下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3、1多项式的因式分解教学目标1.使学生了解因式分解的意义,知道它与整式乘法在整式变形过程中的相反关系.2.通过观察,发现分解因式与整式乘法的关系,培养学生的观察能力和语言概括能力.1.理解因式分解的意义.2.识别分解因式与整式乘法的关系.教学难点通过观察,归纳分解因式与整式乘法的关系.教学目标一、创设问题情境,引入新课计算(a+b)(ab)a2b2=(a+b)(ab)成立吗?那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.二、讲授新课1.讨论6能被2整除吗?你是怎样想的?与同伴交流.6能被2整除.因为6=32其中有一个因数为2,所以6能被2整除.6还能被哪些正整数整除?还能被3整
2、除.从上面的推导过程看,等号左边是一个数,而等号右边是变成了几个数的积的形式.2.议一议你能尝试把a3a化成n个整式的乘积的形式吗?与同伴交流.观察x2x与x21这两个代数式.3.做一做(1)计算下列各式:(m+4)(m4)=_; (y3)2=_;3x(x1)=_; m(a+b+c)=_;a(a+1)(a1)=_.(2)根据上面的算式填空:3x23x=( )( ); m216=( )( );ma+mb+mc=( )( ); y26y+9=( )2.能分析一下两个题中的形式变换吗?在(1)中,等号左边都是乘积的形式,等号右边都是多项式;在(2)中正好相反,等号左边是多项式的形式,等号右边是整式乘
3、积的形式.在(1)中我们知道从左边推右边是整式乘法;在(2)中由多项式变成整式乘积的形式是因式分解.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式4.想一想由a(a+1)(a1)得到a3a的变形是什么运算?由a3a得到a(a+1)(a1)的变形与这种运算有什么不同?你还能举一些类似的例子加以说明吗?由a(a+1)(a1)得到a3a的变形是整式乘法,由a3a得到a(a+1)(a1)的变形是分解因式,这两种过程正好相反.由(a+b)(ab)=a2b2可知,左边是整式乘法,右边是一个多项式;由a2b2=(a+b)(ab)来看,左边是一个多项式,右边是整式的乘积形式,所以这两个过
4、程正好相反.如:(1)m(a+b+c)=ma+mb+mc(2)ma+mb+mc=m(a+b+c)联系:等式(1)和(2)是同一个多项式的两种不同表现形式.区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.所以,因式分解与整式乘法是互逆方向的变形.5.例题:下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax3ax2=3ax(2x);(3)a24=(a+2)(a2);(4)x23x+2=x(x3)+2.(1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,不是因式分解;(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;(3)和(2)相同,是因式分解;(4)不是因式分解,左右都是和形式。例 解方程:x2-1=0 解 把方程左端的多项式因式分解,得21世纪教育网 (x-1)(x+1)=021世纪教育网 从而得 x+1=0或x-1=0,21世纪教育网 即 x=-1或x=1. 因此方程的解是x=-1或x=1.三、课堂练习 连一连解:四.课时小结本节课学习了因式分解的意义,即把一个多项式化成几个整式的积的形式;还学习了整式乘法与分解因式的关系是互逆方向的变形.21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年链式开窗器项目商业计划书
- 多源数据融合的伦理风险监测系统
- 2025年中职(新媒体)内容创作阶段测试题及答案
- 2026年生物医药分离纯化材料项目评估报告
- 2025年大学文化产业管理(文化产业政策)试题及答案
- 2026年空调安装(柜机安装)试题及答案
- 2025年大学通识选修(哲学与流行文化)试题及答案
- 2025年高职(农村电子商务)农村电商平台运营管理综合测试题及答案
- 2025年大学航空服务(机场服务流程)试题及答案
- 2025年高职(会务组织)会议策划专项测试试题及答案
- 九宫数独200题(附答案全)
- QBT 2770-2006 羽毛球拍行业标准
- 部编版八年级上册语文《期末考试卷》及答案
- 售后服务流程管理手册
- 2020-2021学年新概念英语第二册-Lesson14-同步习题(含答案)
- 地下车库建筑结构设计土木工程毕业设计
- GB/T 2261.4-2003个人基本信息分类与代码第4部分:从业状况(个人身份)代码
- GB/T 16601.1-2017激光器和激光相关设备激光损伤阈值测试方法第1部分:定义和总则
- PDM结构设计操作指南v1
- 投资学-课件(全)
- 猕猴桃优质栽培关键技术课件
评论
0/150
提交评论