;(10)4.08-4.14:装配三维数字模型设计;(11)4.15-4.21:机构运动仿真及零件拆、装过程视频动画及运动分析;(12)4.22-4.28:绘制二维零件图;(13)4.29-5.05:绘制二维装配图;(14)5.06-5.12:完成设计说明书和答辩PPT课件;(15)5.13-5.19:设计资料的检查和修改;(16)5.20-5.26:完成毕业设计,提交论文;3、预期提交的毕业设计资料:(1)开题报告(电子档和纸质材料各一份);(2)进度计划表(电子档和纸质材料各一份);(3) 二万字以上的毕业设计论文;在毕业设计论文中必须包括详细的300-500个单 词的英文摘要(4) 不少于四万字符的指定英文资料翻译(附英文原文;电子档和纸质材料各一份);(5)零件及装配三维数字模型(电子档一份);(6)零件及装配二维图纸(电子档和纸质材料各一份);(7)运动仿真视频文件(电子档一份);(8)刻录光盘(一张,包含所有毕业设计资料电子文档);指导教师意见指导教师(签字): 2013年12月日开题小组意见开题小组组长(签字):2014年1 月日 院(系、部)意见 主管院长(系、部主任)签字: 2014年1月日2014年机电工程学院毕业设计(论文)进度计划表学生姓名:韦子亮 学号:1000110130序号起止日期计划完成内容实际完成内容检查日期检查人签名12013.12.1712.23收集关于抓物机器车产品的相关知识,了解现有抓物机器车产品的结构22013.12.2412.30熟悉抓物机器车的工作原理及过程32013.12.31-2014.1.6完成开题报告42014.1.7-1.13完成与课题相关,不少于四万字符的指定英文资料翻译(附英文原文)53.4-3.10系统方案设计并比较、优化,确定最终方案63.11-3.17主要零部件结构计,参数计算、理论分析,并进行方案论证73.18-3.24机构的参数化设计83.25-3.31相关零件材料的选用及其工艺分析(本表同时作为指导教师对学生的16次考勤记录)2014年机电工程学院毕业设计进度计划表(续)学生姓名: 韦子亮 学号:1000110130序号起止日期计划完成内容实际完成内容检查日期检查人签名94.01-4.07零件三维数字模型设计104.08-4.14装配三维数字模型设计114.15-4.21机构运动仿真及零件拆、装过程视频动画及运动分析124.22-4.28绘制二维零件图134.29-5.05绘制二维装配图145.06-5.12完成设计说明书和答辩PPT课件155.13-5.19设计资料的检查和修改165.20-5.26完成毕业设计,提交论文任务下达时间:2013年12月17日(本表同时作为指导教师对学生的16次考勤记录)第 2 页 共 2 页编号: 毕业设计(论文)外文翻译(原文)院 (系): 机电工程学院 专 业: 机械设计制造及其自动化 学生姓名: 韦子亮 学 号: 1000110130 指导教师单位: 桂林电子科技大学 姓 名: 彭晓楠 职 称: 副教授 2014年 5 月 23 日Design of machine elements The principles of design are, of course, universal. The same theory or equations may be applied to a very small part, as in an instrument, or, to a larger but similar part used in a piece of heavy equipment. In no ease, however, should mathematical calculations be looked upon as absolute and final. They are all subject to the accuracy of the various assumptions, which must necessarily be made in engineering work. Sometimes only a portion of the total number of parts in a machine are designed on the basis of analytic calculations. The form and size of the remaining parts are designed on the basis of analytic calculations. On the other hand, if the machine is very expensive, or if weight is a factor, as in airplanes, design computations may then be made for almost all the parts. The purpose of the design calculations is, of course, to attempt to predict the stress or deformation in the part in order that it may sagely carry the loads, which will be imposed on it, and that it may last for the expected life of the machine. All calculations are, of course, dependent on the physical properties of the construction materials as determined by laboratory tests. A rational method of design attempts to take the results of relatively simple and fundamental tests such as tension, compression, torsion, and fatigue and apply them to all the complicated and involved situations encountered in present-day machinery. In addition, it has been amply proved that such details as surface condition, fillets, notches, manufacturing tolerances, and heat treatment have a market effect on the strength and useful life of a machine part. The design and drafting departments must specify completely all such particulars, must specify completely all such particulars, and thus exercise the necessary close control over the finished product. As mentioned above, machine design is a vast field of engineering technology. As such, it begins with the conception of an idea and follows through the various phases of design analysis, manufacturing, marketing and consumerism. The following is a list of the major areas of consideration in the general field of machine design: Initial design conception; Strength analysis; Materials selection; Appearance; Manufacturing; Safety; Environment effects; Reliability and life; Strength is a measure of the ability to resist, without fails, forces which cause stresses and strains. The forces may be; Gradually applied; Suddenly applied; Applied under impact; Applied with continuous direction reversals; Applied at low or elevated temperatures. If a critical part of a machine fails, the whole machine must be shut down until a repair is made. Thus, when designing a new machine, it is extremely important that critical parts be made strong enough to prevent failure. The designer should determine as precisely as possible the nature, magnitude, direction and point of application of all forces. Machine design is mot, however, an exact science and it is, therefore, rarely possible to determine exactly all the applied forces. In addition, different samples of a specified material will exhibit somewhat different abilities to resist loads, temperatures and other environment conditions. In spite of this, design calculations based on appropriate assumptions are invaluable in the proper design of machine. Moreover, it is absolutely essential that a design engineer knows how and why parts fail so that reliable machines which require minimum maintenance can be designed. Sometimes, a failure can be serious, such as when a tire blows out on an automobile traveling at high speeds. On the other hand, a failure may be no more than a nuisance. An example is the loosening of the radiator hose in the automobile cooling system. The consequence of this latter failure is usually the loss of some radiator coolant, a condition which is readily detected and corrected. The type of load a part absorbs is just as significant as the magnitude. Generally speaking, dynamic loads with direction reversals cause greater difficulties than static loads and, therefore, fatigue strength must be considered. Another concern is whether the material is ductile or brittle. For example, brittle materials are considered to be unacceptable where fatigue is involved. In general, the design engineer must consider all possible modes of failure, which include the following: Stress; Deformation; Wear; Corrosion; Vibration; Environmental damage; Loosening of fastening devices. The part sizes and shapes selected must also take into account many dimensional factors which produce external load effects such as geometric discontinuities, residual stresses due to forming of desired contours, and the application of interference fit joint.Mechanical properties of materials The material properties can be classified into three major headings: (1) physical, (2) chemical, (3) mechanicalPhysical properties Density or specific gravity, moisture content, etc., can be classified under this category. Chemical propertiesMany chemical properties come under this category. These include acidity or alkalinity, react6ivity and corrosion. The most important of these is corrosion which can be explained in laymans terms as the resistance of the material to decay while in continuous use in a particular atmosphere. Mechanical properties Mechanical properties include in the strength properties like tensile, compression, shear, torsion, impact, fatigue and creep. The tensile strength of a material is obtained by dividing the maximum load, which the specimen bears by the area of cross-section of the specimen. This is a curve plotted between the stress along the This is a curve plotted between the stress along the Y-axis(ordinate) and the strain along the X-axis (abscissa) in a tensile test. A material tends to change or changes its dimensions when it is loaded, depending upon the magnitude of the load. When the load is removed it can be seen that the deformation disappears. For many materials this occurs op to a certain value of the stress called the elastic limit Ap. This is depicted by the straight line relationship and a small deviation thereafter, in the stress-strain curve (fig.3.1). Within the elastic range, the limiting value of the stress up to which the stress and strain are proportional, is called the limit of proportionality Ap. In this region, the metal obeys hookess law, which states that the stress is proportional to strain in the elastic range of loading, (the material completely regains its original dimensions after the load is removed). In the actual plotting of the curve, the proportionality limit is obtained at a slightly lower value of the load than the elastic limit. This may be attributed to the time-lagin the regaining of the original dimensions of the material. This effect is very frequently noticed in some non-ferrous metals. Which iron and nickel exhibit clear ranges of elasticity, copper, zinc, tin, are found to be imperfectly elastic even at relatively low values low values of stresses. Actually the elastic limit is distinguishable from the proportionality limit more clearly depending upon the sensitivity of the measuring instrument. When the load is increased beyond the elastic limit, plastic deformation starts. Simultaneously the specimen gets work-hardened. A point is reached when the deformation starts to occur more rapidly than the increasing load. This point is called they yield point Q. the metal which was resisting the load till then, starts to deform somewhat rapidly, i. e., yield. The yield stress is called yield limit Ay. The elongation of the specimen continues from Q to S and then to T. The stress-strain relation in this plastic flow period is indicated by the portion QRST of the curve. At the specimen breaks, and this load is called the breaking load. The value of the maximum load S divided by the original cross-sectional area of the specimen is referred to as the ultimate tensile strength of the metal or simply the tensile strength Au. Logically speaking, once the elastic limit is exceeded, the metal should start to yield, and finally break, without any increase in the value of stress. But the curve records an increased stress even after the elastic limit is exceeded. Two reasons can be given for this behavior: The strain hardening of the material; The diminishing cross-sectional area of the specimen, suffered on account of the plastic deformation. The more plastic deformation the metal undergoes, the harder it becomes, due to work-hardening. The more the metal gets elongated the more its diameter (and hence, cross-sectional area) is decreased. This continues until the point S is reached. After S, the rate at which the reduction in area takes place, exceeds the rate at which the stress increases. Strain becomes so high that the reduction in area begins to produce a localized effect at some point. This is called necking. Reduction in cross-sectional area takes place very rapidly; so rapidly that the load value actually drops. This is indicated by ST. failure occurs at this point T. Then percentage elongation A and reduction in reduction in area W indicate the ductility or plasticity of the material: A=(L-L0)/L0*100% W=(A0-A)/A0*100% Where L0 and L are the original and the final length of the specimen; A0 and A are the original and the final cross-section area.Quality assurance and control Product quality is of paramount importance in manufacturing. If quality is allowed deteriorate, then a manufacturer will soon find sales dropping off followed by a possible business failure. Customers expect quality in the products they buy, and if a manufacturer expects to establish and maintain a name in the business, quality control and assurance functions must be established and maintained before, throughout, and after the production process. Generally speaking, quality assurance encompasses all activities aimed at maintaining quality, including quality control. Quality assurance can be divided into three major areas. These include the following:Source and receiving inspection before manufacturing;In-process quality control during manufacturing;Quality assurance after manufacturing. Quality control after manufacture includes warranties and product service extended to the users of the product. Source and receiving inspection before manufacturing Quality assurance often begins ling before any actual manufacturing takes place. This may be done through source inspections conducted at the plants that supply materials, discrete parts, or subassemblies to manufacturer. The manufacturers source inspector travels to the supplier factory and inspects raw material or premanufactured parts and assemblies. Source inspections present an opportunity for the manufacturer to sort out and reject raw materials or parts before they are shipped to the manufacturers production facility. The responsibility of the source inspector is to check materials and parts against design specifications and to reject the item if specifications are not met. Source inspections may include many of the same inspections that will be used during production. Included in these are:Visual inspection;Metallurgical testing;Dimensional inspection;Destructive and nondestructive inspection;Performance inspection.Visual inspections Visual inspections examine a product or material for such specifications as color, texture, surface finish, or overall appearance of an assembly to determine if there are any obvious deletions of major parts or hardware. Metallurgical testing Metallurgical testing is often an important part of source inspection, especially if the primary raw material for manufacturing is stock metal such as bar stock or structural materials. Metals testing can involve all the major types of inspections including visual, chemical, spectrographic, and mechanical, which include hardness, tensile, shear, compression, and spectr5ographic analysis for alloy content. Metallurgical testing can be either destructive or nondestructive. Dimensional inspection Few areas of quality control are as important in manufactured products as dimensional requirements. Dimensions are as important in source inspection as they are in the manufacturing process. Thi
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。