柴油机凸轮轴磨床总体设计说明书.doc

小型柴油机凸轮轴磨床设计(总体设计)【含6张CAD图纸】

收藏

压缩包内文档预览:(预览前20页/共45页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:125429529    类型:共享资源    大小:1.38MB    格式:ZIP    上传时间:2021-05-03 上传人:好资料QQ****51605 IP属地:江苏
80
积分
关 键 词:
小型 柴油机 凸轮轴 磨床 设计 总体 CAD 图纸
资源描述:

喜欢就充值下载吧。资源目录里展示的全都有,下载后全都有,图纸均为CAD高清图可自行编辑,有疑问咨询QQ:1064457796

内容简介:
目录摘要 3 Abstract 4第一章 绪论 41.1磨床的类型及其特点 41.2磨床的现状及其发展趋势 4 第二章 凸轮轴磨床概述 5 2.1凸轮轴磨床组成52.2 凸轮轴磨床技术参数5第三章 凸轮轴磨床主传动系统设计 7 3.1主传动系统简介 7 3.2对凸轮轴磨床主传动系统要求83.3主传动系统类型及方案选择 8 3.4计算主传动电机功率 9 3.5传动系统设计及主轴电动机设计计算10第四章 凸轮轴磨床主传动主轴设计 174.1 概述174.2 主轴结构设计184.3 主轴强度校核224.4 主轴组件润滑和密封27第五章 凸轮轴磨床进给机构设计 285.1 导轨选择285.2 滚珠丝杠的设计305.3 滚动轴承的设计38总结 42参考文献 43致谢 44柴油机凸轮轴磨床总体设计摘要凸轮轴磨床适用于汽车、拖拉机和柴油机修理厂磨削发动机曲轴的曲柄颈,并可兼作一般外圆磨削。用以磨削范围为:最大工作长度为1250毫米,最大工件回转直径为180毫米。其具有加工精度高,表面粗糙度低、操作方便,效率高、能耗低、噪音小等特点,能满足多种产品的工艺要求及市场多方面的需求。本文首先根据有关资料的探讨,分析总结了凸轮轴磨床总体结构,并对凸轮轴磨床进行总计结构设计,包括主传动机构、主轴箱、磨头等设计,并绘制主要的装配图及零件图。关键词:凸轮轴磨床、主传动机构、主轴箱、磨头The overall design of the engine camshaft grinding machine AbstractCamshaft grinder suitable for automobile, tractor and diesel engine repair crank factory grinding of engine crankshaft, and can be used as a general cylindrical grinding. Used to grinding scope is: the maximum length of 1250 mm, maximum workpiece diameter 180 mm. It has the advantages of high processing precision, low surface roughness, convenient operation, high efficiency, low energy consumption, low noise, can meet the technological requirements of a variety of products and market demand.Firstly, according to the relevant data, analyzes and summarizes the overall structure of camshaft grinding machine, and on the camshaft grinding machine for total structure design, including the main transmission mechanism, spindle box, tool design, and assembly drawings and part drawings are drawn.Key words: Camshaft grinding machine, the main transmission mechanism, spindle, grinding head第一章 绪论1.1磨床的类型及其特点用磨料磨具(砂轮、砂带、油石和研磨料等)为工具进行切削加工的机床,统称为磨床(英文为Grinding machine),它们是因精加工和硬表面的需要而发展起来的。磨床可以加工各种表面,如内、外圆柱面和圆锥面、平面、渐开线齿廓面、螺旋面以及各种成形表面。磨床可进行荒加工、粗加工、精加工和超精加工,可以进行各种高硬、超硬材料的加工,还可以刃磨刀具和进行切断等,工艺范围十分广泛。磨床种类很多,主要有:外圆磨床、内圆磨床、平面磨床、工具磨床和用来磨削特定表面和工件的专门化磨床,如花键轴磨床、凸轮轴磨床、曲轴磨床等。对外圆磨床来说,又可分为普通外圆磨床、万能外圆磨床、无心外圆磨床、 宽砂轮外圆磨床、端面外圆磨床等。以上均为使用砂轮作切削工具的磨床。此外,还有以柔性砂带为切削工具的砂带磨床,以油石和研磨剂为切削工具的精磨磨床等。 磨床与其他机床相比,具有以下几个特点:(1)、磨床的磨具(砂轮)相对于工件做高速旋转运动(一般砂轮圆周线速度在 35米/秒左右,目前已向200米/秒以上发展);(2)、它能加工表面硬度很高的金属和非金属材料的工件;(3)、它能使工件表面获得很高的精度和光洁度;(4)、易于实现自动化和自动线,进行高效率生产;(5)、磨床通常是电动机-油泵-发动部件,通过机械,电气,液压传动-传动部件带动工件和砂轮相对运动-工件部分组成。1.2磨床的现状及其发展趋势十八世纪30年代,为了适应钟表、自行车、缝纫机和枪械等零件淬硬后的加工,英国、德国和美国分别研制出使用天然磨料砂轮的磨床。这些磨床是在当时现成的机床如车床、刨床等上面加装磨头改制而成的,它们结构简单,刚度低,磨削时易产生振动,要求操作工人要有很高的技艺才能磨出精密的工件。1876年在巴黎博览会展出的美国布朗-夏普公司制造的万能外圆磨床,是首次具有现代磨床基本特征的机械。它的工件头架和尾座安装在往复移动的工作台上,箱形床身提高了机床刚度,并带有内圆磨削附件。1883年,这家公司制成磨头装在立柱上、工作台作往复移动的平面磨床。1900年前后,人造磨料的发展和液压传动的应用,对磨床的发展有很大的推动作用。随着工业特别是汽车工业的发展,各种不同类型的磨床相继问世。例如20世纪初,先后研制出加工气缸体的行星内圆磨床、曲轴磨床、凸轮轴磨床和带电磁吸盘的活塞环磨床等。 自动测量装置于1908年开始应用到磨床上。到了1920年前后,无心磨床、双端面磨床、轧辊磨床、导轨磨床,珩磨机和超精加工机床等相继制成使用;50年代又出现了可作镜面磨削的高精度外圆磨床;60年代末又出现了砂轮线速度达6080米/秒的高速磨床和大切深、缓进给磨削平面磨床;70年代,采用微处理机的数字控制和适应控制等技术在磨床上得到了广泛的应用。展望未来,磨床将向着高速,高精度,自动化可加工范围广的方向发展。磨床主要用于零件的精加工,尤其是淬硬钢件和高硬特殊材料零件的精加工。由于现代机械对零件的精度要求不断提高,表面粗糙度越来越小,各种高硬材料的应用日益增多,加上精密毛坯制造工艺的发展,很多零件可以不经其他切削加工工序而直接由磨削加工成成品,因此,磨床在金属切削机床的比重不断上升。为了适应磨削各种表面、工件形状和生产批量的要求,磨床的种类很多,主要有:外圆磨床、内圆磨床、平面磨床、工具磨床和专门用来磨削特定表面和工件的专门化磨床,如花键轴磨床、凸轮轴磨床、曲轴磨床等。其发展的主要趋势是提高生产效率、提高自动化程度和加工质量以保证曲轴的加工精度和光洁度,提高生产率,提高砂轮线速度,才用高速磨削工艺可以成倍的提高磨削效率,降低砂轮消耗,提高砂轮的使用寿命和工件表面光洁度等。第二章 凸轮轴磨床概述2.1 凸轮轴磨床的组成凸轮轴磨床如下图:1-床身 2-头架3-卡盘4-砂轮架5-尾架6-手轮其主要部件组成有:(1) 床身。床身是磨床的基础支承件,在它的上面装有头架、砂轮架、工作台、尾座及横向滑鞍等部件,使这些部件在工作时保持准确的相对位置。床身内部作为液压油的油池。(2) 头架。头架用于安装及夹持工件,主要由头架电机、壳体、头架主轴及其轴承、工件传动装置与底座等组成。(3) 砂轮架。砂轮架用于支承并传动高速旋转的砂轮主轴。砂轮架主要由砂轮架电机、壳体、砂轮主轴及轴承、砂轮进给装置与底座等组成。(4) 尾座。尾座主要由壳体、尾座主轴及轴承、工件装夹装置等组成。(5) 滑鞍及横向进给机构。转动横向进给手轮,可以使横向进给机构带动滑鞍及其上的砂轮架作横向进给运动,横向进给机构主要由导轨、床身、进给伺服机制、手柄等组成。(6) 工作台。工作台的上面装有头架和尾座,它们可随着工作台一起沿床身导轨做纵向往复运动。2.2 凸轮轴磨床技术参数由本次设计的凸轮轴磨床参数可知,可磨直径:20-180mm,可磨工件最大长度:1250mm,磨头架转速:70r/min第三章 凸轮轴磨床主传动系统设计3.1 凸轮轴磨床主传动系统简介主传动系统是用来实现机床主运动的传动系统,他应具有一定的转速和一定的变速范围,以便采用不同材料的刀具,加工不同的材料、不同尺寸、不同要求的工作、并能方便的实现运动的开停、变速、换向和制动等。磨床主传动系统主要包括电动机、传动系统和主轴部件,它与普通机床的主传动系统相比在结构上简单,这是因为变速功能全部或大部分主轴电动机的无极调速来承担,省去了复杂的齿轮变速机构,有些只有二级或三极齿轮变速系统用以扩大电动机无级调速的范围。在主传动系统方面,具有下列特点:(1)目前磨床的主传动电机已不再采用普通的交流异步电机或传统的直流调速电机,它们已逐步被新型的交流调速电机和直流调速电机所代替。(2)转速高,功率大。它能使磨床进行大功率切削和高速切削,实现高效率加工。(3)变速范围大。磨床的主传动系统要求有较大的调速范围,一般Rn100,以保证加工时能选用合理的切削用量,从而获得最佳的生产率、加工精度和表面质量。(4)主轴速度的变换迅速可靠。磨床的变速是按照控制指令自动进行的,因此变速机构必须适应自动操作的要求。由于直流和交流主轴电机的调速系统日趋完善,不仅能够方便地实现宽范围的无级变速,而且减少了中间传递环节,提高了变速控制的可靠性。3.2 对凸轮轴磨床主传动系统的要求(1)主轴具有一定的转速和足够的转速范围、转速级数,能够实现运动的开停、变速、换向和制动,以满足机床的运动要求。(2)主电动机具有足够的功率,全部机构和元件具有是够的强度和刚度,以满足机床的动力要求。(3)主传动的有关结构,特别是主轴组件要有足够高的精度、抗振性,热变形和噪声要小,传动效率要高,以满足机床的工作性能要求。(4)操纵灵活可靠,调整维修方便,润滑密封良好,以满足机床的使用要求。(5)结构简单紧凑,工艺性好,成本低,以满足经济性要求。3.3 主传动的类型及方案选择 磨床的调速是按照控制指令自动执行的,因此变速机构必须适应自动操作的要求。在主传动系统中,目前多采用交流主轴电动机和直流主轴电动机无级凋速系统。为扩大调速。为了适应不同的加工要求,目前主传动系统主要有三种变速方式1具有变速齿轮的主传动这是大、中型磨床采用较多的一种变速方式。通过几对齿轮降速,增大输出扭矩,以满足主轴输出扭矩特性的要求,见图1-1所示。一部分小型磨床也采用此种传动方式以获得强力切削时所需要的扭矩。图2.1 图2.2 图2.32通过带传动的主传动通常选用同步齿形带或多楔带传动,这种传动方式多见于数控车床,它可避免齿轮传动时引起的振动和噪声,见图2-2所示。3由调速电机直接驱动的主传动这种主传动是由电动机直接驱动主轴,即电动机的转子直接装在主轴上,因而大大简化了主轴箱体与主轴的结构,有效地提高了主轴部件的刚度,但主轴输出扭矩小,电机发热对主轴的精度影响较大。如图2-3所示。近年来,出现了一种新式的内装电动机主轴,即主轴与电动机转子合为一体。其优点是主轴组件结构紧凑,重量轻,惯量小,可提高起动、停止的响应特性,并利于控制振动和噪声。缺点是电动机运转产生的热量亦使主轴产生热变形。因此,温度控制和冷却是使用内装电动机主轴的关键问题。日本研制的立式加工中心主轴组件,其内装电动机最高转速可达20000r/min。本次设计采用变速齿店主传动系统。使主轴获得较高的转速和骄傲大的转矩。二级以上齿轮变速系统虽然此种结构复杂,制造和维修费用高,但和以上两种驱动方式比,变速装置多采用齿轮变速结构,可以使用可调的交、直流无级变速电动机,经齿轮变速后,实现分段无级变速,调速范围增加,且能满足各种切削运动的转矩输出,因此选用二级以上齿轮变速系统作为主传动的变速方式。3.4 计算主传动功率 用下列粗略估算主电动机的功率 (2-3) 式中,为磨床主传动系统总机械效率,主运动为回转运动时,;主运动为直线运动时,。取主传动的总效率=0.7则初选电动机功率取电动机额定转速为;额定最高转速为3.5传动系统的设计及主轴电动机的功率的确定由3.2中初选电动机功率为5.5kw,计算转速依据如下公式计算: (3-4)则电动机的恒功率调速范围:主轴恒功率调速范围:因此主轴要求的恒功率变速范围远大于电动机所能提供的恒功率围,所以在电动机与主轴之间要串联一个分级变速箱,来扩大电动功率变速范围。3.5.1 变速级数Z的确定如取变速箱的公比 则由于无级变速时 故变速箱的变速极数 可取Z=3 (2-5)虽然此中方法功率特性图示连续的、无缺口(即没有功率降低区)和无重但是Z=3,变速箱机构较复杂。因此为简化变速箱机构,取Z=2。3.5.2 电动机的功率的确定由公式(35)可知,应增大 即 所以比大很多。此时变速箱每挡内有部分低转速只能恒转矩变速,主传动系统的功率特性图中出现缺口区。缺口处的功率为 低谷处功率应保证传递全部功率,只有选择额定功率较大的电机给予补偿。所以选用的交流变频电动机。则缺口处的功率为。有很大的改善。3.5.3 电动机参数一、电动机性能指标电机采用CTB系列变频电机,型号:CBT43P5BXB504,主要技术指标如下。(1)电压:三相380V/50Hz;(2)变频调速范围:5100Hz无级调速,550Hz恒转矩调速,50100Hz恒功率调速,级数为4级,额定转速1440r/min;(3)电机应能承受额定转矩的60%过载,历时1min,低速时转矩平滑,无爬行现象;能通过变频装置的电压提升,保证电动机频率在5Hz时输出额定转矩而不致使电机因发热而烧毁。(4)CTB系列变频电机,型号:CBT43P5BXB504 主要性能参数如表2.1所示:表3.1图3.1为电动机外形图3.5.4变速箱的传动系统变速机构的确定本系统设计的传动系统具有两档速度,低档转速为,高档转。采用二级变速传动,传动比为的高速传动的低速传动两种变速机构,采用拨叉变速。显然如果要求巧内作恒功率的不停车变速可用高档。如果要求在内作恒功率的不停车变速可用低档。转速图和功率特性图如图3.2所示。图3.13.5.5 传动方案确定3.5.5.1 传动等级确定最高、最低转速确定后,还需确定中间转速,选择公比,转速级数Z,则转速数列为:n= n=100r/min, n= n, n= n, n= n查标准数列,取公比=1.82 (12)转速范围: R=40转速级数: Z=+1=5.99 取Z=6由于本次设计的要求,主轴转速级数只需设计四级就能满足要求,故取Z=4。即:n=100, n=180, n=330, n=600 (r/min)3.5.5.2 传动方案确定拟定传动方案,包括传动型式的选择以及开停、换向、制动、操纵等整个传动系统的确定。传动型式则指传动和变速的元件、机构以及组成、安排不同特点的传动型式、变速类型。传动方案和型式与结构的复杂程度密切相关,和工作性能也有关系。因此,确定传动方案和型式,要从结构、工艺、性能及经济等多方面统一考虑。传动方案有多种,传动型式更是众多,比如:传动型式上有集中传动,分离传动;扩大变速范围可用增加传动组数,也可用背轮结构、分支传动等型式;变速箱上既可用多速电机,也可用交换齿轮、滑移齿轮、公用齿轮等。显然,可能的方案有很多,优化的方案也因条件而异。此次设计中,我们采用集中传动型式的主轴变速箱。结构式、结构网对于分析和选择简单的串联式的传动不失为有用的方法,但对于分析复杂的传动并想由此导出实际的方案,就并非十分有效。级数为Z的传动系统由若干个顺序的传动组组成,各传动组分别有、传动副。即本设计中传动级数为Z=6。传动副中由于结构的限制以2或3为合适,本课程设选择方案: 6231。3.5.6传动轴估算传动轴除应满足强度要求外,还应满足刚度的要求,强度要求保证轴在反复载荷和扭载荷作用下不发生疲劳破坏。机床主传动系统精度要求较高,不允许有较大变形。因此疲劳强度一般不失是主要矛盾,除了载荷很大的情况外,可以不必验算轴的强度。刚度要求保证轴在载荷下不至发生过大的变形。因此,必须保证传动轴有足够的刚度。3.5.6.1传动轴直径的估算(1).确定各变速齿轮传动副的齿数轴: 取,则从表中查出小齿轮齿数为30、26 轴: 取 小齿轮齿数为26、30 轴: (滚子轴承)=0.98 (9级精度的齿轮)=0.96为(十字滑块联轴器)=0.98轴: KW 轴: KW 轴: KW NmmNmmNmm传动轴为,轴, 一般传动轴取mm 取d=30 轴承6206mm 取d=30 轴承6206mm 取d=50 轴承62103.5.6.2齿轮模数的计算(1)I-齿轮弯曲疲劳的计算mm齿面点蚀的计算: 取A=50,由中心距A及齿数计算出模数,所以取(2)-齿轮弯曲疲劳的计算KW取A=60,取m=2.5(3)-齿轮弯曲疲劳的计算KW 取A=145 ,取m=3.0第四章 凸轮轴磨床主传动主轴设计4.1概述主轴部件设计是机床重要部件之一,它是机床的执行件。它的功用是支撑并带动工件或刀具旋转进行切削,承受切削力和驱动力等载荷,完成表面成型运动。4.1.1轴的分类轴是机械传动的一个重要零件,一般作回转运动的零件常要装在轴上才能实现其回转运动。其承载在载荷可分为:1.转轴工作时既承受弯矩又承受扭矩。2.心轴用于支撑转动零件,只承受弯矩。3.传动轴传递扭矩。在高速传动的轴不仅要考虑轴的材料、结构、强度和刚度,而且要防止轴的振动(动平衡)。此外,注意轴上零件的固定,结构工艺性,热处理等要求。作为制造机器的机器上的轴,设计的主要原则是刚度原则,本次设计选择转轴。4.1.2主轴材料轴的材料主要是碳钢和合金钢。数控主轴主要传递扭矩,且在高速旋转中产生大量的热,产生一定的轴伸长,其他零件的变形,从而影响加工精度和表面质量。从多方面考虑选用40Cr为本次数控铣床主轴材料。4.2主轴结构设计主轴部件由主轴及其支承轴承、传动件、密封件及定位元件等组成。 4.2.1主轴部件应满足的基本要求(1)旋转精度 主轴的旋转精度指装配后,在无载荷、低转速条件下,在安装工件或刀具的主轴部位的径向和端面圆跳动。其主要取决于主轴、轴承、箱体孔等的制造、装配和调整精度。(2)刚度 主轴部件的刚度指其在外加载荷的作用下抵抗变形的能力,通常以主轴前端产生单位位移的弹性形变时,在位移方向上所施加的作用力来定义。如图4-1所示。主轴部件的刚度是主轴、轴承等刚度的综合反映。因此,主轴的尺寸和形状、轴承的类型和数量、预紧和配置形式、传动件布置形式、主轴部件的制造和装配质量都影响主轴部件的刚度。图4-1(3)抗振性 主轴部件的抗振性指抵抗受迫振动和自激振动的能力。在切削过程中,主轴部件不仅受静态力作用,同时也受冲击力和交变力的干扰,使主轴产生振动。影响抗振性的主要因素是主轴部件的静刚度、质量分布及阻尼。其评价指标是主轴部件的低阶固有频率与振型。(4)温升和热变形 主轴部件运转时,因相对运动产生的摩擦热、切削的切削热等使主轴部件的温度升高,形状尺寸和位置发生变化,造成主轴部件的热变形。其引起轴承间隙变化,润滑油温度升高会使粘度降低,这些变化会影响主轴部件的工作性能,降低加工精度。(5)精度保持性 主轴部件的精度保持性指长期保持其原始制造精度的能力。磨损是主轴部件丧失原始精度的主要原因。因此,必须提高主轴部件的耐磨性。对耐磨性影响较大的有主轴的材料、轴承的材料、热处理方式、轴承类型及润滑防护方式等。由于机械结构的要求而需在轴中装设其他零件或者减少轴的质量具有特别重大的作用的场合,则将轴制成空心的,空心轴内径与外径的比值通常为0.5-0.6为保证轴的刚度和扭转稳定性。轴的设计也和其他的零件的设计相似,包括结构设计和工作能力的计算两方面的内容。轴的结构设计是根据轴上零件的安装、定位以及轴的制造工艺性等方面的要求,合理地确定轴的结构形式和尺寸。轴的结构不合理会影响轴的工作能力和轴上零件的工作可靠性,还会增加轴的制造成本和轴上零件装配的困难等。因此轴的结构设计很重要。轴的工作能力计算指的是轴的强度、刚度和振动稳定性等方面的计算。多数情况下,轴的工作能力主要取决于轴的强度。这时只需对轴进行强度计算,以防止断裂或塑性变形。对于机械装备则需刚度计算,防止工作时产生过大的弹性变形,影响加工精度和表面质量。对于高速运转的轴,还应进行振动稳定性计算,防止发生共振而破坏。4.2.2轴的结构设计轴的结构主要取决于以下因素:(1)轴在机器中的安装位置及形式;(2)轴上安装零件的类型、尺寸、数量和轴连接的方法;(3)载荷的性质、大小、方向及分布情况;(4)轴的加工工艺。不论什么条件,轴的结构应满足以下条件:(1) 轴和装在轴上的零件要有准确的工作位置,周向和轴向要有准确的定位;(2) 轴上的零件应便于装拆和调整;(3) 轴应具有良好的结构工艺性和制造工艺性。4.2.3草拟轴上零件的装配方案 预定出轴上主要零件的装配方向、顺序和关系,如下图立式数控铣床主轴的装配。前轴承(前支撑)、套筒、轴承、套筒(曲路密封)与端盖(曲路密封)齿轮(动力输入部分)、圆螺母、轴承(后支撑)、端盖、依次从轴的后端向前端安装。4.2.4轴上零件的定位 为防止轴上零件受力时发生沿轴向和周向的相对运动,轴上零件除了有游动或空转要求外,都必须进行轴向和周向定位,以保证其准确的工作位置。 1.零件的轴向固定:通常由轴肩、套筒、轴端挡圈、轴承端盖和圆螺母来保证; 2.零件的周向固定:周向固定的目的是限制轴上零件与轴发生相对运动。常用周向定位零件有键、花键、销、紧定螺钉以及过盈配合等,其中紧定螺钉只用在传力不大之处。4.2.5 各轴段直径与的确定由轴的结构和拉刀方式确定出轴的最小直径:立式数控铣床主轴必须制成空心轴,且又因为为空心轴的内径与外径d 之比,为了保证轴的刚度和扭转刚度,通常在之间,取为0.6。故d=50mm。按轴上零件的装配方案和定位要求,从处起逐一确定各轴段的直径。在实际的设计中,轴的直径亦可凭设计者的经验确定,或参考同类机器用类比的方法确定。有配合要求的轴段,应尽量采用标准直径。安装标准件的部位的轴径,应取为相应的标准值及所选的配合公差。且在这样的轴段需0.5mm的碳氮共渗层。为了使带轮、轴承等有配合要求的零件装配拆卸方便,并减少配合面的擦伤,在配合轴段前应采用较小的直径,发挥轴肩的作用。 确定各轴段长度时,应尽可能使结构紧凑,同时还需要保证零件所需的装配或调整空间。轴的各段长度主要是根据各零件与轴配合部分的轴向尺寸和相邻零件必要的空隙来确定的。为了保证轴向定位可靠与带轮等零件相配合部分的轴段长度一般应比轮毂长度短23mm,所以取Dmax=78mm.(1)主轴悬伸量a与前端轴颈D1之比可按下表3.1选择:表3.1 主轴悬伸量与前端轴颈之比机床和主轴的类型a/D1通用和精密机床,自动车床和短主轴端铣床,用滚动轴承和支架0.51.5中等长度和较长主轴端的车床和铣床,悬伸较长的精密镗床 和内圆磨床1.252.5孔加工机床应用加工细长孔的机床,由加工技术决定,需要有长的悬伸刀杆或主轴可移动,因切削较长而不适用于有高精度要求的机床2.5取a=65mm(2)主轴合理跨距的选择:在具体设计时,常常由于结构上的限制,实际跨距l最佳合理跨距。这样就造成主轴组件的刚度损失。在设计中一般认为l/=时,刚度损失不大(5%左右)。应该认为在合理范围之内,称之为合理跨距,合理跨距 =()是一个区域。4.2.6 提高主轴强度的措施轴和轴上零件的结构、工艺及轴上零件的安装布置等对轴的强度有很大的影响,所以应在这些方面进行考虑,以利提高轴的承载的能力,减小轴的尺寸和机器的质量,降低制造成本。(1)合理布置轴上零件以减小轴的载荷。为了减小轴所承受的弯矩,传动件应尽量靠近轴承,并尽可能不采用悬臂的支承形式,力求缩短支承跨距及悬臂长度。通常轴是在变应力条件下工作的,轴的截面尺寸发生突变处产生应力集中,轴的疲劳破坏也常常发生在此处。轴肩要采用较大的R减小应力集中;选择合适的配合关系;可在轮毂或轴上开减载槽;切制螺纹处的应力集中较大,应避免在轴上受载较大的区段切制螺纹。(2)改进轴的表面质量提高轴的疲劳强度。轴的表面愈粗糙,疲劳强度愈低。因此,应合理减小轴的表面及圆角处的,提高轴的疲劳强度。表面强化处理的方法有:表面高频淬火;表面渗碳、氮化;碾压、喷丸等强化处理。4.2.7 轴的结构工艺性轴的结构工艺性指轴的结构形式应便于加工和装配轴上的零件,生产率高,成本低。一般说,轴的结构越简单,工艺性越好。因此,在满足使用要求的前提下,轴的结构形式应尽量简单。为了便于装配零件并去掉毛刺,轴端应制出45的倒角;需要磨削加工的轴段,应留有砂轮越程槽;需要切制螺纹的轴段,应留有退刀槽。为了减少加工刀具种类和提高劳动生产率,轴上直径相近处的圆角、倒角、键槽宽度、砂轮越程槽宽度和退刀槽宽度等应尽量采用相同的尺寸。主轴结构设计如下图:图4.1 主轴结构示意图4.3主轴强度的校核常见轴材料见表4.2所示。表4.2 常见轴材料轴的材料Q235-A、20Q275、354540Cr15-2520-3525-4535-45A0149-126135-112126-103112-974.3.1按扭转强度进行计算下面这种方法只是按轴所承受的扭矩来计算轴的强度;如果还承受有不大的弯矩时,则用降低许用扭转切应力的方法予以考虑。在作轴的结构设计时通常用这种方法初步估算轴径。对于不大重要的轴,也可作为计算结果。轴的扭转强度条件为 (4-1)扭转切应力,单位MPaT轴所受的扭矩,单位为Nmm轴的抗扭截面系数,单位为n轴的转速,单位为r/minP轴传递的功率,单位为kwd计算截面处轴的直径,单位为mm许用扭转切应力,单位为MPa由上式可的直径 (4-2)式中: 对于空心轴 (4-3)应当指出,当轴截面上开有键槽时,应增大轴径以考虑键槽对轴的强度的削弱。对于直径d100mm的轴,有一个键槽时,轴径应增大7%。对于直径d100mm的轴,有一个键槽时,轴径应增大5%-7%有两个键槽时,应增大10%-15%。然后将轴径圆整为标准直径。应当注意,这样求出的直径,只能作为承受扭矩作用的轴段的最小直径。4.3.2 强度校核计算轴的精确计算主要是轴的强度和刚度校核计算,且在满足轴的强度和刚度要求,必要时还应进行轴的振动稳定性计算。进行轴的强度校核计算时,应根据轴的具体受载及应力情况,采取相应的计算方法,并恰当地选用许用应力。BT30铣床机械主轴既承受弯矩又承受扭矩,应按弯扭合成强度条件进行计算,需要时还应按疲劳强度进行精确校核计算。1. 按扭转强度条件进行校核计算。 式中:扭转切应力,单位MPa。T轴所受的扭矩,单位为Nmm。d计算截面处轴的直径,单位为mm。许用扭转切应力,单位为MPa。轴的抗扭截面系数,单位为。由机械设计手册表8-348查得为45MPa;由机械设计课程设计手册表3-1(GB1059-79)可查得;。将以上各值代入式(24)得:=4.7MPa 2. 按弯扭合成强度计算:过轴的结构设计,轴上零件的位置,外载荷和支反力的作用位置都已确定,算出轴上载荷。由金属切削手册表得:表4.3 参数表 项目参数 数值出处D50mm表9-7B 30mm表9-4 S0.1mm/齿表9-11t8mmt=0.02*DZ4表9-7由金属切削机床夹具设计手册表3-56得查手册表1-2逆铣时得;, , 所以, 求出支反力:已知 ; 联立解得: 刚度校核计算:轴在载荷作用下,将产生弯曲或扭转变形。若变形量超过了允许的限度,就会影响轴上零件的正常工作,甚至会丧失机器应有的工作性能。对于制造产品的铣床主轴来说刚度是关键。由误差复映原理可知,刚度较差的机床造出的产品,根本就谈不上精度。因此,本次设计的BT40主轴必须校核刚度。轴的弯曲刚度以挠度和偏转角来度量的;扭转刚度以扭转角来度量。主要任务是:计算主轴在受载时的变形量,并控制其在允许范围内。刚度校核计算:阶梯轴的刚度条件: T 扭矩,单位为NmmG 剪切弹性模量,单位为,对于各种钢材,极惯性矩,单位为L 阶梯轴受扭矩的长度,单位为mmZ 阶梯轴受扭矩轴段数、 阶梯轴第i段上的扭矩、长度、惯性矩 由机械设计查得/m,显然,。故满足刚度条件。4.4主轴组件的润滑和密封4.4.1 主轴轴承的润滑润滑的作用是降低摩擦,减小温升,并与密封装置在一起,保护轴承不受外物的磨损和防止腐蚀。润滑剂和润滑方式决定于轴承的类型、速度和工作负荷。如果选择得合适,可以降低轴承的工作温度和延长使用期限。滚动轴承可以用润滑油或润滑脂来润滑。试验证明,在速度较低时,用润滑脂比用润滑油温升低。所以,此次设计的主轴支承均采用润滑脂。同时,主轴是装在主轴套筒内的,为防止使用润滑油时泄漏,也应采用润滑脂润滑。加润滑脂时,应该注意润滑脂的充填量不能过多,不能把轴承的空间填满,否则会引起过高的发热,并使润滑脂熔化流出而恶化润滑效果。4.4.2 主轴组件的密封密封对主轴组件的工作性能与润滑影响也较大。机床主轴密封不好,将使润滑剂外流,造成浪费,加速零件的磨损,还会严重地影响到工作环境及机床的外观。4.4.2.1 主轴组件密封装置的功用密封装置的功用是:防止润滑剂从主轴组件及传动部件中泄漏,从而避免浪费,保护工作环境,防止冷却液及杂物(如灰尘、脏物、水气和切屑等)从外面进入部件内,以减少机床零件的腐蚀及磨损,延长其使用寿命。4.4.2.2 对主轴组件密封装置的要求对主轴组件密封装置的要求是:在一定的压力、温度范围内具有良好的密封性能;由密封装置所形成的摩擦力应尽量小,摩擦系数应尽量稳定;耐腐蚀、磨损小、工作寿命长,磨损后,在一定程度上能自动补偿;结构简单、装卸方便。对具体的主轴组件及传动部件,应根据实际情况选择有效而又经济密封装置。4.4.2.3主轴组件密封装置的类型主轴组件密封装置的类型,主要有以下几种:具有弹性元件的接触式密封装置;皮碗(油封)式密封装置;具有金属和石墨元件的接触式密封装置;挡油圈式和螺旋沟式密封装置;圈形间隙式、油沟式和迷宫式密封装置;立式主轴的密封装置等。4.4.2.4 主轴组件密封装置的选择选用密封装置时,应考虑到主轴组件的下列具体工作条件:密封处主轴颈的线速度;所用润滑剂的种类及其物理化学性质;主轴组件的工作温度;周围介质的情况;主轴组件的结构特点;密封装置的主要用途等。综合考虑上述因素,主轴前支承处,为了更好地防止外界的灰尘屑末等杂物进入,故考虑选用迷宫式密封,形成一条长而曲曲折折的通道,径向尺寸不超过0.3mm,中填润滑脂,轴向尺寸不超过1.5mm。查机械设计课程设计手册第87页表7-17,可得此次选用的迷宫式密封装置的结构参数如下图所示:第五章 凸轮轴磨床进给机构设计5.1. 导轨的选择5.1.1 导轨的分类及其特点导轨主要根据导轨副之间的摩擦情况,导轨分为:(1)滑动导轨两导轨之间为滑动摩擦。结构简单,制造方便,刚度好,抗振性高,是机床上最广泛采用的。特点:导向精度高,不会出现间隙,能自动补偿磨损。一般选取三角形顶角=90,重型机械采用大顶角=110120。当水平力大于垂直力,V形导轨两侧受力不均匀时,采用不对称V形导轨。直线导轨和圆导轨均可采用 承载能力大,制造方便。必须留有侧向间隙。不能补偿磨损。用镶条调整时,会降低导向精度。 需注意导轨的保护。直线导轨和圆导轨均可采用 尺寸紧凑,适用于要求高度小导轨层数多的场合。可构成闭式导轨。用一根镶条可以调整各面的间隙。刚度比平面导轨小。制造简单,弯曲刚度小,主要用于受轴向载荷的导轨。适用于同时作直线和旋转运动的场合。(2)滚动导轨滚动直线导轨副是由导轨、滑块、钢球、返向器、保持架、密封端盖及挡板等组成。当导轨与滑块作相对运动时,钢球就沿着导轨上的经过淬硬和精密磨削加工而成的四条滚道滚动,在滑块端部钢球又通过返向装置(返向器)进入返向孔后再 进入滚道,钢球就这样周而复始地进行滚动运动。返向器两端装有防尘密封端盖,可有效地防止灰尘、屑末进入滑块内部。特点: 滚动直线导轨副是在滑块与导轨之间放入适当的钢球,使滑块与导轨之间的滑动摩擦变为滚动摩擦,大大降低二者之间的运动摩擦阻力,从而获得: 动、静摩擦力之差很小,随动性极好,即驱动信号与机械动作滞后的时间间隔极短,有益于提高数控系统的响应速度和灵敏度。驱动功率大幅度下降,只相当于普通机械的十分之一。与V型十字交叉滚子导轨相比,摩擦阻力可下降约40倍。适应高速直线运动,其瞬时速度比滑动导轨提高约10倍。能实现高定位精度和重复定位精度。 能实现无间隙运动,提高机械系统的运动刚度。成对使用导轨副时,具有“误差均化效应”,从而降低基础件(导轨安装面)的加工精度要求,降低基础件的机械制造成本与难度。导轨副滚道截面采用合理比值的圆弧沟槽,接触应力小,承接能力及刚度比平面与钢球点接触时大大提高,滚动摩擦力比双圆弧滚道有明显降低。导轨采用表面硬化处理,使导轨具有良好的可校性;心部保持良好的机械性能。简化了机械结构的设计和制造。5.1.2 导轨的确定查机械设计手册3第二版选取直线滚动导轨副系列,又根据机床设计要求的特点,本设计初步选择:(1)直线滚动导轨副选取四方向等载荷型(GGB型),其特点是:垂直向上向下和左右水平额定载荷是等同的,额定载荷比较大,刚度高。(2)尺寸规格初选45,其结构形式选择AA 型。(3)每根导轨上的滑块数为1。(4)查出磨床的径向间隙为C1级。(5)一般的机床设计,在同一个平面上使用的导轨数为2个。(6)查出全自动轴承磨床推荐的精度等级为3。(7)导轨的材料为HT200.初步确定直线滚动导轨的型号为GGB45AA1C123选择用南京工艺设备制造厂的滚动直线导轨如图1图4.1 滚动直线导轨此导轨的设计参数查询机械设计手册3第二版P28-138页。5.1.3导轨的校核 本设计的两个导轨都放在床身上,所以没有必要进行校核。安装时要保证安装精度。5.2 滚珠丝杠的设计5.2.1滚珠丝杠的设计(1)传动效率高滚珠丝杠传动系统的传动效率高达90%98%,为传统的滑动丝杠系统的24倍,能以较小的扭矩得到较大的推力,亦可由直线运动转为旋转运动(运动可逆)。 (2)运动平稳滚珠丝杠传动系统为点接触滚动运动,工作中摩擦阻力小、灵敏度高、动时无颤动、低速时无爬行现象,因此可精密地控制微量进给。 (3)高精度滚珠丝杠传动系统运动中温升较小,并可预紧消除轴向间隙和对丝杠进行预拉伸以补偿热伸长,因此可以获得较高的定位精度和重复定位精度。 (4)高耐用性钢球滚动接触处均经硬化(HRC5863)处理,并经精密磨削,循环体系过程纯属滚动,相对对磨损甚微,故具有较高的使用寿命和精度保持性。 (5)同步性好由于运动平稳、反应灵敏、无阻滞、无滑移,用几套相同的滚珠丝杠传动系统同时传动几个相同的部件或装置,可以获得很好的同步效果。 (6)高可靠性与其它传动机械,液压传动相比,滚珠丝杠传动系统故障率很低,维修保养也较简单,只需进行一般的润滑和防尘。在特殊场合可在无润滑状态下工一般来说滚珠丝杠在工作中应该预紧以提高丝杠的刚度,从而提高传动精度,但在本机械系统中由于丝杠所承受的弯矩很小,所以我觉得没必要进行预紧,所以安装方式是一端固定一端游动的形式。X轴向的工作台与其上面所安装的机械结构重力约10N,焊枪在焊接时由于电流作用与工件之间的相互吸引力约2N。5.2.2滚珠丝杠副丝杠副传动法面截形,循环方式等的确定查机械传动设计手册,根据滚珠丝杠副螺纹滚道法面截形、参数和特点的比较选择如下:(1)确定选择螺纹滚道法面截形为单圆弧,参数公式见表8.2-11,接触角为=45。其特点是:磨削滚道的砂轮成形简便,可得到较高的加工精度。有较高的接触强度,但比值/小,运行时摩擦损失增大。接触角随初始间隙和轴向载荷的大小变化,为保证=,必须严格控制径向间隙。图示如图2图2 单圆弧法面截形(2)单圆弧法面截形要求消除间隙和调整预紧必须采用双螺母结构。(3)根据机床的特点,选用内循环浮动式反向器,其特点是径向尺寸小,循环通道短,摩擦损失小,传动效率高。5.2.3 滚珠丝杠的预紧滚珠丝杠副除了对本身单一方向的传动精度有要求外,对其轴向间隙也有要求,以保证其反向传动的精度。我们通常采用双螺母结构预紧方式(图3)图3 双螺母结构预紧示意图 双螺母预紧的结构通常有三种:1.垫片调隙式(图4)图4 垫片调隙式调整方法:调整垫片厚度,使螺母产生轴向位移。为便于调整,垫片常制成剖分式。特点:结构简单,装卸方便,刚度高;但调整不便,滚道有磨损时,不能随时消除间隙和预紧。适用于高刚度重载传动。2.螺纹调隙式(图5)图5 螺纹调隙式调整方式:调整端部的圆螺母,使螺母产生轴向位移。特点:结构紧凑,工作可靠,调整方便;但准确性差,且易于松动。用于刚度要求不高或需随时调节预紧力的传动。3.齿差调隙式(图6)图6 齿差调隙式调整方式:螺母1、2的凸缘上有外齿,分别与紧固在螺母座两端的内齿圈3、4啮合,其齿数风别为Z1和Z2,且Z2=Z1+1。两个螺母向相同方向同时转动,每转过一个齿,调整轴向位移量为:(Ph导程)。特点:能够精确地调整预紧力,但结构尺寸较大,装配调整比较复杂,宜用于高精度的传动机构。本设计中将采用的是双螺母内循环垫片调整式滚动螺旋副来消除间隙。垫片调整式有结构比较简单,装卸方便,刚度高的特点。5.2.4滚珠丝杠选取与校核(1) 初始条件本设计的轴向进给长度大于径向进给结构,只校核轴向进给结构用的丝杠如下:由本设计要求可知,估算工作台的重量和安装在工作台上面的电磁夹具给丝杠的平均工作载荷Fm=4000N,最大轴向行程420 mm,取用丝杠的工作长度为672mm,有效滚道长度是500mm。 两支承间最大距离为:575mm平均转速100r/m使用寿命Lh=15000h,Ra为58-62HRC,要求传动精度0.03mm,螺杆材料为:50Mn, 高、中频加热,表面淬火。螺母材料为:CrWMn ,整体淬火、低温回火。返向器材料为:40Cr,离子渗氮处理螺纹滚道法面截形为半圆弧,螺母采用双螺母垫片式预紧方式。(2) 计算载荷(公式摘自机械零件设计手册第二版中册滚动螺旋传动设计计算部分,下同)= (式1)式中为载荷系数,K为硬度系数,为短行程系数。参考机械零件设计手册表18-18,表18-19,表18-20取=1.2,K=1,=1(3) 计算额定动载荷计算额定动载荷公式 (式2)其中n为平均转速,其中Lh=15000h,取n=100r/min,代入上式后计算得C=21496.42N(4) 根据必须的额定动载荷C选择螺旋尺寸根据内循环滚动螺旋副结构,查表8.2-18机械传动设计手册,使选择规格的螺旋副C接近 C 或者稍大于C,如下表1,表1 螺旋尺寸表结合公称直径和公称导程的优先配合,综合考虑选择参数如下:查特征代号确定型号为 FD406-3-3/全长螺纹长度,其尺寸参数如下:额定动载荷 公称直径 公称导程 钢球直径 mm圈数列数=13,螺纹升角 =基本额定静载荷 =70650N滚道半径R = 0.52 =2.064mm偏心距e = 0.707x(R-/2)=0.0562mm丝杠螺纹内径d=35.984mm(5)稳定性验算因为丝杠采用一端固定一端铰支的安装方式,查表18-7机械零件设计手册长度系数,参照机电一体化系统设计基础表2-10取安全系数S=3,因为螺杆较长,丝杠不会发生失稳的最大载荷成为临界载荷F(N)按下式计算:F= (式3)式中E为丝杠材料的弹性模量,对于钢,E=206GP;l为丝杠工作长度(m),l=672mm;为丝杠危险截面轴惯性矩(m);= (式4)=8.14910m 又 可得:安全系数S= F/= (式5)丝杠安全,不会失稳.(6) 刚度验算按最不利的情况考虑,螺纹螺距因受轴向力引起的弹性变形与受转矩引起的弹性变形方向是一致的。 滚珠丝杠在工作载荷F(N)和转矩T(Nm)共同作用下引起每个导程变形量 (m)为= (式6)式中,A为丝杠截面积,A=1/4;为丝杠的极惯性矩,=/32(m);G为丝杠的切变模量,对钢G=83.3GP;T(Nm)为转矩。又T=F (式7)式中,为摩擦角,其正切值为摩擦系数;为平均工作载荷;可以查出螺旋副运动由旋转运动转化为直线运动时取参数摩擦系数tan=0.0025,又=,所以样有下式:T=F 按最不利的情况计算,F=F有则每米螺纹距离上弹性变形量为 (式8)而每米螺纹距离上弹性变形量的许用值见机械零件设计手册第二版中册表18-17.通常要求丝杠的导程误差应小于其传动精度的1/2,即=3.02m/m1/2()=1/2 10m/m所以丝杠的刚度是完全满足要求的。(7) 效率验算 合格 (式9) 综上所校核,该丝杠是符合要求的。同理,径向传动的滚珠丝杠也好似符合要求的。5.3 滚动轴承的选取与计算5.3.1 轴向滚珠丝杠轴和径向滚珠丝杠轴受力分析轴向滚珠丝杠轴和径向滚珠丝杠轴一端受力 如图根据如图选取深沟球轴承6006求当量载荷P。FA=309.6NFr1=111.12+1664.32=1668N Fr2=831.62+1924.52=2096.2N查表12-5可得,6306轴承的Cr=27kN,C0r=15.2kN;轻微冲击,取fP=1.1因FAC0r=309.615200=0.020,查表可得,e=0.21.因FAFr1=0.18e,故P1=fp Fr1=1834.8NP2=fp Fr2=2305.8N5.3.2计算轴承寿命Lh 已知球轴承=3,因工作温度小于120,取ft=1。 满足寿命要求。另一端受力如图所示,根据图所选取深沟球轴承6206。5.3.3求当量载荷P。 Fr1=608.562+1672.012=1779.3N Fr2=364.182+1000.572=1064.8N查表12-5可得,6210轴承的C0r=19.8kN,Cr=27kN;轻微冲击,取fP=1.2P1=fpFr1=2135.2NP2=fpFr2=1277.7N (2)计算轴承寿命Lh。 已知球轴承=3,因工作温度小于120,取ft=1。(3)因转速较低,此处还需进行静强度计算查表得X0=0.6,Y0=0.5,S0=1.2P01= 0.6Fr,FrmaxFr=1779.3NC0r/P01=11.13S0=1.2 满足寿命要求。轴向滚珠丝杠副丝杠轴的滚动轴承电机传动部分,初步选择的滚动轴承为0基本游隙组,标准精度级的推力球轴承51206。轴向力 , ,Y=1.9,X=0.4载荷水平面H垂直面V支反力F则 则 则 则 则 则故合格。 径向滚珠丝杠副丝杠轴的滚动轴承电机传动部分,初步选择的滚动轴承为0基本游隙组,标准精度级的推力球轴承52207。轴向力 , ,Y=1.7
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:小型柴油机凸轮轴磨床设计(总体设计)【含6张CAD图纸】
链接地址:https://www.renrendoc.com/paper/125429529.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!