北师大版小学数学六年级下册圆柱和圆锥第一单元综合测试题共四套_第1页
北师大版小学数学六年级下册圆柱和圆锥第一单元综合测试题共四套_第2页
北师大版小学数学六年级下册圆柱和圆锥第一单元综合测试题共四套_第3页
北师大版小学数学六年级下册圆柱和圆锥第一单元综合测试题共四套_第4页
北师大版小学数学六年级下册圆柱和圆锥第一单元综合测试题共四套_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第5章相交线与平行线知识结构两邻补角、对顶对顶角相直垂线及其性点到直线的距相两直被同位角、内错角、同旁内三直判所平行公性平移相交线?1.平面内两条直线的位置关系有:相交、平行_. 相交线?1.平面内两条直线的位置关系有:相交、平行_.?2.“同一平面内两条直线的位置关系有相交、垂直平行三种.”这句话对吗?为什么??3.相交:?当两条直线有公共点时,我们就说这两条直线相交.?4.平行:.平行同一平面内,不相交的两条直线互相?两条直线相交 相交,CDAB与如图,直线?互为2与则1邻补角_互与13;对顶角_.为1.邻补角:有一条公共边,另一边互为反向延长线的两个角,叫做互为邻补角.2.对顶角:一个角

2、的两边分别为另一个角两边的反向延长线,这样的两个角叫做对顶角.3.对顶角的性质:.对顶角相等练一练,若OCD、EF相交于点、?直线AB145,AOD= ?AOC=35 ,则35?.BOD= EDABOCF32:?AOD?O1.直线AB与CD相交于,?AOC例?BOD的度数。求00AOD=3X,则?AOC?2X解设.D根据邻补角的定义可得方程:A02X+3X=180O0解得X=36B0?72X?2AOC?C0?AOC?72?BOD在解072的度数为BOD?:答决与角的计算有关的问题时,经常用到代数方法。垂线、垂线段?1.垂线:?两条直线相交所成四个角中,如果有一个角是直角,我们就说这两条直线互相

3、垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.?2.垂线的性质:?过一点有且只有一条直线与已知直线垂直.垂线段最短垂线段:3.?垂线、垂线段?4.垂线段的性质:?过直线外一点,作已知直线的垂线,这点和垂足之间的线段叫做垂线段.?直线外一点与直线上所有各点的连线中,垂线段最短。?5.点到直线的距离:?直线外一点到这条直线的垂线段的长度.叫做这点到这条直线的距离。 用应展拓C如图:要把水渠中的水引到水池 中,在渠岸的什么地方开沟,水沟的 长度才能最短? 请画出图来,并说明理由。 垂线段最短理由:C 练一练?已知P是直线l外一点,A、B、C是直线l上一点,且PA=5,PB=3,PC=2

4、,那么点P到直线l的距离为()C2 等于A .?2B.?大于2小于或等于C.?2小于D.?练一练图中能表示点到直线的距离的线段有( )D?A 2条 条B 3?条C 4?条D 5?练一练的、ABACC、B、画对边BC、A?分别过点F.、D、E垂线,垂足分别为FBACDE三线八角 如图,图中的同位角有:?,62与1与5,8与,743与内错角有:?6与453与,同旁内角有:?5与4,6与3练一练ACBCAD_被2是_和?如图,1与内错角?_所截形成的ABCDAC所截形?3与4是被_和_内错 角?_成的练一练ADBCCD?如图,1与2是和_被_同旁内所截形成的_角?CDABBE所截形?3与4是_和_被

5、_同位成的_角? 平行线?1.平行公理:?经过直线外一点,有且只有一条直线与这条直线平行.?2.平行公理的推论:?如果两条直线都与第三条直线平行,那么这两条直线也互相平行.bc_.,那么ac,ab即:如果?间夹 平结论的在条件距两行 离同位角相等线。的两直线平内错角相等性同旁内角互补垂线段结论的条件 平长度行 ,同位角相等叫线做的两直线平行内错角相等两判平行定同旁内角互补线A B平行线的判定应用练习:16填空,并注明理由。如图:43(已知1=2(1)内错角相等。5EA直线平行23= 4(已知)EDAFBE()同位角相等,两直线平行。5= 6(已知)BCEF)(内错角相等,两直线平行。 5+ A

6、FE=180 (已知)AFBE)(同旁内角互补,两直线平行。AB FC, ED FC(已知)ABED()平行于同直线的两条直线互相平行。0求DFE=180,已知DAC= ACB, D+例2. :EF/BC证 FDC)ACB (已知: DAC= 证明 AD/ BC B)内错角相等(,两直线平行 EDFE=180D+0)(已知 AAD/ EF )(,同旁内角互补两直线平行 EF/ BC )(平行于同一条直线的两条直线互相平行 ,2=1801+例1. 如图已知:。CD求证:AB,)证明:由:1+2=180(已知E. (对顶角相等)1=3BA1)2=4(对顶角相等34等量代换根据:DC2F.得:3+4

7、=180同旁内角互补,两直线平行根据:.AB/CD得:例2. 如图,已知:ACDE,1=2,试证明ABCD。证明:由ACDE (已知)ADACD= 2 12)(两直线平行,内错角相等EB(已知)1=2CACD(1=)等量代换CDAB )内错角相等,两直线平行(,GDCEFB=AB,例3.已知EFABCD。ACB求证:AGD=(已知)AB AB,CD证明:EFBCADA)(垂直于同一条直线的两条直线互相平行DCB EFBDG(两直线平行,同位角相等)E(已知)GDC EFB=CBF(等量代换)DCB=GDC 两直线平行),(内错角相等DGBC ACBAGD=(两直线平行,同位角相等)练一练?如图

8、,已知直线ab,1=54,那么2,3,4各是多少度? 解:1=542=1=54(对顶角相等)ab4=1=54(两直线平行,同位角相等)3=1802=18054=126(两直线平行,同旁内角互补)命题、定理?1.命题:?判断一件事情的语句,叫做命题.?2.题设、结论:?将命题写成“如果那么”的形式,“如果”后面的是题设,“那么”后面的.结论是命题、定理3.真命题、假命题:真命题.?若题设成立,则结论也一定成立的命题,是假命题.若题设成立,则结论不一定成立的命题,是?4.定理:?有些命题的正确性是经过推理证实的,这样得.定理到的真命题叫做例1. 判断下列语句,是不是命题,如果是命题,是真命题,还是

9、假命题?(1)画线段AB=2cm(2)直角都相等;(3)两条直线相交,有几个交点?(4)如果两个角不相等,那么这两个角不是对顶角。(5)相等的角都是直角;分析: 因为(1)、(3)不是对某一件事作出判断的句子,所以(1)、(3)不是命题。解. (1)、(3)不是命题; (2)、(4)、(5)是命题; (2)、(4)都是真是假命题。(5)命,练习 C、E、G)、下列命题是真命题的有(1 、相等的角是对顶角A、不是对顶角的角不相等B、对顶角必相等C、有公共顶点的角是对顶角D度180E 、邻补角的和一定是、互补的两个角一定是邻补角F只要其中一个角的大小确,G、两条直线相交那么另外三个角的大小就确定了

10、,定了练一练说出下列命题的题设与结论:(1)题设:两个角是同一个角的补角;(1)同角的补角相等;结论:这两个角相等.(2)题设:两个角相等;(2)等角的余角相等;结论:它们的余角也相等.(3)题设:两个角互补;(3)互补的角是邻补角;结论:它们是邻补角.(4)题设:两个角是对顶角;)对顶角相等;(4.结论:这两个角相等:探究创新(1)AB/CD (2)AD/BC (3)A=C如图给出下列论断: ,以上,其中两个作为题设,另一个作为结论,用“如果的形式,写出一个你认为正确的命题。”那么DA分析: 不妨选择(1)与(2)作条件,由平行性质“两直线平行,同旁内角互补”可得A=C,故满足要求。由(1)

11、与CB也与(3)(2)(3)也能得出(2)成立,由成立。(1)能得出解: 如果在四边形ABCD中,AB/DC、,那么A=C。AD/BC平移?1.把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.?2.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.?3.图形的这种移动,叫做平移变换,简称平.移平移的基本性质:对应线段平行(或在同一直线上)且相等;对应角相等;.对应点的连线平行(或在同一直线上)且相等例1. 在以下生活现象中,不是平移现象的是A.站在运动着的电梯上的人B.左右推动的推拉窗扇C.小李荡秋

12、千运动D.的躺在火车上睡觉的旅客分析: A、B、D属平移,在一个位置取两点连成一条线,在另一个位置再观察这条线段,发现是平行的,而C同样取两点连成一条线段,运动到另一位置时,可能已不平行C选: 解2.下列生活中的物体的运动情况可以看成平移的是( )(1)摆动的钟摆(2)在笔直的公路上行驶的汽车(3)随风摆动的旗帜(4)摇动的大绳(5)汽车玻璃上雨刷的运动)从楼梯自由落下的球(球不旋转)6(的平移到ABC的位置,则点A例2. 如图所示,ABCCAB_的对应点是B的对应点是_对应点是,点C,点BA的对应线段是BC的对应线段是_,线段。线段ABCABC_的对应_。BAC,线段AC的对应线段是?CAB

13、CB?A_ACB_,的角是,ABC的对应角是BC?A沿着射线AA_ABC的平移方向是_对应角是。)的方向CC,或(或BB_,平移距离是_的长AA线段或线段BB的长或线段CC的长(。_AABCBC知识应用:?“过一点有且只有一条直线与已知直线平行”这句话对吗?为什么?P Pll 过直线外一点知识应用:?在同一平面内,两条直线的位置关系是()CA.相交?平行B.?相交或平行C.?相交、平行或垂直D.知识应用:对6中有几对对顶角?(?1)图1条直线交于一点,共有n(?2)若?1n?n_对对顶角?lll34ml2l5lnnlO11图知识应用:(已知)DCF如图,D=1. ?)_/_(BC内错角相等,两

14、直线平行AD(已知)如图,D+BAD=1802. ?)_(_/_DCAB同旁内角互补,两直线平行 知识应用:?能由AOB平移而得的图形是哪个?答:OFC,OCDAF BEODC知识应用:( )下列说法正确的有?B对顶角相等;?相等的角是对顶角;?若两个角不相等,则这两个角一定不是?对顶角;?若两个角不是对顶角,则这两个角不相等.个D. 4个C. 3个B. 2个A. 1?知识应用:)的条件是(ABCD?如图,不能判别B21= BCD=180B. ?A. B+ BCAD 54 D. 3= B= C. ?DA13425BEC知识应用:,是射线O,OE直线?AB、CD相交于点的位置与AB2=58,则O

15、E1= 32,垂直E_.关系是D2= 901-AOE= 180-(平角定义)2(垂直定义)ABOEAB1OC知识应用:,BEF=70B=70,?如图,的度数BECAB,求DCE=140,CD解:B=BEF=70ABABEF又CDABCDCDEFDCE=140FECEF=40BEC=BEF-=30-40CEF=70知识应用:,BODOE平分、直线ABCD相交于点O,求:12 :1= 4OF平分BOC ,.的度数AOC解:设1=x2 :1= 4:1D2 =4xOE平分BODEDOE=1=x21BADOB=21=2xO由2+DOE+1=1804x+x+x=180FCx=30AOC=DOB=60知识应

16、用:AB.OMCD相交于点O,?直线AB、的度数;NOD2,求?(1)若1= 的度MODAOC、若BOC=41 ,求?(2)数.)设21=x解:(OM)1ABMCBOC=41=4xMOB=MOA=90BOC-1=3xMOB=BOC=AOD()对顶角相等1又MOA=90MOB=MOB=2+1+NODO又1=2x=303x=90,BA21=60MOA-AOC=NOD=MOB=90N,AOC=60BOD=DMOB=90MOBBOD+MOD=知识应用:,、N、CD于M分别交?如图,ABCD,EFAB,G交CD于,EMB=50,MG平分BMFMG.的度数求1E解:EMB=50MBMF=180-BAEMB

17、=130MG平分BMF1CBMG= 1/2BMF=65DGNBMG=651=F知识应用:和ADC 分别平分?如图,已知DE、BFABC .ADC= 2,1 =ABC,CD.AB?试说明解:DE、BF分别平分ADC 和FCDABC33=1/2ADC,2=1/2ABC又ADC= ABC3=2211=2ABE1=3ABCD(内错角相等,两直线平行)知识应用:,20ABCD中,ADB?如图,在长方形折叠,若使AB现将这一长方形纸片沿AF应为多BAFAB的夹角BD,则折痕AF与少度?解:长方形ABCD中,BAD=90BADB=20ADABD=70AB平行BDBAB=180-ABD=110由题意可知CBFBAB=55BAF=1/2 解:?C=?D F?A=?DFAC?4D=? 31=?2?1=?2=?3?ECDB?4=?C?D?C= AB?,EF解:CD?AB0?EFB=90CDB=?EFCD?23= 2?1=?31=?DGBC?ACB?AGD= CD证明:AB0?MND=180BMN+ MND?分别平分B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论