练习题答案汇总_第1页
练习题答案汇总_第2页
练习题答案汇总_第3页
练习题答案汇总_第4页
练习题答案汇总_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、置信区间4.17某大学为了了解学生每天上网的时间,在全校7500名学生中采取重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据:3.33.16.25.82.34.15.44.53.24.42.05.42.66.41.83.55.72.32.11.91.25.14.34.23.60.81.54.71.41.22.93.52.40.53.62.5求该校大学生平均上网时间的置信区间,置信水平分别是90%,95%和99%。4.7 已知:n =36,当 Ct 为 0.1、0.05、0.01 时,相应的 Zo.1,2 =1.645、z0.05.2 = 1.96、z0.叫2 = 2.58。根

2、据样本数据计算得:又=3.32,s =1.61。由于n =36为大样本,所以平均上网时间的90%的置信区间为:乂 _Z-.2 S =3.32 -1.645 1.613.32 _0.44,即(2.88,3.76)。 J nV36平均上网时间的 95%的置信区间为:乂 _z-.2 S=3.32:1.961.61 =3.32 _0.53,即(2.79,3.85)。n 36平均上网时间的 99%的置信区间为: 乂一 Z-2 S =3.32 _ 2.581.61 = 3.32 _ 0.69,即(2.63,4.01 )。%n14 H11.645,就拒绝H。6.3562.94 1.6451.19/ 100,

3、所以拒绝原假设,认为新纤维的平均强力超过了z(2)检验统计量5.8某印刷厂旧机器每台每周的开工成本服从正态分布 周里平均每周的开工成本为成本是否有所下降?6克。N(100,251 2),现新安装了一台机器,观测到它在975元。假定成本的标准差不变,试问在0=0.01的水平上该厂机器的平均开工5.8建立原假设与备择假设为:z 75-100检验统计量25/9H。:卩 100 H1 :卩 100 ;-3.0-2.33,拒绝原假设,认为该厂机器的平均开工成本的确有所下降。 5.10 一般来说,如果能够证明某部电视连续剧在播出后的前 为它获得了成功。现针对一部关于农村生活题材的电视剧抽选了 里有112个

4、家庭看过这部电视剧。(1)(2)13周中观众的收视率超过了25%,就可以认400个家庭组成一个样本,发现前13周建立适当的原假设与备择假设。如果允许发生第一类错误的最大概率为0.01,这些信息能否断定这部电视剧是成功的?(1)H。: p 乞 0.25H1 : p 0.25。如果np0和n(1一卩0)都大于等于5。5.10z(2)112400-0.250.25(1 -0.25)V 400-1.39Z0.01( = 2.33),不能拒绝原假设,因此没有充分的理由认为这部电视剧是成功的。6.2学生在期末考试之前用于复习的时间和考试分数之间是否有关系?为研究这一问题,一位研究者抽取 了由8名学生构成的

5、一个随机样本,得到的数据如下:复习时间(h)2016342327321822考试分数(分)6461847088927277从散点图可以看出,复习时间与考试分数之间为正的线性相关关系。(2)利用ERcel的“CORREL函数计算的相关系数为 r =0.8621。相关系数r 0.8,表明复习时间与考试分数之间有较强的正线性相关关系。6.6下面是7个地区20RR年的人均GDP和人均消费水平的统计数据:地区北京辽宁上海江西河南贵州陕西人均GDP (元)2264011226345474851544426624549人均消费水平(元)73264490115462396220816082035(1)人均GD

6、P作自变量,人均消费水平作因变量,绘制散点图,并说明二者之间的关系形态。(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。(3)利用最小二乘法求出估计的回归方程,并解释回归系数的实际意义。(4)计算判定系数,并解释其意义。(5) 检验回归方程线性关系的显著性(a=0.05)(6)如果某地区的人均 GDP为5000元,预测其人均消费水平。(7)求人均GDP为5000元时,人均消费水平的 95%的置信区间和预测区间。0100002000030000人均GDP平水费消均人6.6 (1)散点图如下:40000从散点图可以看出,人均 GDP与人均消费水平为正的线性相关关系。(2) 利用E

7、Rcel的“CORREL函数计算的相关系数为 r =0.8128。相关系数接近于1,表明人均GDP 与人均消费水平之间有非常强的正线性相关关系。(3)由ERcel输出的回归结果如下表:回归统计0.9981280.9962590.995511MultipleRRSquareAdjustedRSquar标准误差247.3035观测值7方差分析dfSSMSFSigni fica nceF81444968144496回归11331.6922.91E-0799残差530579561159.018175076总计64Coefficie nts标准误差tStatP-valueIn tercept734.69

8、28139.54035.2650940.003285RVariable10.3086830.00845936.492362.91E-07得到的回归方程为:V =734.6928 +0.308683X。回归系数=0.308683表示人均GDP每增加1元, 人均消费水平平均增加 0.308683元。(4) 判定系数 R =0.6259。表明在人均消费水平的变差中,有99.6259%是由人均GDP决定的。.(5) 首先提出如下假设:Ho:, , H,:十0由于SignificanceF= .05,拒绝原假设,表明人均 GDP与人均消费水平之间的线性关系显著。(6) %00 =734.6928+ 0.

9、308683汉 5000 = 2278.1078 (元)。当 a =0.05 时,t0.05,2(7 _2) = 2.571(7)置信区间为:Se 二 247.3035o?0 -t“Se1_(x。二x)2_nn n2i 二= 2278.1078 2.571 247.3035:;(5000-12248.42857)2854750849.7= 2278.1078 287.4即(1990.7, 2565.5)o 预测区间为:?0_t:2Se 1 n2.1. (X。-X)n (Xi -X)2i 42= 2278.1078 - 2.571 247.3035 1 ;吋一曲42857)854750849.7

10、=2278.1078 -697.8即(1580.3, 2975.9)o7.11981-1999年国家财政用于农业的支出额数据如下:年份支出额(亿元)年份支出额(亿元)1981110.211991347.571982120.491992376.021983132.871993440.451984141.291994532.981985153.621995574.931986184.219967000.431987195.7219997766.391988214.0719981154.761989265.9419991085.761990307.84(1)绘制 时间序列 图描述其 形态。(2)计算

11、 年平均增 长率。(3)根据年平均增长率预测 20RR年的支出额。7.1( 1)时间序列图如下:3S9 lyv 90P9ZP914001200100080出支政财002年份从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势。(2)年平均增长率为:n Yn -18 1085.76 -1 =113.55% -1 =13.55% VY0 110.21(3) Y?000 =1085.76 汉(1+13.55%) =1232.88。年份单位面积产量年份单位面积产量198114511991121519821372199212811983116819931309198412321994129

12、61985124519951416198612001996136719871260199971479198810201998127219891095199914691990126020RR151927.21981-20RR年我国油菜籽单位面积产量数据(单位:kg/hm )如下:单位面积产量。(1 )绘制 时间序列 图描述其 形态。(2 )用 5 期移动平 均法预测 20RR年的0.3和0.5预测20RR年的单位面积产量,分析预测误差,说明用(3)采用指数平滑法,分别用平滑系数 哪一个平滑系数预测更合适。7.2( 1)时间序列图如下:(2)20RR年的预测值为:42?58642量产l 1367

13、+1479 +1272 +1469 +15197106cF20011421.255(3)由ERcel输出的指数平滑预测值如下表:年份单位面积产量指数平滑预 测a =0.3误差平方指数平滑预测a = 0.5误差平方19811451198213721451.06241.01451.06241.0198311681427.367236.51411.559292.3198412321349.513808.61289.83335.1198512451314.34796.51260.9252.0198612001293.58738.51252.92802.4198712601265.429.51226.5

14、1124.3198810201263.859441.01243.249833.6198910951190.79151.51131.61340.8199012601162.09611.01113.321518.4199112151191.4558.11186.7803.5199212811198.56812.41200.86427.7199313091223.27357.61240.94635.8199412961249.02213.11275.0442.8199514161263.123387.71285.517035.9199613671308.93369.91350.7264.419971

15、4791326.423297.71358.914431.3199812721372.210031.01418.921589.8199914691342.116101.51345.515260.320RR15191380.219272.11407.212491.7合计291455.2239123.020RR年=3时的预测值为:F2001Yt (1 一 :)Ft =0.3 1519 (1 -0.3) 1380.2 = 1421.8=0.5时的预测值为:F2001 二:Yt (1 -: )Ft =0.5 1519 (1-0.5) 1407.1 = 1463.1 比较误差平方可知,=0.5更合适。00

16、67.5( 1)趋势图如下:005o o o o O o o o O4 3 2 1量产纱年份纱产量年份纱产量年份纱产量196497.01976196.01988465.71965130.01977223.01989476.71966156.51978238.21990462.61967135.21979263.51991460.81968137.71980292.61992501.81969180.51981317.01993501.51970205.21982335.41994489.51971190.01983327.01995542.31972188.61984321.91996512.

17、21973196.71985353.51997559.81974180.31986397.81998542.01975210.81987436.81999567.07.5我国1964-1999年的纱产量数据(单位:万吨)如下:20RR年的产量。(1 )绘制 时间序列 图描述其 形态。(2)选择 一条合适 的趋势线 拟合数据, 并根据趋 势线预测(2)从图中可以看出,纱产量具有明显的线性趋势。用ERcel求得的线性趋势方程为:Y? =69.5202 13.9495t20RR年预测值为: 隘之9.52。2*9495沢 37 = 585.65=585.65 (万吨)。7.8下表中的数据是一家大型百货公司最近几年各季度的销售额数据(单位:万元)。对这一时间序列的 构成要素进行分解,计算季节指数,剔除季节变动,计算剔除季节变动后趋势方程。年份第一季度第二季度第三季度第四季度1991993.1971.22264.11943.319921673.61913.53927.83079.619932342.42552.63747.54472.819943254.44245.25951.16373.119953904.25105.97252.68630.519965483.25997.38776.18720.6199

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论